
Zheng et al. Journal of Inequalities and Applications 2012, 2012:201
http://www.journalofinequalitiesandapplications.com/content/2012/1/201

RESEARCH Open Access

Some new Gronwall-Bellman type nonlinear
dynamic inequalities containing integration
on infinite intervals on time scales
Bin Zheng1, Qinghua Feng1,2*, Fanwei Meng2 and Yaoming Zhang1

*Correspondence: fqhua@sina.com
1School of Sciences, Shandong
University of Technology,
Zhangzhou Road 12, Zibo,
Shandong 255049, China
2School of Mathematical Sciences,
Qufu Normal University, Qufu,
Shandong 273165, China

Abstract
In this paper, some new Gronwall-Bellman-type nonlinear dynamic inequalities
containing integration on infinite intervals on time scales are established, which
provides new bounds on unknown functions and can be used as a handy tool in the
qualitative analysis of solutions of certain dynamic equations on time scales.
MSC: 26E70; 26D15; 26D10

Keywords: Gronwall-Bellman type inequality; time scales; dynamic equation;
bounded

1 Introduction
In the analysis of solutions of certain differential, integral and difference equations, if
the solutions are unknown, then it is necessary to make estimate for their bounds. The
Gronwall-Bellman inequality [, ] and its various generalizations which provide explicit
bounds for solutions of differential, integral and difference equations have proved to be
of particular importance in this aspect, and much effort has been made to establish such
inequalities over the years (for example, see [–]). On the other hand, since Hilger []
initiated the theory of time scales as a theory capable to contain both difference and dif-
ferential calculus in a consistent way, many authors have expounded on various aspects
of the theory of dynamic equations on time scales (for example, see [–] and the
references therein). In these investigations, many authors have paid considerable atten-
tion to inequalities on time scales, and a lot of inequalities including Gronwall-Bellman
type inequalities on time scales have been established (for example, see [–] and
the references therein). But Gronwall-Bellman type nonlinear delay dynamic inequali-
ties on time scales have been paid little attention in literature so far. Recent results in
this direction include the works of Li [], Ma et al. [], Saker [], and Feng et al.
[, ], while nobody has undertaken research into Gronwall-Bellman type nonlinear
dynamic inequalities containing integration on infinite intervals on time scales to our
best knowledge. Besides, in order to fulfill the analysis of boundedness of the solutions
of some dynamic equations, for example, the equations up(t) = C +

∫ ∞
t F(s,u(τ (s)))�s and

(up(t))� = F(t,u(τ(t)),
∫ ∞
t M(ξ ,u(τ(ξ )))�ξ ), which contain integration on infinite inter-

vals on time scales, it is necessary to seek some new Gronwall-Bellman type nonlinear
dynamic inequalities containing integration on infinite intervals on time scales so as to
obtain desired results.

© 2012 Zheng et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.journalofinequalitiesandapplications.com/content/2012/1/201
mailto:fqhua@sina.com
http://creativecommons.org/licenses/by/2.0


Zheng et al. Journal of Inequalities and Applications 2012, 2012:201 Page 2 of 20
http://www.journalofinequalitiesandapplications.com/content/2012/1/201

In this paper, we will establish some new Gronwall-Bellman type nonlinear dynamic
inequalities containing integration on infinite intervals on time scales, which provide new
bounds on unknown functions in some certain dynamic equations on time scales.
First, we will give some preliminaries on time scales and some universal symbols for

further use. Throughout the paper, R denotes the set of real numbers and R+ = [,∞),
whileZ denotes the set of integers. For two given setsG,H , we denote the set ofmaps from
G toH by (G,H). A time scale is an arbitrary nonempty closed subset of the real numbers.
In this paper, T denotes an arbitrary time scale and T = [t,∞) ∩ T, where t ∈ T. On T

we define the forward and backward jump operators σ ∈ (T,T) and ρ ∈ (T,T) such that
σ (t) = inf{s ∈ T, s > t}, ρ(t) = sup{s ∈ T, s < t}. The graininess μ ∈ (T,R+) is defined by
μ(t) = σ (t) – t. A point t ∈ T is said to be left-dense if ρ(t) = t and t �= infT and right-
dense if σ (t) = t and t �= supT, left-scattered if ρ(t) < t and right-scattered if σ (t) > t. The
set Tκ is defined to be T if T does not have a left-scattered maximum, otherwise it is T
without the left-scattered maximum. A function f ∈ (T,R) is called rd-continuous if it is
continuous in right-dense points and if the left-sided limits exist in left-dense points, while
f is called regressive if  + μ(t)f (t) �= . Crd denotes the set of rd-continuous functions,
while R denotes the set of all regressive and rd-continuous functions, and R+ = {f |f ∈
R,  +μ(t)f (t) > ,∀t ∈ T}.

Definition . For some t ∈ T
κ , and a function f ∈ (T,R), the delta derivative of f is de-

noted by f �(t) and satisfies

∣∣f (σ (t)) – f (s) – f �(t)
(
σ (t) – s

)∣∣ ≤ ε
∣∣σ (t) – s

∣∣ ∀ε > ,

where s ∈ U, and U is a neighborhood of t. The function f is called delta differential at t.
The nabla derivative of f is denoted by f ∇ (t) and satisfies

∣∣f (ρ(t)) – f (s) – f ∇ (t)
(
ρ(t) – s

)∣∣ ≤ ε
∣∣ρ(t) – s

∣∣ ∀ε > ,

where s ∈ U, and U is a neighborhood of t.

Remark . If T =R, then f �(t) and f ∇ (t) become the usual derivative f ′(t), while f �(t) =
f (t + ) – f (t), f ∇ (t) = f (t) – f (t – ) if T = Z, which represent the forward and backward
difference respectively.

