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1 Introduction and preliminaries
In [] Aydi et al. established coupled coincidence and coupled common fixed point results
for a mixed g-monotone mapping satisfying nonlinear contractions in partially ordered
G-metric spaces. These results generalize those of Choudhury and Maity [].
Here we generalize, improve, enrich and extend the above mentioned coupled fixed

point results of Aydi et al.
Throughout this paper, let N denote the set of nonnegative integers, and N

∗ be the set
of positive integers.

Definition . (See []) Let X be a non-empty set, and G : X ×X ×X →R
+ be a function

satisfying the following properties:
(G) G(x, y, z) =  if x = y = z,
(G)  <G(x,x, y) for all x, y ∈ X with x �= y,
(G) G(x,x, y)≤ G(x, y, z) for all x, y, z ∈ X with y �= z,
(G) G(x, y, z) =G(x, z, y) =G(y, z,x) = · · · (symmetry in all three variables),
(G) G(x, y, z) ≤ G(x,a,a) +G(a, y, z) for all x, y, z,a ∈ X (rectangle inequality).

Then the function G is called a generalized metric or, more specially, a G-metric on X,
and the pair (X,G) is called a G-metric space.

Every G-metric on X defines a metric dG on X by

dG(x, y) =G(x, y, y) +G(y,x,x), for all x, y ∈ X. (.)

Example . Let (X,d) be a metric space. The functionG : X×X×X → [, +∞), defined
by

G(x, y, z) =max
{
d(x, y),d(y, z),d(z,x)

}
,
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or

G(x, y, z) = d(x, y) + d(y, z) + d(z,x),

for all x, y, z ∈ X, is a G-metric on X.

Definition . (See []) Let (X,G) be a G-metric space, and let {xn} be a sequence of
points of X. We say that (xn) isG-convergent to x ∈ X if limn,m→+∞ G(x,xn,xm) = , that is,
for any ε > , there exists N ∈ N such that G(x,xn,xm) < ε, for all n,m ≥ N . We call x the
limit of the sequence and write xn → x or limn→+∞ xn = x.

Proposition . (See []) Let (X,G) be a G-metric space. The following are equivalent:
() {xn} is G-convergent to x,
() G(xn,xn,x)→  as n→ +∞,
() G(xn,x,x)→  as n→ +∞,
() G(xn,xm,x)→  as n,m → +∞.

Definition . (See []) Let (X,G) be a G-metric space. A sequence {xn} is called a G-
Cauchy sequence if, for any ε > , there is N ∈N such that G(xn,xm,xl) < ε for allm,n, l ≥
N , that is, G(xn,xm,xl) →  as n,m, l → +∞.

Proposition . (See []) Let (X,G) be a G-metric space. Then the following are equiva-
lent:
() the sequence {xn} is G-Cauchy,
() for any ε > , there exists N ∈N such that G(xn,xm,xm) < ε, for all m,n≥ N.

Proposition . (See []) Let (X,G) be a G-metric space. A mapping f : X → X is G-
continuous at x if and only if it is G-sequentially continuous at x, that is, whenever (xn)
is G-convergent to x, the sequence (f (xn)) is G-convergent to f (x).

Definition . (See []) A G-metric space (X,G) is called G-complete if every G-Cauchy
sequence is G-convergent in (X,G).

Definition . (See []) Let (X,G) be a G-metric space. A mapping F : X ×X → X is said
to be continuous if for any two G-convergent sequences {xn} and {yn} converging to x, y
respectively, {F(xn, yn)} is G-convergent to F(x, y).

Let (X,≤) be a partially ordered set and (X,G) be a G-metric space, g : X → X be a
mapping. A partially orderedG-metric space, (X,G,	), is called g-ordered complete if for
each convergent sequence {xn}∞n= ⊂ X, the following conditions hold:

(OC) if {xn} is a non-increasing sequence in X such that xn → x∗ implies gx∗ 	 gxn,
∀n ∈N,

(OC) if {yn} is a non-decreasing sequence in X such that yn → y∗ implies gy∗ � gyn,
∀n ∈N.

Moreover, a partially ordered G-metric space, (X,G,	), is called ordered complete when
g is equal to identity mapping in the above conditions (OC) and (OC).

http://www.journalofinequalitiesandapplications.com/content/2012/1/200
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Definition . (See []) An element (x, y) ∈ X × X is said to be a coupled fixed point of
the mapping F : X ×X → X if

F(x, y) = x and F(y,x) = y.

