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Abstract
In this paper, the notion of weakly Ky Fan’s points of set-valued mappings is
established, and we prove some existence theorems of weakly Ky Fan’s points for
functions with no continuity or space with no compactness. Then, from the
viewpoint of the essential stability, we prove that most of problems in weakly Ky Fan’s
points (in the sense of Baire category) are essential.
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1 Introduction
Ky Fan [] gave an inequality for real valued functions which plays a very important role
in nonlinear analysis (e.g., see Lin and Simons []). Let X be a nonempty compact convex
subset of aHausdorff topological vector space, and ϕ : X×X → � be such that () ϕ(x,x)≤
 for all x ∈ X; () for each fixed x ∈ X, y → ϕ(x, y) is lower semicontinuous; () for each
fixed y ∈ X, x → ϕ(x, y) is quasiconcave, then there exists y* ∈ X such that ϕ(x, y*) ≤  for
all x ∈ X.
Tan, Yu and Yuan [] defined the inequality above as the Ky Fan inequality and called

such a point y* Ky Fan’s point, which is fundamental in proving many theorems in non-
linear analysis such as optimization problem, Nash equilibrium problem, variational in-
equality problem. There have been numerous generalizations of the Ky Fan inequality (see
[–]). In [], Yu andYuan studied the existence ofweightNash equilibria and Pareto equi-
libria formultiobjective games using the Ky Fanminimax inequality. In [], Luo proved the
existence of an essential component of the solution set for vector equilibrium problems.
Yang and Yu [] gave a generalization of the Ky Fan inequality to vector-valued functions.
They proved that for every vector-valued function (satisfying some continuity and con-
vexity condition), there exists at least one essential component of the set of its Ky Fan’s
points. Yu and Xiang [] proposed a notion of essential components of Ky Fan’s points
and proved its existence under some conditions, the Ky Fan’s points have at least one es-
sential component. Besides, they proved that for every n-persons noncooperative game,
there exists at least one essential component of the set of its Nash equilibrium points.
Zhou, Xiang and Yang [] studied the stability of solutions for Ky Fan’s section theorem
with some applications. For our purpose, we give the notion of weakly Ky Fan’s points of
set-valued mappings and obtain some existence theorems of weakly Ky Fan’s points for
functions with no continuity or space with no compactness. Then, we prove that most of
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problems in weakly Ky Fan’s points (in the sense of Baire category) are essential, thus they
are stable. Our results include corresponding results in the literature as a special case.

2 Preliminaries
Now we recall some definitions in [, ].

Definition . Let X and Y be two Hausdorff topological spaces, and F : X → Y be a
set-valued mapping.
() F is said to be upper semicontinuous at x ∈ X, if for any open subset O of Y withO ⊃

F(x), there exists an open neighborhood U(x) of x such that O ⊃ F(x′) for any x′ ∈ U(x)
and F is said to be upper semicontinuous on X, if F is upper semicontinuous at each x ∈ X.
() F is said to be lower semicontinuous at x ∈ X, if for any open subset O of Y with

O∩ F(x) 	= ∅, there exists an open neighborhood U(x) of x such that O∩ F(x′) 	= ∅ for any
x′ ∈ U(x) and F is said to be lower semicontinuous on X, if F is lower semicontinuous at
each x ∈ X.
() F is said to be a uscomapping, if F is upper semicontinuous onX and F(x) is compact

for each x ∈ X.
() F is said to be closed, if Graph(F) = {(x, y) ∈ X × Y | y ∈ F(x)} is closed.

Definition . LetH be a topological vector space and C be a cone ofH . A cone C is said
to be convex, if C + C = C, and a cone C is said to be pointed, if C ∩ C = {θ}, where {θ}
denotes the zero element of H .

Remark . (see []) If C is a closed, convex, pointed cone with intC 	= ∅, where intC
denotes the interior of C in H , then we can easily obtain that intC +C = intC.

Definition . Let X and Y be two topological vector spaces, K be a nonempty convex
subset of X, F : K → Y be a set-valued mapping, and C be a closed, convex, pointed cone
with intC 	= ∅.
() F is said to be C-concave, if for every x, . . . ,xn ∈ K and λi ∈ [, ],

∑n
i= λi =  then

F(
∑n

i= λixi) ⊂ ∑n
i= λiF(xi) +C and C-convex if –F is C-concave.

