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Abstract
In this paper, a class of semistrictly G-preinvex functions introduced by Luo and Wu (J.
Comput. Appl. Math. 222:372-380, 2008) is further considered. Some properties of
semistrictly G-preinvex functions are obtained, especially those containing an
interesting gradient property. Then, some optimality results, which extend the
corresponding results in the literature (Yang and Li in J. Math. Anal. Appl. 256:229-241,
2001; Yang and Li in J. Math. Anal. Appl. 258:287-308, 2001; Antczak in J. Glob. Optim.
43:97-109, 2009; Luo and Wu in J. Comput. Appl. Math. 222:372-380, 2008), are derived
in multiobjective optimization problems.
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1 Introduction
It is well known that convexity and generalized convexity have been playing a central role
in mathematical programming, economics, engineering and optimization theory. The re-
search on characterizations and generalizations of convexity and generalized convexity is
one of themost important aspects inmathematical programming and optimization theory
in [–]. Various kinds of generalized convexity have been introduced by many authors.
In , Hanson [] introduced the concept of invexity which is an extension of differen-
tiable convex functions and proved the sufficiency of Kuhn-Tucker condition. Later, Weir
and Mond [] and Weir and Jeyakumar [] introduced preinvex functions, and they also
studied how and where preinvex functions can replace convex functions in an optimiza-
tion problem. Then, Yang and Li [] obtained some properties of a preinvex function in
. Yang and Li [] also introduced the concept of semistrictly preinvex functions and
investigated the relationships between semistrictly preinvex functions and preinvex func-
tions. It is worth mentioning that many properties of invex functions and (semistrictly)
preinvex functions and their applications in mathematical programming are discussed in
some existing literature (see [–]).
On the other hand, Avriel et al. [] introduced the definition of G-convex functions,

which is another generalization of convex functions, where G is a continuous real-valued
increasing function. As a generalization of G-convex functions and invex functions,
Antczak [] introduced the concept of G-invex functions and derived some optimality
conditions for constrained optimization problems under the assumption of G-invexity.
Antczak [] introduced a class of G-preinvex functions, which is a generalization of G-
invex [], preinvex functions [, ] and r-preinvex functions []. Then, Luo andWu []
introduced the concept of semistrictly G-preinvex functions, which includes semistrictly
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preinvex functions [] as a special case, and investigated the relations between semistrictly
G-preinvex functions and G-preinvex functions.
However, to the best of our knowledge, it appears that there are no results on the prop-

erties and applications of semistrictly G-preinvex functions in literature. So, in this paper
we study some properties of semistrictlyG-preinvex functions and applications in amulti-
objective optimization problem. The rest of the paper is organized as follows. In Section ,
we recall some definitions and give some examples to show that semistrictly G-preinvex
functions are different from preinvex functions, G-invex functions, G-preinvex functions
and strictly G-preinvex functions. In Section , we obtain some properties of semistrictly
G-preinvex functions, especially those containing an interesting gradient property. Finally,
optimality results formultiobjective optimization problems are obtained in Section . Our
results extend and generalize the corresponding ones in [, , , , ].

2 Preliminaries
Throughout this paper, let K be a nonempty subset of Rn. Let f : K → R be a real-valued
function and η : K ×K → Rn be a vector-valued function. And let If (K) be the range of f ,
i.e., the image of K under f , and f – be the inverse of f .
Now we recall some definitions.

Definition. ([]) A setK is said to be invex at ywith respect to η if for all x ∈ K , λ ∈ [, ]
such that

y + λη(x, y) ∈ K .

The set K is said to be invex with respect to η if K is invex at each y ∈ K .

Definition . ([]) Let K ⊆ Rn be an invex set with respect to η. The function f is said
to be preinvex on K with respect to η iff

f
(
y + λη(x, y)

) ≤ λf (x) + ( – λ)f (y), ∀x, y ∈ K ,λ ∈ [, ].

Remark . Any convex function is a preinvex function with η(x, y) = x – y. But the con-
verse is not true.