Definition . If F�(t) = f (t), t ∈ T
κ , then F is called an antiderivative of f , and the

Cauchy integral of f is defined by

∫ b

a
f (t)�t = F(b) – F(a), where a,b ∈ T.

Similarly, if F∇ (t) = f (t), then

∫ b

a
f (t)∇t = F(b) – F(a), where a,b ∈ T.

The following two theorems include some important properties for delta derivative,
nabla derivative, and the Cauchy integral on time scales.
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Theorem . ([]) If f , g ∈ (T,R), and t ∈ T
κ , then

(i)

f �(t) =

⎧⎨⎩
f (σ (t))–f (t)

σ (t)–t if ρ(t) �= t,

lims→t
f (t)–f (s)

t–s if μ(t) = ,
f ∇ (t) =

⎧⎨⎩
f (ρ(t))–f (t)

ρ(t)–t if ρ(t) = t,

lims→t
f (t)–f (s)

t–s if μ(t) = .

(ii) If f , g are delta differentials at t, then fg is also delta differential at t, and

(fg)�(t) = f �(t)g(t) + f
(
σ (t)

)
g�(t), (fg)∇ (t) = f ∇ (t)g(t) + f

(
ρ(t)

)
g∇ (t).

Theorem . ([]) If a,b, c ∈ T, α ∈R, and f , g ∈ Crd, then
(i)

∫ b
a [f (t) + g(t)]�t =

∫ b
a f (t)�t +

∫ b
a g(t)�t,

(ii)
∫ b
a (αf )(t)�t = α

∫ b
a f (t)�t,

(iii)
∫ b
a f (t)�t = –

∫ a
b f (t)�t,

(iv)
∫ b
a f (t)�t =

∫ c
a f (t)�t +

∫ b
c f (t)�t,

(v)
∫ a
a f (t)�t = ,

(vi) if f (t)≥  for all a ≤ t ≤ b, then
∫ b
a f (t)�t ≥ .

Remark . Theorem . also holds for nabla derivative. If b = ∞, then all the conclusions
of Theorem . still hold.

Definition . The cylinder transformation ξh :Ch → Zh is defined by

ξh(z) =

⎧⎨⎩
Log(+hz)

h if h �=  (for z �= – 
h ),

z if h = ,

where Log is the principal logarithm function.

Definition . For p ∈R, the exponential function is defined by

ep(t, s) = exp

(∫ t

s
ξμ(τ )

(
p(τ )

)
�τ

)
for s, t ∈ T.

Definition . If supt∈T t = ∞, p ∈ R, we define

ep(∞, t) = exp

(∫ ∞

t
ξμ(τ )

(
p(τ )

)
�τ

)
for t ∈ T.

Remark . If T =R, then for t ∈R,⎧⎨⎩ep(t, s) = exp(
∫ t
s p(τ )dτ ), for s ∈ T,

ep(∞, s) = exp(
∫ ∞
s p(τ )dτ ).

If T = Z, then for t ∈ Z,⎧⎨⎩ep(t, s) =
∏t–

τ=s[ + p(τ )], for s ∈ T and s < t,

ep(∞, s) =
∏∞

τ=s[ + p(τ )].
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The following two theorems include some known properties on the exponential func-
tion.

Theorem . ([]) If p ∈R, then the following conclusions hold:
(i) ep(t, t)≡ , and e(t, s) ≡ ,
(ii) ep(σ (t), s) = ( +μ(t)p(t))ep(t, s),
(iii) if p ∈R+, then ep(t, s) >  ∀s, t ∈ T,
(iv) if p ∈R+, then p ∈R+,
(v) ep(t, s) = 

ep(s,t) = ep(s, t),
where p = – p

+μp .

Remark . If s = ∞, then Theorem .(v) still holds.

Theorem . ([]) If p ∈ R, and fix t ∈ T, then the exponential function ep(t, t) is the
unique solution of the following initial value problem:⎧⎨⎩y�(t) = p(t)y(t),

y(t) = .

For more details about the calculus of time scales, we refer the reader to [].

2 Main results
For the sake of convenience, we always assume T ⊆ T

κ and supt∈T t = ∞ in the rest of
this paper.

Lemma . Suppose u,b ∈ Crd(T,R+). –m ∈ R+, that is,  – μ(t)m(t) > , ∀t ∈ T, and
furthermore, assume

∏∞
τ=t

–μm(τ )+m(τ )
–μm(τ ) < ∞. u is delta differential at t ∈ T, and m(t) ≥ ,

t ∈ T. Then

u(t) ≤ b(t) +
∫ ∞

t
m(s)u(s)�s, t ∈ T (.)

implies

u(t) ≤ b(t) +
∫ ∞

t
m(s)b(s)e–m

(
t,σ (s)

)
�s, t ∈ T. (.)

Proof Let

v(t) =
∫ ∞

t
m(s)u(s)�s,

then we have

u(t) ≤ b(t) + v(t), t ∈ T, (.)

and

v�(t) = –m(t)u(t)≥ –m(t)
[
b(t) + v(t)

]
,

http://www.journalofinequalitiesandapplications.com/content/2012/1/201
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that is,

v�(t) +m(t)v(t)≥ –m(t)b(t). (.)

Since –m ∈ R+, then from Theorem .(iv), we have (–m) ∈ R+, and furthermore,
from Theorem .(iii), we obtain e(–m)(t,α) >  ∀t,α ∈ T.
According to Theorem .(ii),

[
v(t)e(–m)(t,α)

]� =
[
e(–m)(t,α)

]�v(t) + e(–m)
(
σ (t),α

)
v�(t). (.)

On the other hand, from Theorem ., we have

[
e(–m)(t,α)

]� =
((–m)

)
(t)e(–m)(t,α). (.)