() F is said to be C-quasiconcave-like, if for every x, . . . ,xn ∈ K and λi ∈ [, ],
∑n

i= λi =
 there exists i ∈ {, , . . . ,n} such that F(

∑n
i= λixi) ⊂ F(xi ) + C and C-quasiconvex-like

if –F is C-quasiconcave-like.

Remark . C-concave and C-quasiconcave-like are two different notions which cannot
deduce from each other. For example, let X = [, ], R

+ = [,+∞)× [, +∞), vector valued
function f = (f, f) = (x, –x), g = (g, g) = (x,x). It is easy to prove that f is R

+-concave but
f is not R

+-quasiconcave-like, inverse g is R
+-quasiconcave-like but is not R

+-concave.

3 Existence for weakly Ky Fan’s points of set-valuedmappings
Lemma . (see []) Let X be a nonempty subset of a Hausdorff topological vector space
E, F : X → X be a set-valuedmapping. For each x ∈ X, F(x) is closed, and there exists some
x ∈ X such that F(x) is compact. If co{x,x, . . . ,xn} ⊂ ⋃n

i= F(xi), where co{x,x, . . . ,xn}
is the convex hull of {x,x, . . . ,xn}, then ⋂

x∈X F(x) 	= ∅.
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Theorem. Let X be a nonempty convex compact subset of aHausdorff topological vector
space E, C is a closed, convex, pointed cone with intC 	= ∅. If ϕ : X × X → E satisfies the
following conditions:
() ϕ(x,x) 	⊂ intC for all x ∈ X ,
() for each fixed y ∈ X , x → ϕ(x, y) is C-quasiconcave-like,

then there exists y* ∈ X such that for each x ∈ X and a net {yα} with {yα} → y*, ϕ(x, yα) 	⊂
intC for any α ∈ D (i.e., for each x ∈ X and a neighborhood N(y*) of y*, there exists a net
{yα} ∈ N(y*) such that ϕ(x, yα) 	⊂ intC).

Proof Define a set-valued mapping F : X → X as follows:

F(x) =
{
y ∈ X | ϕ(x, y) 	⊂ intC

}
, ∀x ∈ X.

By (), we can easily know that F(x) 	= ∅ for each x ∈ X. Next, we prove that for each
{x,x, . . . ,xn} ⊂ X, co{x,x, . . . ,xn} ⊂ ⋃n

i= F(xi) (∗). Suppose (∗) is not true, then there
exist some {x,x, . . . ,xn} ⊂ X and ti ∈ [, ],

∑n
i= ti =  such that x =

∑n
i= tixi /∈

⋃n
i= F(xi).

By the definition of F(x), we can know that ϕ(xi,x) ⊂ intC for each i = , , . . . ,n. By The-
orem .(), Remark ., and Definition .(), we can obtain that

ϕ(x,x) = ϕ

( n∑
i=

tixi,x

)
⊂ ϕ(xi ,x) +C ⊂ intC +C ⊂ intC,

which contradicts the condition (), thus co{x,x, . . . ,xn} ⊂ ⋃n
i= F(xi) for each {x,x,

. . . ,xn} ⊂ X. Define a set-valued mapping Cl(F) : X → X as follows,

Cl
(
F(x)

)
= Cl

{
y ∈ X | ϕ(x, y) 	⊂ intC

}
, ∀x ∈ X,

where Cl(F(x)) denotes the closure of F(x). Clearly, for each x ∈ X, Cl(F(x)) ⊂ X, X is
compact, so Cl(F(x)) is compact. By F(x)⊂ Cl(F(x)) and (∗), we know that Cl(F) : X → X

also satisfies (∗), thus by Lemma . we have
⋂

x∈X Cl(F(x)) 	= ∅. Take y* ∈ ⋂
x∈X Cl(F(x)),

then y* ∈ Cl(F(x)) for each x ∈ X. Therefore, there exists y* ∈ X, such that for each x ∈ X
and a net {yα} with {yα} → y*, ϕ(x, yα) 	⊂ intC for any α ∈D. The proof is finished. �

Corollary . Let X be a nonempty convex compact subset of a Hausdorff topological vec-
tor space E, C is a closed, convex, pointed cone with intC 	= ∅. If a vector-valued function
ϕ : X ×X →H satisfies the following conditions:
() ϕ(x,x) /∈ intC for all x ∈ X ,
() for each fixed y ∈ X , x → ϕ(x, y) is C-quasiconcave-like,

then there exists y* ∈ X such that for each x ∈ X and a net {yα} with {yα} → y*, ϕ(x, yα) /∈
intC for any α ∈D.