Definition . (See []) An element (x, y) ∈ X ×X is called a coupled coincidence point
of a mapping F : X ×X → X and g : X → X if

F(x, y) = g(x), F(y,x) = g(y).

Moreover, (x, y) ∈ X ×X is called a common coupled coincidence point of F and g if

F(x, y) = g(x) = x, F(y,x) = g(y) = y.

Definition . Let F : X × X → X and g : X → X be mappings. The mappings F and g
are said to commute if

g
(
F(x, y)

)
= F

(
g(x), g(y)

)
, for all x, y ∈ X.

Definition . (See []) Let (X,≤) be a partially ordered set and F : X × X → X be a
mapping. Then F is said to have mixed monotone property if F(x, y) is monotone non-
decreasing in x and is monotone non-increasing in y, that is, for any x, y ∈ X,

x ≤ x ⇒ F(x, y) ≤ F(x, y), for x,x ∈ X,

and

y ≤ y ⇒ F(x, y)≤ F(x, y), for y, y ∈ X.

Definition . (See []) Let (X,≤) be a partially ordered set and F : X × X → X and
g : X → X be two mappings. Then F is said to have mixed g-monotone property if F(x, y)
is monotone g-non-decreasing in x and is monotone g-non-increasing in y, that is, for any
x, y ∈ X,

g(x) ≤ g(x) ⇒ F(x, y) ≤ F(x, y), for x,x ∈ X, (.)

and

g(y) ≤ g(y) ⇒ F(x, y) ≤ F(x, y), for y, y ∈ X. (.)

Let � denote the set of functions φ : [,∞) → [,∞) satisfying
(a) φ–({}) = {},
(b) φ(t) < t for all t > ,
(c) limr→t+ φ(r) < t for all t > .

Lemma . (See []) Let φ ∈ �. For all t > , we have limn→∞ φn(t) = .

http://www.journalofinequalitiesandapplications.com/content/2012/1/200
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Aydi et al. [] proved the following theorems.

Theorem . Let (X,	) be a partially ordered set and G be a G-metric on X such that
(X,G) is a complete G-metric space. Suppose that there exist φ ∈ �, F : X × X → X and
g : X → X such that

G
(
F(x, y),F(u, v),F(w, z)

) ≤ φ

(
G(gx, gu, gw) +G(gy, gv, gz)



)
(.)

for all x, y,u, v,w, z ∈ X with gw 	 gu 	 gx and gy 	 gv 	 gz. Suppose also that F is con-
tinuous and has the mixed g-monotone property, F(X × X) ⊆ g(X) and g is continuous
and commutes with F. If there exist x, y ∈ X such that gx 	 F(x, y) and F(y,x) 	 gy,
then F and g have a coupled coincidence point, that is, there exists (x, y) ∈ X ×X such that
gx = F(x, y) and gy = F(y,x).

Theorem . Let (X,	) be a partially ordered set and G be a G-metric on X such that
(X,G,	) is regular. Suppose that there exist φ ∈ � and mappings F : X × X → X and
g : X → X such that

G
(
F(x, y),F(u, v),F(w, z)

) ≤ φ

(
G(gx, gu, gw) +G(gy, gv, gz)



)
(.)

for all x, y,u, v,w, z ∈ X with gw 	 gu 	 gx and gy 	 gv 	 gz. Suppose also that (g(X),G) is
complete, F has the mixed g-monotone property and F(X×X) ⊆ g(X). If there exist x, y ∈
X such that gx 	 F(x, y) and F(y,x) 	 gy, then F and g have a coupled coincidence
point.

In this manuscript, we generalize, improve, enrich and extend the above coupled fixed
point results. We also state some examples to illustrate our results. This paper can be
considered as a continuation of the remarkable works of Berinde [, ].