So combining (.), (.) and Theorem . yields

[
v(t)e(–m)(t,α)

]� =
((–m)

)
(t)e(–m)(t,α)v(t) + e(–m)

(
σ (t),α

)
v�(t)

= e(–m)
(
σ (t),α

)[ ((–m))(t)
 +μ(t)((–m))(t)

v(t) + v�(t)
]

= e(–m)
(
σ (t),α

)[
v�(t) +m(t)v(t)

]
. (.)

Substituting t with s and an integration for (.) with respect to s from α to ∞ yield

v(∞)e(–m)(∞,α) – v(α)e(–m)(α,α)

=
∫ ∞

α

e(–m)
(
σ (s),α

)[
v�(s) +m(s)v(s)

]
�s. (.)

Since
∏∞

τ=t
–μm(τ )+m(τ )

–μm(τ ) < ∞, then e(–m)(∞,α) < ∞. Considering ep(α,α) = , and
v(∞) = , by (.) and (.), we have

–v(α)≥ –
∫ ∞

α

e(–m)
(
σ (s),α

)
m(s)b(s)�s = –

∫ ∞

α

e–m
(
α,σ (s)

)
m(s)b(s)�s,

which is followed by

v(α)≤
∫ ∞

α

e–m
(
α,σ (s)

)
m(s)b(s)�s. (.)

Since α ∈ T is arbitrary, then substituting α with t and combining (.), we can obtain
the desired inequality. �

Lemma . Under the conditions of Lemma ., furthermore, if b(t) is decreasing, then we
have

u(t) ≤ b(t)e–m(t,∞), t ∈ T. (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/201
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Proof Since b(t) is decreasing on T, then from (.), we have

u(t) ≤ b(t) +
∫ ∞

t
m(s)b(s)e–m

(
t,σ (s)

)
�s

≤ b(t)
[
 +

∫ ∞

t
m(s)e–m

(
t,σ (s)

)
�s

]
. (.)

On the other hand, from [, Theorems . and .(i)], for some t ∈ T, we have

∫ t

t
m(s)e–m

(
t,σ (s)

)
�s =

∫ t

t
–m(s)e–m

(
t,σ (s)

)
�s = e–m(t, t) – . (.)

Then letting t → ∞ in (.), we obtain

∫ ∞

t
m(s)e–m

(
t,σ (s)

)
�s = e–m(t,∞) – . (.)

Combining (.) and (.), we obtain the desired inequality. �

Lemma . ([]) Assume that a≥ , p ≥ q ≥  and p �= , then for any K > ,

a
q
p ≤ q

p
K

q–p
p a +

p – q
p

K
q
p .

Now, we consider the delay dynamic inequality of the following form:

up(t) ≤ a(t) +
∫ ∞

t
f (s)up

(
τ(s)

)
�s

+
∫ ∞

t

[
m(s) + g(s)ω

(
u
(
τ(s)

))
+

∫ ∞

s
h(ξ )ω

(
u
(
τ(ξ )

))∇ξ

]
∇s, (.)

where u,m,a, f , g,h ∈ Crd(T,R+), and a is decreasing. τi ∈ (T,T) with τi(t) ≥ t, i = , ,
p >  is a constant, ω ∈ C(R+,R+) is nondecreasing, and ω is submultiplicative, that is,
ω(αβ)≤ ω(α)ω(β) holds ∀α ≥ , β ≥ .

Theorem . If u(t) satisfies inequality (.), then we have

u(t) ≤
{
G–

{
G

[
a(t) +

∫ ∞

t
m(s)∇s

]

+
∫ ∞

t

[
g(s) +

∫ ∞

s
h(ξ )∇ξ

]
ω

(
e

p
–f (s,∞)

)∇s
}
e–f (t,∞)

} 
p
, t ∈ T, (.)

provided that –f ∈ R+, and
∏∞

τ=t
–μf (τ )+f (τ )

–μf (τ ) < ∞, where G is an increasing bijective func-
tion, and

G(v) =
∫ v





ω(r

p )

dr, v >  with G(∞) = ∞.

http://www.journalofinequalitiesandapplications.com/content/2012/1/201
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Proof Let the right side of (.) be v(t). Then

u(t) ≤ v

p (t), t ∈ T, (.)

and

u
(
τi(t)

) ≤ v

p
(
τi(t)

) ≤ v

p (t). (.)

Furthermore,

v(t)≤ a(t) +
∫ ∞

t

[
m(s) + g(s)ω

(
v


p (s)

)
+

∫ ∞

s
h(ξ )ω

(
v


p (ξ )

)∇ξ

]
∇s +

∫ ∞

t
f (s)v(s)�s.

(.)

According to –f ∈ R+, a suitable application of Lemma . to (.) yields

v(t)≤
{
a(t) +

∫ ∞

t

[
m(s) + g(s)ω

(
v


p (s)

)
+

∫ ∞

s
h(ξ )ω

(
v


p (ξ )

)∇ξ

]
∇s

}
e–f (t,∞). (.)

Fix T ∈ T, and let t ∈ [T ,∞)∩T. Define

c(t) = a(T) +
∫ ∞

T
m(s)∇s +

∫ ∞

t

[
g(s)ω

(
v


p (s)

)
+

∫ ∞

s
h(ξ )ω

(
v


p (ξ )

)∇ξ

]
∇s. (.)

Then

v(t)≤ c(t)e–f (t,∞), t ∈ [T ,∞)∩T, (.)

and

c∇ (t) = –
[
g(t)ω

(
v


p (t)

)
+

∫ ∞

t
h(ξ )ω

(
v


p (ξ )

)∇ξ

]
≥ –

[
g(t) +

∫ ∞

t
h(ξ )∇ξ

]
ω

(
v


p (t)

)
≥ –

[
g(t) +

∫ ∞

t
h(ξ )∇ξ

]
ω

(
c

p (t)e


p
–f (t,∞)

)
≥ –

[
g(t) +

∫ ∞

t
h(ξ )∇ξ

]
ω

(
c

p (t)

)
ω

(
e

p
–f (t,∞)

)
,

that is,

c∇ (t)

ω(c

p (t))

≥ –
[
g(t) +

∫ ∞

t
h(ξ )∇ξ

]
ω

(
e

p
–f (t,∞)

)
, t ∈ [T ,∞)∩T.