Proof In Theorem ., let ϕ(x, y) ≡H , ∀x ∈ X, ∀y ∈ X. �

Corollary . Let X be a nonempty convex compact subset of a Hausdorff topological vec-
tor space E. If a function ϕ : X ×X → � satisfies the following conditions:
() ϕ(x,x)≤  for all x ∈ X ,
() for each fixed y ∈ X , x → ϕ(x, y) is quasiconcave,
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then there exists y* ∈ X such that for each x ∈ X and a net {yα} with {yα} → y*, ϕ(x, yα) ≤ 
for any α ∈D.

Proof In Corollary ., let H = �, C = [,+∞). �

Remark . From the proof process of Theorem ., we can easily extend it to the case
in which X is not compact.

Theorem . Let X be a nonempty convex subset of a Hausdorff topological vector space
E, C is a closed, convex, pointed cone with intC 	= ∅. If ϕ : X×X → H satisfies the following
conditions:
() ϕ(x,x) 	⊂ intC for all x ∈ X ,
() for each fixed y ∈ X , x → ϕ(x, y) is C-quasiconcave-like,
() Cl(F(x)) = Cl{y ∈ X | ϕ(x, y) 	⊂ intC} is compact,

then there exists y* ∈ X such that for each x ∈ X and a net {yα} with {yα} → y*, ϕ(x, yα) 	⊂
intC for any α ∈D.

Proof Define a set-valued mapping F : X → X as follows:

F(x) =
{
y ∈ X | ϕ(x, y) 	⊂ intC

}
, ∀x ∈ X.

From the proof of Theorem ., we can know that for each {x,x, . . . ,xn} ⊂ X, co{x,x,
. . . ,xn} ⊂ ⋃n

i= F(xi) (∗).
Define a set-valued mapping Cl(F) : X → X as follows:

Cl
(
F(x)

)
= Cl

{
y ∈ X | ϕ(x, y) 	⊂ intC

}
, ∀x ∈ X,

where Cl(F(x)) denotes the closure of F(x). Clearly, for each x ∈ X, Cl(F(x)) is closed. By
Theorem .(), there exists x such that Cl(F(x)) = Cl{y ∈ X | ϕ(x, y) 	⊂ intC} is com-
pact. Thus the conditions of Lemma . are satisfied. So we have

⋂
x∈X Cl(F(x)) 	= ∅. Take

y* ∈ ⋂
x∈X Cl(F(x)), then y* ∈ Cl(F(x)) for each x ∈ X. Therefore, there exists y* ∈ X, such

that for each x ∈ X and a net {yα} with {yα} → y*, ϕ(x, yα) 	⊂ intC for any α ∈ D. The proof
is finished. �

In the sameway, Corollary . andCorollary . can be promoted respectively as follows.

Corollary . Let X be a nonempty convex subset of a Hausdorff topological vector space
E, C is a closed, convex, pointed cone with intC 	= ∅. If a vector-valued function ϕ : X×X →
H satisfies the following conditions:
() ϕ(x,x) /∈ intC for all x ∈ X ,
() for each fixed y ∈ X , x → ϕ(x, y) is C-quasiconcave-like,
() Cl(F(x)) = Cl{y ∈ X | ϕ(x, y) ∈ intC} is compact,

then there exists y* ∈ X such that for each x ∈ X and a net {yα} with {yα} → y*, ϕ(x, yα) /∈
intC for any α ∈D.