2 Main results
We begin with an example to illustrate the weakness of Theorem . and Theorem .
above.

Example . Let X =R. Define G : X ×X ×X → [,∞) by

G(x, y, z) = |x – y| + |x – z| + |y – z|

for all x, y, z ∈ X. Then (X,G) is a G-metric space. Define a map F : X ×X → X by F(x, y) =

x +


y and g : X → X by g(x) = x

 for all x, y ∈ X. Suppose x = u = z

G
(
F(x, y),F(u, v),F(z,w)

)

=G
(




x +



y,



u +



v,



z +



w
)

=



|v – y| + 


|w – y| + 


|w – v| (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/200
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and

G(gx, gu, gz) +G(gy, gv, gw) = G
(
x

,
u

,
z


)
+G

(
y

,
v

,
w


)

=


[|y – v| + |y –w| + |v –w|]. (.)

It is clear that there is no φ ∈ � that provides the statement (.) of Theorem ..
Notice that (, ) is the unique common coincidence point of F and g . In fact, F(, ) =

g() = .

For some coupled fixed point and coupled coincidence point theorems, we refer the
reader to [–].
We now state our first result which successively guarantees a coupled fixed point.

Theorem . Let (X,	) be a partially ordered set and G be a G-metric on X such that
(X,G) is a complete G-metric space. Suppose that there exist φ ∈ �, F : X × X → X and
g : X → X such that

[
G

(
F(x, y),F(u, v),F(w, z)

)
+G

(
F(y,x),F(v,u),F(z,w)

)]
≤ φ

(
G(gx, gu, gw) +G(gy, gv, gz)

)
(.)

for all x, y,u, v,w, z ∈ X with gw 	 gu 	 gx and gy 	 gv 	 gz. Suppose also that F is con-
tinuous and has the mixed g-monotone property, F(X × X) ⊆ g(X) and g is continuous
and commutes with F. If there exist x, y ∈ X such that gx 	 F(x, y) and F(y,x) 	 gy,
then F and g have a coupled coincidence point, that is, there exists (x, y) ∈ X ×X such that
gx = F(x, y) and gy = F(y,x).

Proof Given x, y ∈ X satisfying gx 	 F(x, y) and F(y,x) 	 gy, we shall construct it-
erative sequences (xn) and (yn) in the following way: Since F(X×X) ⊆ g(X), we can choose
x, y ∈ X such that gx = F(x, y) and gy = F(y,x). Analogously, we choose x, y ∈ X
such that gx = F(x, y) and gy = F(y,x) due to the same reasoning. Since F has the
mixed g-monotone property, we conclude that gx 	 gx 	 gx and gy 	 gy 	 gy. By
repeating this process, we derive the iterative sequence

gxn = F(xn–, yn–) 	 gxn+ = F(xn, yn)

and

gyn+ = F(yn,xn) 	 gyn = F(yn–,xn–).

If for some n we have (gxn+, gyn+) = (gxn , gyn ), then F(xn , yn ) = gxn and F =
(yn ,xn ) = gyn , that is, F and g have a coincidence point. So,we assume that (gxn+, gyn+) �=
(gxn, gyn) for all n ∈N. Thus, we have either gxn+ = F(xn, yn) �= gxn or gyn+ = F(yn,xn) �= gyn.
We set

tn =G(gxn+, gxn+, gxn) +G(gyn+, gyn+, gyn) (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/200
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for all n ∈ N. Due to the property (G), we have tn >  for all n ∈ N. By using inequality
(.), we obtain

G(gxn+, gxn+, gxn) +G(gyn+, gyn+, gyn)

=G
(
F(xn, yn),F(xn, yn),F(gxn–, gyn–)

)
+G

(
F(yn,xn),F(yn,xn),F(gyn–, gxn–)

)
≤ φ

(
G(gxn, gxn, gxn–) +G(gyn, gyn, gyn–)

)
. (.)

Taking (.) into account, (.) becomes

tn ≤ φ(tn–). (.)

Since φ(t) < t for all t > , it follows that tn is monotone decreasing. Therefore, there is
some L ≥  such that limn→+∞ tn = L.
Now, we assert that L = . Suppose, on the contrary, that L > . Letting n→ +∞ in (.)

and using the properties of the map φ, we get

L = lim
n→+∞ tn ≤ lim

n→+∞φ(tn–) < L,

which is contradiction. Thus L = . Hence

lim
n→+∞ tn = lim

n→+∞G(gxn+, gxn+, gxn) +G(gyn, gyn, gyn–) = . (.)