On the other hand, for t ∈ [T ,∞]∩T, if ρ(t) < t, then

[
G

(
c(t)

)]∇ =
G(c(ρ(t))) –G(c(t))

ρ(t) – t
=


ρ(t) – t

∫ c(ρ(t))

c(t)



ω(r

p )

dr

≥ c(ρ(t)) – c(t)
ρ(t) – t



ω(c

p (t))

=
c∇ (t)

ω(c

p (t))

.

http://www.journalofinequalitiesandapplications.com/content/2012/1/201
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If ρ(t) = t, then

[
G

(
c(t)

)]∇ = lim
s→t

G(c(t)) –G(c(s))
t – s

= lim
s→t


t – s

∫ c(t)

c(s)



ω(r

p )

dr

= lim
s→t

c(t) – c(s)
t – s



ω(ξ

p )

=
c∇ (t)

ω(c

p (t))

,

where ξ lies between c(s) and c(t). So we always have [G(c(t))]∇ ≥ c∇ (t)

ω(c

p (t))

. Using the state-

ments above, we deduce that

[
G

(
c(t)

)]∇ ≥ –
[
g(t) +

∫ ∞

t
h(ξ )∇ξ

]
ω

(
e

p
–f (t,∞)

)
, t ∈ [T ,∞)∩T. (.)

Substituting t with s in (.) and an integration with respect to s from t to ∞ yield

G
(
c(∞)

)
–G

(
c(t)

)
≥ –

∫ ∞

t

[
g(s) +

∫ ∞

s
h(ξ )∇ξ

]
ω

(
e

p
–f (s,∞)

)∇s, t ∈ [T ,∞)∩T.

Consider G is strictly increasing and c(∞) = a(T) +
∫ ∞
T m(s)∇s, then it follows

c(t) ≤ G–
{
G

[
a(T) +

∫ ∞

T
m(s)∇s

]
+

∫ ∞

t

[
g(s) +

∫ ∞

s
h(ξ )∇ξ

]
ω

(
e

p
–f (s,∞)

)∇s
}
, t ∈ [T ,∞)∩T. (.)

Combining (.), (.) and (.), we have for t ∈ [T ,∞)∩T

u(t) ≤
{
G–

{
G

[
a(T) +

∫ ∞

T
m(s)∇s

]

+
∫ ∞

t

[
g(s) +

∫ ∞

s
h(ξ )∇ξ

]
ω

(
e

p
–f (s,∞)

)∇s
}
e–f (t,∞)

} 
p
. (.)

Setting t = T in (.) yields

u(T) ≤
{
G–

{
G

[
a(T) +

∫ ∞

T
m(s)∇s

]

+
∫ ∞

T

[
g(s) +

∫ ∞

s
h(ξ )∇ξ

]
ω

(
e

p
–f (s,∞)

)∇s
}
e–f (T ,∞)

} 
p
. (.)

Since T ∈ T is selected arbitrarily, after substituting T with t in (.) the proof is com-
plete. �

If we let p =  in Theorem ., then we have the following corollary.

http://www.journalofinequalitiesandapplications.com/content/2012/1/201
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Corollary . Under the conditions of Theorem . with p = , if for t ∈ T, u(t) satisfies
the following inequality:

u(t) ≤ a(t) +
∫ ∞

t
f (s)u

(
τ(s)

)
�s

+
∫ ∞

t

[
m(s) + g(s)ω

(
u
(
τ(s)

))
+

∫ ∞

s
h(ξ )ω

(
u
(
τ(ξ )

))∇ξ

]
∇s, (.)

then

u(t) ≤ G–
{
G

[
a(t) +

∫ ∞

t
m(s)∇s

]
+

∫ ∞

t

[
g(s) +

∫ ∞

s
h(ξ )∇ξ

]
ω

(
e–f (s,∞)

)∇s
}
e–f (t,∞), t ∈ T, (.)

provided that –f ∈R+, and
∏∞

τ=t
–μf (τ )+f (τ )

–μf (τ ) <∞.

Since T is an arbitrary time scale, then if we take T for some peculiar cases in Theo-
rem ., then we can obtain some corollaries immediately. Especially, if we take T = R or
T = Z, then we obtain continuous and discrete analyses respectively, which are shown in
the following two corollaries.

Corollary . SupposeT =R, t ∈R, andR = [t,∞)∩R. u,m,a,b, f ∈ (R,R+), and a, b
are decreasing onR. τi ∈ (R,R), τi(t)≥ t, i = , , ω is defined the same as in Theorem ..
If for t ∈R, u(t) satisfies

up(t) ≤ a(t) +
∫ ∞

t

[
m(s) + f (s)up

(
τ(s)

)
+ g(s)ω

(
u
(
τ(s)

))
+

∫ ∞

s
h(ξ )ω

(
u
(
τ(ξ )

))
dξ

]
ds,

then

u(t) ≤
{
G–

{
G

[
a(t) +

∫ ∞

t
m(s)ds

]

+
∫ ∞

t

[
g(s) +

∫ ∞

s
h(ξ )dξ

]
ω

(
e

p
–f (s,∞)

)
ds

}
e–f (t,∞)

} 
p
, t ∈R,

provided that
∏∞

τ=t f (τ ) < ∞.