Corollary . Let X be a nonempty convex compact subset of a Hausdorff topological vec-
tor space E. If a function ϕ : X ×X → � satisfies the following conditions:
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() ϕ(x,x)≤  for all x ∈ X ,
() for each fixed y ∈ X , x → ϕ(x, y) is quasiconcave,
() Cl(F(x)) = Cl{y ∈ X | ϕ(x, y) ≤ } is compact,

then there exists y* ∈ X such that for each x ∈ X and any net {yα} of F(x) with {yα} → y*,
ϕ(x, yα) ≤  for any α ∈D.

Remark . By Remark ., we know that C-concave and C-quasiconcave-like are two
different notions which cannot deduce from each other. Then Theorem ., Theorem .
can easily extend the case in which for each fixed y ∈ X, x → ϕ(x, y) is C-concave in a
similar way.

Remark . We call such points y* the weakly Ky Fan’s points in Theorem ., Theo-
rem .. It is obvious that Ky Fan’s points must be weakly Ky Fan’s points, inverse is not
true.

4 Generic stability of the set for weakly Ky Fan’s points of set-valuedmappings
In this section, we first give some lemmas and concepts, then we study the generic stability
of the set for weakly Ky Fan’s points for set-valued mappings.
Let X be a nonempty convex compact subset of a Banach space E with norm ‖ · ‖, C

be a closed, convex, pointed cone with intC 	= ∅, K(E) be the set of all nonempty compact
subsets of E.M = {ϕ : X ×X → K(E) | ϕ satisfies the conditions (), () in Theorem .}.

∀ϕ,ϕ ∈ M, define

ρ(ϕ,ϕ) = Sup
(x,y)∈X×X

h
(
ϕ(x, y),ϕ(x, y)

)
,

where h(ϕ(x, y),ϕ(x, y)) denotes the Hausdorff distance between ϕ(x, y) and ϕ(x, y) on
X ×X.
Clearly (M,ρ) is a metric space, (K(E),h) is complete metric space (see []). For any

ϕ ∈ M, by Theorem ., there exists y* a weakly Ky Fan’s point of set-valued mappings.
Let F(ϕ) be the set of all weakly Ky Fan’s points of ϕ, then F(ϕ) 	= ∅, and thus define a
set-valued mapping from M into X, F : M → X , where F(ϕ) = {y ∈ X | for each x ∈
X and a net {yα} with {yα} → y we have ϕ(x, yα) 	⊂ intC for any α ∈D}.
Next, we give some important lemmas in proving the generic stability of weakly Ky Fan’s

points for set-valued mappings.

Lemma . (see []) Let X be a complete metric space, Y is a metric space, F : X → Y is
an uscomapping. Then there is a dense Gδ subset Q of X such that F is lower semicontinuous
on Q.

Lemma . (see []) Let X and Y be two topological spaces with Y is compact. If F is a
closed set-valued mapping from X to Y , then F is upper semi-continuous.

Lemma . (M,ρ) is a complete metric space.

Proof Let {ϕn}∞n= be any Cauchy sequence in M, then for any ε > , there exists N such
that ρ(ϕn,ϕm) for any n,m ≥ N , i.e., Sup(x,y)∈X×X h(ϕn(x, y),ϕm(x, y)) < ε for any n,m ≥ N .
It follows that for each (x, y) ∈ X × X, {ϕn(x, y)}∞n= is a Cauchy sequence in K(E). Since

http://www.journalofinequalitiesandapplications.com/content/2012/1/199


Jia et al. Journal of Inequalities and Applications 2012, 2012:199 Page 6 of 7
http://www.journalofinequalitiesandapplications.com/content/2012/1/199

K(E) is a complete metric space, there exists a compact set ϕ(x, y) ∈ K(E) such that
h(ϕn(x, y),ϕ(x, y))≤ ε (∗) for any (x, y) ∈ X ×X. Next, we prove that ϕ ∈M.
By (∗), we can obtain ϕn(x, y) ⊂ U(ϕ(x, y), ε) and ϕ(x, y) ⊂ U(ϕn(x, y), ε) for any n ≥