Definition . ([]) Let K ⊆ Rn be an invex set with respect to η. The function f is said
to be semistrictly preinvex on K with respect to η if, for all x, y ∈ K , f (x) �= f (y), we have

f
(
y + λη(x, y)

)
< λf (x) + ( – λ)f (y), λ ∈ (, ).

Remark . Any semistrictly (or strong) convex function is a semistrictly preinvex func-
tion with η(x, y) = x – y. But the converse is not true.

Definition . ([]) Let K ⊆ Rn be an invex set with respect to η. The function f is said
to beG-preinvex on K with respect to η if there exists a continuous real-valued increasing
function G : If (K) → R such that for all x, y ∈ K and λ ∈ [, ], we have

f
(
y + λη(x, y)

) ≤ G–(λG(
f (x)

)
+ ( – λ)G

(
f (y)

))
. (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/198
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f : K → R is said to be strictlyG-preinvex onK , if the inequality (.) is strict for all x, y ∈ K ,
x �= y and λ ∈ (, ).

Definition . ([]) LetK ⊆ Rn be an invex set with respect to η. The function f is said to
be semistrictly G-preinvex on K with respect to η if there exists a continuous real-valued
increasing function G : If (K) → R such that for all x, y ∈ K , f (x) �= f (y) and λ ∈ (, ),

f
(
y + λη(x, y)

)
<G–(λG(

f (x)
)
+ ( – λ)G

(
f (y)

))
.

Remark . It is clear that the semistrictly G-preinvex function is a generalization of
semistrictly preinvex function.

Example . This example illustrates that a semistrictly G-preinvex function is not nec-
essarily a (strictly) G-preinvex function with respect to the same η. Let

f (x) =

{
ln(–|x| + ) if |x| ≤ ;
 if |x| ≥ ,

η(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x – y if x > ,  ≤ y < , or x < –,– < y≤ ;
x – y if y > ,  ≤ x < , or y < –,– < x≤ ;
 – y if  ≤ x < ,  < y≤ ;
x – y if |x| ≥ , |y| ≥ ;
y – x if x > ,– < y < , or y > ,– < x < ;
y – x if x < –,  < y < , or y < –,  < x < ;
– – 

y if |x| < ,– ≤ y≤ ;
x + 

y if x = ,  < y < , or x = –,– < y < ;
–y – x – x +  if – < x < , < y≤ ;
y – 

x if x = ,– < y < , or x = –,  ≤ y < .

Then, we can verify that f is a semistrictly G-preinvex function with respect to η, where
G(t) = et . However, by letting x = , y = –

 (x �= y), λ = 
 , we have

f
(
y + λη(x, y)

)
= f

(



)
= ln



>G–() =G–(λG(

f (x)
)
+ ( – λ)G

(
f (y)

))
.

Thus, f is not aG-preinvex function with respect to the same η, and it is also not a strictly
G-preinvex function with respect to the same η.

Example . This example illustrates that a semistrictly G-preinvex function is not nec-
essarily a G-invex function. Let

f (x) =

{
– ln(|x| + ) if |x| ≤ ;
– ln if |x| ≥ ,

http://www.journalofinequalitiesandapplications.com/content/2012/1/198
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η(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x – y if x ≥ , y≥ ,
x – y if x ≤ , y≤ ,
x – y if x < –, y > ,
x – y if y < –,x > ,
y – x if – ≤ x < , y > ,
y – x if – ≤ y < ,x > ,
y – x if  < x ≤ , y < ,
y – x if  < y≤ ,x < .

Then, by [, Example ], f is a semistrictly G-preinvex function with respect to η, where
G(t) = et . It can be easily noticed that f is not differentiable at x = . Thus, f is not aG-invex
function (see []) with respect to η.

Example . Seeing the function f and η in Example ., it is obvious that f is a
semistrictly G-preinvex function with respect to η, where G(t) = et . However, by letting
x = , y = –, λ = 

 , we have

f
(
y + λη(x, y)

)
= f

(



)
= ln



>  = λf (x) + ( – λ)f (y).