Corollary . SupposeT = Z, n ∈ Z, andZ = [n,∞)∩Z. u,m,a,b, f ∈ (Z,R+), and a, b
are decreasing onZ. τi ∈ (Z,Z), τi(n)≥ n, i = , ,ω is defined the same as in Theorem ..
If for n ∈ Z, u(n) satisfies

up(n) ≤ a(n) +
∞∑
s=n

f (s)up
(
τ(s)

)
+

∞∑
s=n+

[
m(s) + g(s)ω

(
u
(
τ(s)

))
+

∞∑
ξ=s

h(ξ )ω
(
u
(
τ(ξ )

))]
, then for n ∈ Z,
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u(n) ≤
{
G–

{
G

[
a(n) +

∞∑
s=n+

m(s)

]

+
∞∑

s=n+

{[
g(s) +

∞∑
ξ=s+

h(ξ )

]
ω

(( ∞∏
τ=s


 – f (τ )

) 
p
)}} ∞∏

τ=n


 – f (τ )

} 
p

,

provided that f (n) < , and
∏∞

τ=n


–f (τ ) <∞.

Second, we study the following delay dynamic inequality on time scales:

up(t) ≤ a(t) + b(t)
∫ ∞

t
f (s)ω

(
u
(
τ (s)

))∇s, t ∈ T, (.)

where b ∈ Crd(T,R+), and b is decreasing, u, a, f are defined the same as in Theorem .,
ω ∈ C(R+,R+) is nondecreasing, τ ∈ (T,T), τ (t)≥ t.

Theorem . If u(t) satisfies inequality (.), then

u(t) ≤
{
G–

[
G

(
a(t)

)
+ b(t)

∫ ∞

t
f (s)∇s

]} 
p
, t ∈ T, (.)

where G is defined the same as in Theorem ..

Proof Let the right side of (.) be v(t). Then we have

u(t) ≤ v

p (t), t ∈ T, (.)

and

u
(
τ (t)

) ≤ v

p
(
τ (t)

) ≤ v

p (t), t ∈ T. (.)

Furthermore,

v(t)≤ a(t) + b(t)
∫ ∞

t
f (s)ω

(
v


p (s)

)∇s. (.)

Let T ∈ T be fixed, and denote

z(t) = a(T) + b(T)
∫ ∞

t
f (s)ω

(
v


p (s)

)∇s. (.)

Consider a, b are decreasing on T, then for t ∈ [T ,∞)∩T, we have

v(t)≤ z(t). (.)

Moreover,

z∇ (t) = –b(T)f (t)ω
(
v


p (t)

)
≥ –b(T)f (t)ω

(
z

p (t)

)
.
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Similar to Theorem ., we have

[
G

(
z(t)

)]∇ ≥ z∇ (t)

ω(z

p (t))

≥ –b(T)f (t). (.)

Substituting t with s in (.) and an integration with respect to s from t to ∞ yield

G
(
z(∞)

)
–G

(
z(t)

) ≥ –
∫ ∞

t
b(T)f (s)∇s = –b(T)

∫ ∞

t
f (s)∇s. (.)

Consider G is strictly increasing, and z(∞) = a(T), then (.) is followed by

z(t) ≤ G–
[
G

(
a(T)

)
+ b(T)

∫ ∞

t
f (s)∇s

]
, t ∈ [T ,∞)∩T. (.)

Combining (.), (.) and (.) yields

u(t) ≤
{
G–

[
G

(
a(T)

)
+ b(T)

∫ ∞

t
f (s)∇s

]} 
p
, t ∈ [T ,∞)∩T. (.)

Setting t = T in (.), we obtain

u(T) ≤
{
G–

[
G

(
a(T)

)
+ b(T)

∫ ∞

T
f (s)∇s

]} 
p
. (.)

Since T ∈ T is selected arbitrarily, then after substituting T with t in (.), we obtain the
desired inequality (.). �

Considering T is an arbitrary time scale, if we take T for some peculiar cases in Theo-
rem ., we immediately get the following two corollaries.

Corollary . Suppose T = R, t ∈ R, and R = [t,∞) ∩ R. u,a,b, f ∈ (R,R+), and a, b
are decreasing on R. τ ∈ (R,R), τ (t) ≥ t, ω is defined as in Theorem .. If u(t) satisfies

up(t) ≤ a(t) + b(t)
∫ ∞

t
f (s)ω

(
u
(
τ (s)

))
ds, t ∈R, (.)

then

u(t) ≤
{
G–

[
G

(
a(t)

)
+ b(t)

∫ ∞

t
f (s)ds

]} 
p
, t ∈R. (.)

Corollary . Suppose T = Z, n ∈ Z, and Z = [n,∞) ∩ Z. u,a,b, f ∈ (Z,R+), and a, b
are decreasing on Z. τ ∈ (Z,Z), τ (n) ≥ n, ω is the same as in Theorem .. If u(n) satisfies

up(n) ≤ a(n) + b(n)
∞∑

s=n+

f (s)ω
(
u
(
τ (s)

))
, n ∈ Z, (.)

then

u(n) ≤
{
G–

[
G

(
a(n)

)
+ b(n)

∞∑
s=n+

f (s)

]} 
p

, n ∈ Z. (.)
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In Theorem ., if we change the conditions for ω, then we can obtain another bound
for the function u(t), which is shown in the following theorem.

Theorem . Suppose u,a,b, f ∈ Crd(T,R+) with a, b decreasing, ω ∈ C(R+,R+) is non-
decreasing, subadditive and submultiplicative, that is, ∀α ≥ , β ≥ , we always have
ω(α + β) ≤ ω(α) + ω(β) and ω(αβ) ≤ ω(α)ω(β). τ , α, φ are the same as in Theorem .. If
G̃ is a strictly increasing bijective function, and u(t) satisfies inequality (.), then

u(t) ≤
{
a(t) + b(t)G̃–

[
G̃

(
A(t)

)
+

∫ ∞

t
f (s)ω

(

p
K

–p
p b(s)

)
∇s

]} 
p
, t ∈ T, (.)

where K >  is an arbitrary constant, G̃ is an increasing bijective function, and⎧⎨⎩G̃(v) =
∫ v



ω(r) dr, v >  with G̃(∞) = ∞,

A(t) =
∫ ∞
t f (s)ω( pK

–p
p a(s) + p–

p K

p )∇s.