Next, we prove that (gxn) and (gyn) are Cauchy sequences in the G-metric space (X,G).
Suppose, on the contrary, that at least one of (gxn) and (gyn) is not a Cauchy sequence in
(X,G). Then there exist ε >  and sequences of natural numbers (m(k)) and (l(k)) such that
for every natural number k,m(k) > l(k)≥ k and

rk =G(gxm(k), gxm(k), gxl(k)) +G(gym(k), gym(k), gyl(k))≥ ε. (.)

Now, corresponding to l(k), we choosem(k) to be the smallest for which (.) holds. Hence

G(gxm(k)–, gxm(k)–, gxl(k)) +G(gym(k)–, gym(k)–, gyl(k)) < ε.

Using the rectangle inequality (property (G)), we get

ε ≤ rk

≤ G(gxm(k), gxm(k), gxm(k)–) +G(gxm(k)–, gxm(k)–, gxl(k))

+G(gym(k), gym(k), gym(k)–) +G(gym(k)–, gym(k)–, gyl(k))

= G(gxm(k)–, gxm(k)–, gxl(k)) +G(gym(k)–, gym(k)–, gyl(k)) + tm(k)–

< ε + tm(k)–. (.)

Letting k → +∞ in the above inequality and using (.) yields

lim
k→+∞

rk = ε+. (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/200
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Again, by the rectangle inequality, we have

rk = G(gxm(k), gxm(k), gxl(k)) +G(gym(k), gym(k), gyl(k))

≤ G(gxm(k), gxm(k), gxm(k)+) +G(gxm(k)+, gxm(k)+, gxl(k)+)

+G(gxl(k)+, gxl(k)+, gxl(k)) +G(gym(k), gym(k), gym(k)+)

+G(gym(k)+, gym(k)+, gyl(k)+) +G(gyl(k)+, gyl(k)+, gyl(k))

= tl(k) +G(gxm(k), gxm(k), gxm(k)+) +G(gym(k), gym(k), gym(k)+)

+G(gxm(k)+, gxm(k)+, gxl(k)+) +G(gym(k)+, gym(k)+, gyl(k)+).

Using the fact that G(x,x, y)≤ G(x, y, y) for any x, y ∈ X, we obtain from properties (G)-
(G)

rk ≤ tl(k) + G(gxm(k), gxm(k), gxm(k)+) + G(gym(k), gym(k), gym(k)+)

+G(gxm(k)+, gxm(k)+, gxl(k)+) +G(gym(k)+, gym(k)+, gyl(k)+)

= tl(k) + tm(k) +G(gxm(k)+, gxm(k)+, gxl(k)+) +G(gym(k)+, gym(k)+, gyl(k)+).

Next, using inequality (.), we have

G(gxm(k)+, gxm(k)+, gxl(k)+) +G(gym(k)+, gym(k)+, gyl(k)+)

=G
(
F(xm(k), ym(k)),F(xm(k), ym(k)),F(xl(k), yl(k))

)
+G

(
F(yl(k),xl(k)),F(ym(k),xm(k)),F(ym(k),xm(k))

)
≤ φ

(
G(gxm(k), gxm(k), gxl(k)) +G(gym(k), gym(k), gyl(k))

)
≤ φ(rk). (.)

Now, using (.),(.), the properties of the function φ, and letting k → +∞ in (.),
we get

ε ≤ lim
k→+∞

φ(rk) = lim
t→(ε)+

φ(t) < ε,

which is a contradiction. Thus, we have proven that (gxn) and (gyn) are Cauchy sequences
in the G-metric space (X,G). Now, since (X,G) is complete, there are x, y ∈ X such that
(gxn) and (gyn) are respectively G-convergent to x and y. That is from Proposition ., we
have

lim
n→+∞G(gxn, gxn,x) = lim

n→+∞G(gxn,x,x) = ,

lim
n→+∞G(gyn, gyn, y) = lim

n→+∞G(gyn, y, y) = .

Using the continuity of g, we get from Proposition .

lim
n→+∞G

(
g(gxn), g(gxn), gx

)
= lim

n→+∞G
(
g(gxn), gx, gx

)
= ,

lim
n→+∞G

(
g(gyn), g(gyn), gy

)
= lim

n→+∞G
(
g(gyn), gy, gy

)
= .