Thus, f is not a preinvex function with respect to the same η.

Remark . From Examples .-., we know that semistrictly G-preinvex functions are
different fromG-preinvex functions, strictlyG-preinvex functions,G-invex functions and
preinvex functions with respect to the same η.
In order to discuss the properties of semistrictly G-preinvex functions, we recall the

definition of Condition C as follows.

Condition C ([, ]) The vector-valued function η : K × K → Rn is said to satisfy Con-
dition C if for any x, y ∈ K and λ ∈ [, ],

η
(
y, y + λη(x, y)

)
= –λη(x, y),

η
(
x, y + λη(x, y)

)
= ( – λ)η(x, y).

In the sequel, we will use the following lemma.

Lemma . ([]) G– is (strictly) increasing if and only if G is (strictly) increasing.

The next lemma can be easily proved by Lemma . and the definitions of a concave
function and a convex function, so we omit it.

Lemma . If G is increasing and concave, then G– is convex.

3 Some properties of semistrictly G-preinvex functions
In this section, we derive some interesting properties of semistrictlyG-preinvex functions.

Theorem . Let K be a nonempty invex set with respect to η, where η satisfies Condi-
tion C, and let fi : K → R (i ∈ I) be a finite or infinite collection of both semistrictly G-
preinvex and G-preinvex functions for the same η on K . Define f (x) = sup{fi(x), i ∈ I}, for

http://www.journalofinequalitiesandapplications.com/content/2012/1/198
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every x ∈ K . Assume that for every x ∈ K , there exists an i := i(x) ∈ I such that f (x) = fi (x).
Then f is both a semistrictly G-preinvex and G-preinvex function with respect to the same
η on K .

Proof By Proposition  in [], we know that f isG-preinvex onK .We need to show that f
is a semistrictly G-preinvex function on K . Assume that f is not a semistrictly G-preinvex
function. Then, there exist x, y ∈ K with f (x) �= f (y) and α ∈ (, ) such that

f
(
y + αη(x, y)

) ≥ G–(αG(
f (x)

)
+ ( – α)G

(
f (y)

))
.

By the G-preinvexity of f , we have

f
(
y + αη(x, y)

) ≤ G–(αG(
f (x)

)
+ ( – α)G

(
f (y)

))
.

It follows that

f
(
y + αη(x, y)

)
=G–(αG(

f (x)
)
+ ( – α)G

(
f (y)

))
. (.)

Let z = y + αη(x, y). By the assumptions, there exist i(z) = i, i(x) = i, i(y) = i, satisfying

f (z) = fi (z), f (x) = fi (x), f (y) = fi (y).

This fact together with (.) yields

fi (z) =G–(αG(
fi (x)

)
+ ( – α)G

(
fi (y)

))
. (.)

(i) If fi (x) �= fi (y), then by the semistrict G-preinvexity of fi ,

fi (z) <G–(αG(
fi (x)

)
+ ( – α)G

(
fi (y)

))
. (.)

From fi (x)≤ fi (x), fi (y) ≤ fi (y) and (.), we obtain

fi (z) <G–(αG(
fi (x)

)
+ ( – α)G

(
fi (y)

))
,

which contradicts (.).
(ii) If fi (x) = fi (y), then by the G-preinvexity of fi ,

fi (z) ≤ G–(αG(
fi (x)

)
+ ( – α)G

(
fi (y)

))
. (.)

Since f (x) �= f (y), at least one of the inequalities fi (x)≤ fi (x) = f (x) and fi (y) ≤ fi (y) = f (y)
has to be a strict inequality. From (.) and the continuity and increasing property of G,
we obtain

f (z) = fi (z) <G–(αG(
fi (x)

)
+ ( – α)G

(
fi (y)

))
,

which contradicts (.). This completes the proof. �
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Remark . Theorem . generalizes Theorem . [] from a semistrictly preinvex case
to a semistrictly G-preinvex case.