(.)

Proof Let

v(t) =
∫ ∞

t
f (s)ω

(
u
(
τ (s)

))∇s, t ∈ T. (.)

Then

u(t) ≤ (
a(t) + b(t)v(t)

) 
p , t ∈ T, (.)

and

u
(
τ (t)

) ≤ (
a
(
τ (t)

)
+ b

(
τ (t)

)
v
(
τ (t)

)) 
p ≤ (

a(t) + b(t)v(t)
) 
p , t ∈ T. (.)

Considering ω is nondecreasing, subadditive and submultiplicative, combining (.),
(.) and Lemma ., we obtain

v(t) ≤
∫ ∞

t
f (s)ω

((
a(s) + b(s)v(s)

) 
p
)∇s

≤
∫ ∞

t
f (s)ω

(

p
K

–p
p

(
a(s) + b(s)v(s)

)
+
p – 
p

K

p

)
∇s

≤
∫ ∞

t
f (s)ω

(

p
K

–p
p a(s) +

p – 
p

K

p

)
∇s +

∫ ∞

t
f (s)ω

(

p
K

–p
p b(s)v(s)

)
∇s

≤
∫ ∞

t
f (s)ω

(

p
K

–p
p a(s) +

p – 
p

K

p

)
∇s +

∫ ∞

t
f (s)ω

(

p
K

–p
p b(s)

)
ω

(
v(s)

)∇s

= A(t) +
∫ ∞

t
f (s)ω

(

p
K

–p
p b(s)

)
ω

(
v(s)

)∇s, ∀K > , t ∈ T, (.)

where K >  is a constant, and A(t) is defined in (.).
Let T be fixed in T, and t ∈ [T ,∞)∩T. Denote

z(t) = A(T) +
∫ ∞

t
f (s)ω

(

p
K

–p
p b(s)

)
ω

(
v(s)

)∇s. (.)
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Considering A(t) is decreasing, we have

v(t)≤ z(t), t ∈ [T ,∞)∩T. (.)

Furthermore,

z∇ (t) = –f (t)ω
(

p
K

–p
p b(t)

)
ω

(
v(t)

)
≥ –f (t)ω

(

p
K

–p
p b(t)

)
ω

(
z(t)

)
.

Similar to Theorem ., we have

[
G̃

(
z(t)

)]∇ ≥ z∇ (t)
ω(z(t))

≥ –f (t)ω
(

p
K

–p
p b(t)

)
. (.)

Substituting t with s in (.) and an integration with respect to s from t to ∞ yield

G̃
(
z(∞)

)
– G̃

(
z(t)

) ≥ –
∫ ∞

t
f (s)ω

(

p
K

–p
p b(s)

)
∇s,

which is followed by

z(t) ≤ G̃–
[
G̃

(
z(∞)

)
+

∫ ∞

t
f (s)ω

(

p
K

–p
p b(s)

)
∇s

]
= G̃–

[
G̃

(
A(T)

)
+

∫ ∞

t
f (s)ω

(

p
K

–p
p b(s)

)
∇s

]
. (.)

Combining (.), (.) and (.), we obtain

u(t) ≤
{
a(t) + b(t)G̃–

[
G̃

(
A(T)

)
+

∫ ∞

t
f (s)ω

(

p
K

–p
p b(s)

)
∇s

]} 
p
, t ∈ [T ,∞)∩T.

(.)

Setting t = T in (.), yields

u(T) ≤
{
a(T) + b(T)G̃–

[
G̃

(
A(T)

)
+

∫ ∞

T
f (s)ω

(

p
K

–p
p b(s)

)
∇s

]} 
p
. (.)

SinceT is selected fromT arbitrarily, then substitutingT with t, we can obtain the desired
inequality (.). �

Next, we consider the following delay dynamic inequality on time scales:

up(t) ≤ C +
∫ ∞

t

[
f (s)uq

(
τ(s)

)
+ g(s)uq

(
τ(s)

)
ω

(
u
(
τ(s)

))]∇s, t ∈ T, (.)

where u, f , g , τ, τ are defined the same as in Theorem ., ω ∈ C(R+,R+) is nondecreas-
ing, C >  is a constant, p≥ q >  are constants.
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Theorem . If u(t) satisfies (.), then

u(t) ≤
{
G–

{
H–

[
H

(
G(C) +

∫ ∞

t
f (s)∇s

)
+

∫ ∞

t
g(s)∇s

]}} 
p
, t ∈ T, (.)

where G, H are two increasing bijective functions, and

G(v) =
∫ v





r
q
p
dr, v > ,

H(z) =
∫ z





ω((G–(r))

p )

dr, z >  with H(∞) = ∞.
(.)

Proof Let the right side of (.) be v(t). Then

u(t) ≤ v

p (t), t ∈ T, (.)

and

u
(
τi(t)

) ≤ v

p
(
τi(t)

) ≤ v

p (t), i = , , t ∈ T. (.)

Furthermore,

v∇ (t) = –
[
f (t)uq

(
τ(t)

)
+ g(t)uq

(
τ(t)

)
ω

(
u
(
τ(t)

))]
≥ –

[
f (t)v

q
p (t) + g(t)v

q
p (t)ω

(
v


p (t)

)]
.

Then similar to Theorem ., we have

[
G

(
v(t)

)]∇ ≥ v∇ (t)

v
q
p (t)

≥ –
[
f (t) + g(t)ω

(
v


p (t)

)]
. (.)

An integration for (.) from t to ∞ yields

G
(
v(∞)

)
–G

(
v(t)

) ≥ –
∫ ∞

t

[
f (s) + g(s)ω

(
v


p (s)

)]∇s. (.)