(.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/200


Karapınar et al. Journal of Inequalities and Applications 2012, 2012:200 Page 8 of 13
http://www.journalofinequalitiesandapplications.com/content/2012/1/200

Since gxn+ = F(xn, yn) and gyn+ = F(yn,xn), employing the commutativity of F and g yields

g(gxn+) = g
(
F(xn, yn)

)
= F(gxn, gyn),

g(gyn+) = g
(
F(yn,xn)

)
= F(gyn, gxn).

(.)

Now, we shall show that F(x, y) = gx and F(y,x) = gy.
The mapping F is continuous, and since the sequences (gxn) and (gyn) are respectively

G-convergent to x and y, using Definition ., the sequence (F(gxn, gyn)) is G-convergent
to F(x, y). Therefore, from (.), (g(gxn+)) isG-convergent to F(x, y). By uniqueness of the
limit and using (.), we have F(x, y) = gx. Similarly, we can show that F(y,x) = gy. Hence,
(x, y) is a coupled coincidence point of F and g . This completes the proof. �

The following example illustrates that Theorem . is an extension of Theorem ..

Example . Let us reconsider Example .. Define a map F : X ×X → X by

F(x, y) =



x +



y

and g : X → X by g(x) = x
 for all x, y ∈ X. Then F(X ×X) = [,∞) = g(X) = X. We observe

that

G
(
F(x, y),F(u, v),F(z,w)

)
+G

(
F(y,x),F(v,u),F(w, z)

)

=G
(




x +



y,



u +



v,



z +



w
)

+G
(




y +



x,



v +



u,



w +



z
)

=



|v – y| + 


|w – y| + 


|w – v|

+



|u – x| + 


|z – x| + 


|z – u|

+



|v – y| + 


|w – y| + 


|w – v|

+



|u – x| + 


|z – x| + 


|z – u|

=



(|v – y| + |w – y| + |w – v|)

+



(|u – x| + |z – x| + |z – u|)

and

G(gx, gu, gz) +G(gy, gv, gw) = G
(


x,



u,



z
)
+G

(


y,


v,


w

)

=


[(|x – u| + |x – z| + |u – z|)

+
(|y – v| + |y –w| + |v –w|)]. (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/200
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Then, the statement (.) of Theorem . is satisfied for φ(t) = 
 t and (, ) is the desired

coupled coincidence point.

In the next theorem, we omit the continuity hypothesis of F .

Theorem . Let (X,	) be a partially ordered set and G be a G-metric on X such that
(X,G,	) is g-ordered complete. Suppose that there exist φ ∈ � and mappings F : X ×X →
X and g : X → X such that

[
G

(
F(x, y),F(u, v),F(w, z)

)
+G

(
F(y,x),F(v,u),F(z,w)

)]
≤ φ

(
G(gx, gu, gw) +G(gy, gv, gz)

)
(.)

for all x, y,u, v,w, z ∈ X with gw 	 gu 	 gx and gy 	 gv 	 gz. Suppose also that (g(X),G) is
complete, F has the mixed g-monotone property and F(X×X) ⊆ g(X). If there exist x, y ∈
X such that gx 	 F(x, y) and F(y,x) 	 gy, then F and g have a coupled coincidence
point.

Proof Proceeding exactly as in Theorem ., we have that (gxn) and (gyn) are Cauchy se-
quences in the complete G-metric space (g(X),G). Then, there exist x, y ∈ X such that
gxn → gx and gyn → gy. Since (gxn) is non-decreasing and (gyn) is non-increasing, using
the regularity of (X,G,	), we have gxn 	 gx and gy 	 gyn for all n ≥ . If gxn = gx and
gyn = gy for some n ≥ , then gx = gxn 	 gxn+ 	 gx = gxn and gy 	 gyn+ 	 gyn = gy, which
implies that gxn = gxn+ = F(xn, yn) and gyn = gyn+ = F(yn,xn), that is, (xn, yn) is a coupled
coincidence point of F and g . Then, we suppose that (gxn, gyn) �= (gx, gy) for all n≥ . Using
the rectangle inequality, (.) and property φ(t) < t for all t > , we get

G
(
F(x, y), gx, gx

)
+G

(
F(y,x), gy, gy

)
≤ G

(
F(x, y), gxn+, gxn+

)
+G(gxn+, gx, gx)

+G
(
F(y,x), gyn+, gyn+

)
+G(gyn+, gy, gy)

=G
(
F(x, y),F(xn, yn),F(xn, yn)

)
+G(gxn+, gx, gx)

+G
(
F(y,x),F(yn,xn),F(yn,xn)

)
+G(gyn+, gy, gy)

≤ φ
(
G(gx, gxn, gxn) +G(gy, gyn, gyn)

)
+G(gxn+, gx, gx) +G(gyn+, gy, gy)

<G(gx, gxn, gxn) +G(gy, gyn, gyn)

+G(gxn+, gx, gx) +G(gyn+, gy, gy).