N , then we can obtain that ϕ(
∑n

i= λixi, y) ⊂ U(ϕn(
∑n

i= λixi, y), ε). As ϕn ∈ M, and
x → ϕn(x, y) is C-quasiconcave-like, we have ϕn(

∑n
i= λixi, y) ⊂ ϕn(xi , y) + C where i ∈

{, . . . ,n}. Thus we have ϕ(
∑n

i= λixi, y) ⊂U(ϕn(xi , y) +C, ε) ⊂ U(ϕ(xi , y) +C, ε). Since ε

is arbitrary, ϕ(
∑n

i= λixi, y) ⊂ ϕ(xi , y)+C, then x→ ϕ(x, y) isC-quasiconcave-like. Nowwe
suppose that ϕ(x,x)⊂ intC, then by (∗) we have ϕn(x,x)⊂U(ϕ(x,x), ε). Since ε is arbitrary,
we can obtain that ϕn(x,x) ⊂ ϕ(x,x), then we have ϕn(x,x) ⊂ ϕ(x,x) ⊂ intC which contra-
dicts the assumption that ϕn(x,x) 	⊂ intC. Thus ϕ(x,x) 	⊂ intC. Hence, ϕ ∈M, (M,ρ) is a
complete metric space. �

Lemma . F :M → X is a usco mapping.

Proof Since X is compact, by Lemma ., it suffices to show that F is a closed mapping,
i.e., if for any ϕn ∈M, ϕn → ϕ ∈M, ∀zn ∈ F(ϕn), zn → z, then z ∈ F(ϕ).
By zn ∈ F(ϕn), there exists a net yαn → zn and ϕn(x, yαn ) 	⊂ intC for any α ∈ D. Next, we

suppose that z /∈ F(ϕ). Then there exists some x, and for each yαn → z, we have ϕ(x, yαn ) ⊂
intC. As ϕn → ϕ, we have ϕn(x, yαn ) ⊂ U(ϕ(x, yαn ), ε) when n ≥ N . Since ε is arbitrary,
we can obtain that ϕn(x, yαn ) ⊂ ϕ(x, yαn ) ⊂ intC which contradicts the assumption that
ϕn(x, yαn ) 	⊂ intC. Thus, z ∈ F(ϕ), i.e. F is a closed mapping. Therefore, by Lemma .,
F :M → X is a usco mapping. �

Definition . Let ϕ ∈M () y* ∈ F(ϕ) is essential if for any ε > , there exists δ >  such
that for each ϕ′ ∈ M with ρ(ϕ,ϕ′) < δ, there exists y′ ∈ F(ϕ′) with ‖y – y′‖ < ε. () ϕ is
essential if every y ∈ F(ϕ) is essential.

By Definition .() and Definition ., it is easy to obtain the following results.

Lemma . ϕ is essential if and only if the set-valued mapping F is lower semicontinuous
on ϕ.

Theorem . There exists a dense Gδ subset Q of Msuch that each ϕ ∈Q, ϕ is essential.

Proof By Lemma ., F :M → X is a usco mapping. By Lemma ., there exists a dense
Gδ subset Q such that each ϕ ∈ Q, ϕ is lower semicontinuous on Q. By Lemma ., for
each ϕ ∈Q, ϕ is essential. �

Remark . () Let ϕ ∈ Q. By Lemma . and Lemma ., F is continuous onQ. Then for
any ε > , there exists δ >  such that for any ϕ′ ∈ M, with ρ(ϕ,ϕ′) < δ, h(F(ϕ),F(ϕ′)) < ε.
Thus ϕ is stable.
() Since Q is a dense residual subset, it is the second category set, therefore most of

ϕ ∈M have stable solution sets in the sense of Baire category.

Theorem . If ϕ ∈M is such that F(ϕ) is a singleton set, then ϕ is essential.

Proof For any open set G of X, F(ϕ) ∩G 	= ∅, by F(ϕ) = {y}, then y ∈ G, and G ⊃ F(ϕ). By
Lemma ., F : M → X is upper semicontinuous. There exists an open neighborhood

http://www.journalofinequalitiesandapplications.com/content/2012/1/199


Jia et al. Journal of Inequalities and Applications 2012, 2012:199 Page 7 of 7
http://www.journalofinequalitiesandapplications.com/content/2012/1/199

O(ϕ) of ϕ such that G ⊃ F(ϕ′) for any ϕ′ ∈ O(ϕ), thus G∩ F(ϕ′) 	= ∅, then F is lower semi-
continuous on ϕ. By Lemma ., ϕ must be essential. �
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