Consider G is increasing, and v(∞) = C, then (.) implies

v(t)≤ G–
[
G(C) +

∫ ∞

t

[
f (s) + g(s)ω

(
v


p (s)

)]∇s
]
. (.)

Given a fixed number T in T, and t ∈ [T ,∞)∩T. Denote

z(t) =G(C) +
∫ ∞

T
f (s)∇s +

∫ ∞

t
g(s)ω

(
v


p (s)

)∇s. (.)

Then

v(t)≤ G–(z(t)), t ∈ [T ,∞)∩T, (.)
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Zheng et al. Journal of Inequalities and Applications 2012, 2012:201 Page 15 of 20
http://www.journalofinequalitiesandapplications.com/content/2012/1/201

and furthermore,

z∇ (t) = –g(t)ω
(
v


p (t)

)
≥ –g(t)ω

((
G–(z(t))) 

p
)
,

which is followed by

[
H

(
z(t)

)]∇ ≥ z∇ (t)

ω((G–(z(t)))

p )

≥ –g(t). (.)

Integrating (.) from t to ∞ yields

H
(
z(∞)

)
–H

(
z(t)

) ≥ –
∫ ∞

t
g(s)∇s. (.)

Consider H is increasing and z(∞) =G(C) +
∫ ∞
T f (s)∇s, then combining (.), (.) and

(.), we have

u(t) ≤
{
G–

{
H–

[
H

(
G(C) +

∫ ∞

T
f (s)∇s

)
+

∫ ∞

t
g(s)∇s

]}} 
p
, t ∈ [T ,∞)∩T.

(.)

Setting t = T in (.) and considering T is an arbitrary number in T, we can obtain the
desired inequality after substituting T with t. �

Finally, we study the following delay dynamic inequality on time scales:

η
(
u(t)

) ≤ a(t) + b(t)
∫ ∞

t

[
f (s)ω

(
u
(
τ(s)

))
+ g(s)

∫ ∞

s
h(ξ )ω

(
u
(
τ(ξ )

))∇ξ

]
∇s, t ∈ T, (.)

where u, a, b, f , g , h, α, τi, i = ,  are defined the same as in Theorem ., b is defined as in
Theorem .,ω ∈ C(R+,R+) is nondecreasing, η ∈ Crd([α, t]∩T,R+) is strictly increasing.

Theorem . If for t ∈ T, u(t) satisfies inequality (.), then

u(t) ≤ η–
{
Ĝ–

{
Ĝ

(
a(t) + b(t)

∫ ∞

t

[
f (s) + g(s)

∫ ∞

s
h(ξ )∇ξ

]
∇s

)}}
, t ∈ T, (.)

where Ĝ is an increasing bijective function, and

Ĝ(v) =
∫ v




ω(η–(r))

dr, v >  with Ĝ(∞) = ∞.

Proof Let the right side of (.) be v(t). Then

η
(
u(t)

) ≤ v(t), t ∈ T, (.)
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and

η
(
u
(
τi(t)

)) ≤ v
(
τi(t)

) ≤ v(t), i = ,  ∀t ∈ T. (.)

Furthermore, considering η is increasing, we have

v(t)≤ a(t) + b(t)
∫ ∞

t

[
f (s)ω

(
η–(v(s))) + g(s)

∫ ∞

s
h(ξ )ω

(
η–(v(ξ )))∇ξ

]
∇s, t ∈ T.

(.)

Fix T ∈ T, and let t ∈ [T ,∞)∩T. Define

c(t) = a(T) + b(T)
∫ ∞

t

[
f (s)ω

(
η–(v(s))) + g(s)

∫ ∞

s
h(ξ )ω

(
η–(v(ξ )))∇ξ

]
∇s. (.)

Consider a, b are decreasing on T, then it follows

v(t)≤ c(t), t ∈ [T ,∞)∩T. (.)

On the other hand,

c∇ (t) = –b(T)
[
f (t)ω

(
η–(v(t))) + g(t)

∫ ∞

t
h(ξ )ω

(
η–(v(ξ )))∇ξ

]
≥ –b(T)

[
f (t)ω

(
η–(c(t))) + g(t)

∫ ∞

t
h(ξ )ω

(
η–(c(ξ )))∇ξ

]
≥ –b(T)

[
f (t) + g(t)

∫ ∞

t
h(ξ )∇ξ

]
ω

(
η–(c(t))).

Similar to Theorem ., we have

[
Ĝ

(
c(t)

)]∇ ≥ c∇ (t)
ω(η–(c(t)))

≥ –b(T)
[
f (t) + g(t)

∫ ∞

t
h(ξ )∇ξ

]
. (.)

Substituting t with s in (.) and an integration for (.) with respect to s from t to ∞
yield

Ĝ
(
c(∞)

)
– Ĝ

(
c(t)

) ≥ –b(T)
∫ ∞

t

[
f (s) + g(s)

∫ ∞

s
h(ξ )∇ξ

]
∇s. (.)

Since c(∞) = a(T), and Ĝ is strictly increasing, then it follows

c(t) ≤ Ĝ–
{
Ĝ

(
a(T)

)
+ b(T)

∫ ∞

t

[
f (s) + g(s)

∫ ∞

s
h(ξ )∇ξ

]
∇s

}
. (.)

Combining (.), (.) and (.), we have

u(t) ≤ η–
{
Ĝ–

{
Ĝ

(
a(T)

)
+ b(T)

∫ ∞

t

[
f (s) + g(s)

∫ ∞

s
h(ξ )∇ξ

]
∇s

}}
,

t ∈ [T ,∞)∩T. (.)
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Setting t = T in (.), we can obtain

u(T) ≤ η–
{
Ĝ–

{
Ĝ

(
a(T)

)
+ b(T)

∫ ∞

T

[
f (s) + g(s)

∫ ∞

s
h(ξ )∇ξ

]
∇s

}}
. (.)