Letting n → +∞ in the above inequality, we obtain

G
(
F(x, y), gx, gx

)
+G

(
F(y,x), gy, gy

)
= ,

which implies that gx = F(x, y) and gy = F(y,x). Thus we proved that (x, y) is a coupled
coincidence point of F and g . �
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Corollary . Let (X,	) be a partially ordered set and G be a G-metric on X such that
(X,G) is a complete G-metric space. Suppose that there exist k ∈ [, ), F : X ×X → X and
g : X → X such that

[
G

(
F(x, y),F(u, v),F(w, z)

)
+G

(
F(y,x),F(v,u),F(z,w)

)]
≤ k

[
G(gx, gu, gw) +G(gy, gv, gz)

]

for all x, y,u, v,w, z ∈ X with gw 	 gu 	 gx and gy 	 gv 	 gz. Suppose also that F is con-
tinuous, has the mixed g-monotone property, F(X × X) ⊆ g(X) and g is continuous and
commutes with F. If there exist x, y ∈ X such that gx 	 F(x, y) and F(y,x) 	 gy,
then F and g have a coupled coincidence point.

Proof Taking φ(t) = kt with k ∈ [, ) in Theorem ., we obtain Corollary .. �

Corollary . Let (X,	) be a partially ordered set and G be a G-metric on X such that
(X,G,	) is g-ordered complete. Suppose that there exist k ∈ [, ), F : X × X → X and
g : X → X such that

[
G

(
F(x, y),F(u, v),F(w, z)

)
+G

(
F(y,x),F(v,u),F(z,w)

)]
≤ k

[
G(gx, gu, gw) +G(gy, gv, gz)

]

for all x, y,u, v,w, z ∈ X with gw 	 gu 	 gx and gy 	 gv 	 gz. Suppose also that (g(X),G) is
complete, F has the mixed g-monotone property, F(X × X) ⊆ g(X). If there exist x, y ∈ X
such that gx 	 F(x, y) and F(y,x) 	 gy, then F and g have a coupled coincidence point.

Proof Taking φ(t) = kt with k ∈ [, ) in Theorem ., we obtain Corollary . �

Remark . Taking g = lx (the identity mapping) in Corollary ., we obtain [, Theo-
rem .]. Taking g = Ix in Corollary ., we obtain [, Theorem .].
Now we shall prove the existence and uniqueness theorem of a coupled common fixed

point. If (X,	) is a partially ordered set, we endow the product set X ×X with the partial
order ∇ defined by

(x, y)∇(u, v) ⇐⇒ x 	 u, v	 y.

Theorem . In addition to the hypothesis of Theorem ., suppose that for all (x, y),
(x∗, y∗) ∈ (X × X), there exists (u, v) ∈ X × X such that (F(x, y),F(u, v)) is comparable with
(F(x, y),F(y,x)) and (F(x∗, y∗),F(y∗,x∗)). Suppose also that φ is a non-decreasing function.
Then F and g have a unique coupled common fixed point, that is, there exists a unique
(x, y) ∈ X ×X such that

x = gx = F(x, y) and y = gy = F(y,x).

Proof From Theorem ., the set of coupled coincidences is non-empty. We shall show
that if (x, y) and (x∗, y∗) are coupled coincidence points, that is, if gx = F(x, y), g(y) = F(y,x),

http://www.journalofinequalitiesandapplications.com/content/2012/1/200
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gx∗ = F(x∗, y∗) and gy∗ = F(y∗,x∗), then

gx = gx∗ and gy = gy∗. (.)

By assumption, there exists (u, v) ∈ X × X such that (F(u, v),F(v,u)) is comparable with
(F(x, y),F(y,x)) and (F(x∗, y∗),F(y∗,x∗)). Without loss of generality, we can assume that

(
F(x, y),F(y,x)

)∇(
F(u, v),F(v,u)

)

and

(
F
(
x∗, y∗),F(

y∗,x∗))∇(
F(u, v),F(v,u)

)
.