Since T ∈ T is selected arbitrarily, then substituting T with t in (.), we can obtain the
desired inequality (.). �

Remark . If we take T for some peculiar cases in Theorems ., . and . such as
T =R and T = Z, we can obtain some corollaries respectively, which are omitted here due
to the limited space.

3 Some simple applications
In this section, we will present some applications for the established results above. Some
new bounds for the solutions of certain delay dynamic equations on time scales will be
derived in the following examples.

Example  Consider the delay dynamic integral equation on time scales

up(t) = C +
∫ ∞

t
F
(
s,u

(
τ (s)

))∇s, t ∈ T, (.)

where u ∈ Crd(T,R), C = up(t), p is a positive number with p ≥ , τ is defined as in
Theorem ..

Theorem . Suppose u(t) is a solution of (.) and assume |F(t,u)| ≤ f (t)|u|, where f ∈
Crd(T,R+), then we have

∣∣u(t)∣∣ ≤
{
G–

[
G

(|C|) + ∫ ∞

t
f (s)∇s

]} 
p
, t ∈ T, (.)

where

G(v) =
∫ v





r

p
dr, v > . (.)

Proof From (.), we obtain

∣∣u(t)∣∣p ≤ |C| +
∫ ∞

t

∣∣F(
s,u

(
τ (s)

))∣∣∇s ≤ |C| +
∫ ∞

t
f (s)

∣∣u(
τ (s)

)∣∣∇s. (.)

Let ω ∈ C(R+,R+), and ω(v) = v. Then (.) can be rewritten as

∣∣u(t)∣∣p ≤ |C| +
∫ ∞

t
f (s)ω

(∣∣u(
τ (s)

)∣∣)∇s. (.)

A suitable application of Theorem . to (.) yields the desired inequality. �
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Remark . In the proof of Theorem ., if we apply Theorem . instead of Theorem .
to (.), then we obtain another bound for u(t) as follows:

∣∣u(t)∣∣ ≤
{
|C| +A(t) exp

(∫ ∞

t
f (s)


p
K

–p
p ∇s

)} 
p
, t ∈ T, (.)

where K >  is an arbitrary constant, and⎧⎨⎩G̃(v) =
∫ v



r dr = ln v, v > ,

A(t) =
∫ ∞
t f (s)( pK

–p
p |C| + p–

p K

p )∇s.

(.)

Example  Consider the following delay dynamic differential equation on time scales:

(
up(t)

)∇ = F
(
t,u

(
τ(t)

)
,
∫ ∞

t
M

(
ξ ,u

(
τ(ξ )

))∇ξ

)
, t ∈ T, (.)

where u ∈ Crd(T,R), C = up(∞), p is a positive number with p ≥ , τi, i = ,  are defined
as in Theorem ..

Theorem . Suppose u(t) is a solution of (.), and assume |F(t,u, v)| ≤ f (t)|u| + |v|,
|M(t,u)| ≤ h(t)|u|, where f ,h ∈ Crd(T,R+), then we have

∣∣u(t)∣∣ ≤
{
G–

{
G

(|C|) + ∫ ∞

t

[
f (s) +

∫ ∞

s
h(ξ )∇ξ

]
∇s

}} 
p
, t ∈ T, (.)

where G is defined as in Theorem ..

Proof The equivalent integral form of (.) can be denoted by

up(t) = C +
∫ ∞

t
F
(
s,u

(
τ(s)

)
,
∫ ∞

s
M

(
ξ ,u

(
τ(ξ )

))∇ξ

)
∇s. (.)

Then∣∣u(t)∣∣p =
∣∣∣∣C +

∫ ∞

t
F
(
s,u

(
τ(s)

)
,
∫ ∞

s
M

(
ξ ,u

(
τ(ξ )

))∇ξ

)
∇s

∣∣∣∣
≤ |C| +

∣∣∣∣∫ ∞

t
F
(
s,u

(
τ(s)

)
,
∫ ∞

s
M

(
ξ ,u

(
τ(ξ )

))∇ξ

)
∇s

∣∣∣∣
≤ |C| +

∫ ∞

t

∣∣∣∣F(
s,u

(
τ(s)

)
,
∫ ∞

s
M

(
ξ ,u

(
τ(ξ )

))∇ξ

)∣∣∣∣∇s

≤ |C| +
∫ ∞

t

[
f (s)

∣∣u(
τ(s)

)∣∣ + ∣∣∣∣∫ ∞

s
M

(
ξ ,u

(
τ(ξ )

))∇ξ

∣∣∣∣]∇s

≤ |C| +
∫ ∞

t

[
f (s)

∣∣u(
τ(s)

)∣∣ + ∫ ∞

s

∣∣M(
ξ ,u

(
τ(ξ )

))∣∣∇ξ

]
∇s

≤ |C| +
∫ ∞

t

[
f (s)

∣∣u(
τ(s)

)∣∣ + ∫ ∞

s
h(ξ )

∣∣u(
τ(ξ )

)∣∣∇ξ

]
∇s

= |C| +
∫ ∞

t

[
f (s)ω

(∣∣u(
τ(s)

)∣∣) + ∫ ∞

s
h(ξ )ω

(∣∣u(
τ(ξ )

)∣∣)∇ξ

]
∇s, (.)

where ω ∈ C(R+,R+), and ω(u) = u.
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A suitable application of Theorem . to (.) yields the desired inequality. �

4 Conclusions
In this paper, some new Gronwall-Bellman type nonlinear dynamic inequalities contain-
ing integration at infinite intervals on time scales have been established. As one can see
through the present examples, the established results are useful in dealing with the bound-
edness of solutions of certain dynamic equations on time scales. Finally, we note that the
process of Theorems .-. can be applied to establish delay dynamic inequalities with
two independent variables on time scales.
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