Put u = u, v = v and choose u, v ∈ X such that gu = F(u, v) and gv = F(v,u). Then,
similarly as in the proof of Theorem ., we can inductively define sequences (gun) and
(gvn) in X by gun+ = F(un, vn) and gvn+ = F(vn,un).
Further, set x = x, y = y, x∗ = x∗, y∗ = y∗ and, in the same way, define the sequences

(gxn), (gyn), (gxn∗) and (gyn∗). Since

(
F(x, y),F(y,x)

)
= (gx, gy) = (gx, gy)∇(

F(u, v),F(v,u)
)
= (gu, gv),

then gx 	 gu and gv 	 gy. Using that F is a mixed g-monotone mapping, one can show
easily that gx 	 gun and gvn 	 gy for all n≥ . Thus from (.), we get

G(gun+, gx, gx) +G(gy, gy, gvn+) = G
(
F(un, vn),F(x, y),F(x, y)

)
+G

(
F(y,x),F(y,x),F(vn,un)

)
≤ φ

(
G(gun, gx, gx) +G(gvn, gy, gy)

)
.

Without loss of generality, we can suppose that (gun, gvn) �= (gx, gy) for all n≥ . Since φ is
non-decreasing, from the previous inequality, we get

G(gun+, gx, gx) +G(gvn+, gy, gy) ≤ φn(G(gu, gx, gx) +G(gv, gy, gy)
)

for each n≥ . Letting n → +∞ in the above inequality and using Lemma ., we obtain

lim
n→+∞G(gun+, gx, gx) =  and lim

n→+∞G(gvn+, gy, gy) = . (.)

Analogously, we derive that

lim
n→+∞G

(
gun+, gx∗, gx∗) =  and lim

n→+∞G
(
gvn+, gy∗, gy∗) = . (.)

Hence, from (.), (.) and the uniqueness of the limit, we get gx = gx∗ and gy = gy∗.
Hence the equalities in (.) are satisfied. Since gx = F(x, y) and gy = F(y,x), by commu-
tativity of F and g , we have

g(gx) = g
(
F(x, y)

)
= F(gx, gy) and g(gy) = g

(
F(y,x)

)
= F(gy, gx). (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/200
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Denote gx = z and gy = w, then by (.), we get

gz = F(z,w) and gw = F(w, z). (.)

Thus, (z,w) is a coincidence point. Then, from (.)with x∗ = z and y∗ = w, we have gx = gz
and gy = gw, that is,

gz = z and gw = w. (.)

From (.), (.), we get

z = gz = F(z,w) and w = gw = F(w, z).

Then, (z,w) is a coupled common fixed point of F and g .
To prove the uniqueness, assume that (p,q) is another coupled common fixed point.

Then by (.), we have p = gp = gz = z and q = gq = gw = w. �

Theorem . Let (X,	) be a partially ordered set and G be a G-metric on X such that
(X,G) is a complete G-metric space and (X,G,	) is regular. Suppose that there exist φ ∈ �

and F : X ×X → X having the mixed monotone property such that

G
(
F(x, y),F(u, v),F(w, z)

)
+G

(
F(y,x),F(v,u),F(z,w)

) ≤ φ
(
G(x,u,w) +G(y, v, z)

)
,

for all x, y,u, v,w, z ∈ X with w 	 u 	 x and y 	 v 	 z. If there exist x, y ∈ X such that
x 	 F(x, y) and F(y,x) 	 y, then F has a coupled fixed point. Furthermore, if y 	 x,
then x = y, that is, x = F(x,x).

Proof Following the proof of Theorem.with g = Ix, we have only to show that x = F(x,x).
Since y 	 x, we get y	 yn 	 · · · 	 y 	 y 	 x 	 x 	 · · · 	 xn 	 x.
Thus, we have y 	 x. Suppose that G(x,x, y) > . Using inequality (.), we have

G(x,x, y) +G(x, y, y) = G
(
F(x, y),F(x, y),F(y,x)

)
+G

(
F(x, y),F(y,x),F(y,x)

)
≤ φ

(
G(x,x, y) +G(y, y,x)

)
< G(x,x, y) +G(x, y, y),

a contradiction. Thus, G(x,x, y) =  and x = y = F(x,x). �
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