Next, we will establish an important gradient property of semistrictly G-preinvex func-
tions. Before showing the property in Theorem ., we first derive a result of G-preinvex
functions.

Theorem. Let K be a nonempty invex set in Rn with respect to η : K ×K → Rn, and f be
a G-preinvex function with respect to the same η on K .Assume that η satisfies ConditionC.
For any x, y ∈ K and λ ∈ [, ], let g(λ) =G(f (x + λη(y,x))). Then

g(α) – g()
α

≤ g(β) – g()
β

,  < α < β ≤ ,

or equivalently,

G(f (x + αη(y,x)) –G(f (x)))
α

≤ G(f (x + βη(y,x)) –G(f (x)))
β

,  < α < β ≤ .

Proof For  < α < β ≤ , let zα = x + αη(y,x), zβ = x + βη(y,x), u =  – α
β
. By Condition C,

zβ + uη(x, zβ ) = x + βη(y,x) + uη
(
x,x + βη(y,x)

)
= x + (β – uβ)η(y,x) = zα .

We have

g(α) =G
(
f (zα)

)
=G

(
f
(
zβ + uη(x, zβ )

))
≤ uG

(
f (x)

)
+ ( – u)G

(
f (zβ )

)
=

(
 –

α

β

)
g() +

α

β
g(β).

Therefore, we obtain

g(α) – g()
α

≤ g(β) – g()
β

,  < α < β ≤ .

This completes the proof. �

From Definitions . and ., we can obtain the following lemma.

Lemma . Let K be a nonempty invex set with respect to η,where η satisfies ConditionC.
Let f : K → R be continuous and semistrictly G-preinvex with respect to η on K , and satisfy
f (y + η(x, y))≤ f (x) (∀x ∈ K ). Then f is a G-preinvex function on K .

Theorem . Let K be a nonempty invex set with respect to η, where η satisfies Condi-
tion C. Assume that f : K → R is differentiable and semistrictly G-preinvex with respect
to η on K , and satisfies f (y + η(x, y)) ≤ f (x) (∀x ∈ K ), where G is a differentiable function.
Then for any x, y ∈ K with f (x) �= f (y), we have

http://www.journalofinequalitiesandapplications.com/content/2012/1/198
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(i) G(f (y)) >G(f (x)) +G′(f (x))η(y,x)T∇f (x),
(ii) G′(f (x))η(y,x)T∇f (x) +G′(f (y))η(x, y)T∇f (y) < .

Proof (i) Suppose that f is a semistrictly G-preinvex function on K . By Definition ., for
any x, y ∈ K with f (x) �= f (y), we have

f
(
x + λη(y,x)

)
<G–(λG(

f (y)
)
+ ( – λ)G

(
f (x)

))
, ∀λ ∈ (, ),

which implies

G
(
f
(
x + λη(y,x)

))
< λG

(
f (y)

)
+ ( – λ)G

(
f (x)

)
.

It follows that

G(f (x + λη(y,x)) –G(f (x)))
λ

<G
(
f (y)

)
–G

(
f (x)

)
.

From Lemma . and Theorem ., we get

G′(f (x))η(y,x)T∇f (x) = inf
λ≥

G(f (x + λη(y,x)) –G(f (x)))
λ

<G
(
f (y)

)
–G

(
f (x)

)
,

that is

G
(
f (y)

)
>G

(
f (x)

)
+G′(f (x))η(y,x)T∇f (x).

(ii) Since f is a semistrictly G-preinvex function on K , for x, y ∈ K with f (x) �= f (y), it
follows form the above results that

G
(
f (y)

)
>G

(
f (x)

)
+G′(f (x))η(y,x)T∇f (x). (.)

G
(
f (x)

)
>G

(
f (y)

)
+G′(f (y))η(x, y)T∇f (y). (.)

From (.) and (.), we can obtain

G′(f (x))η(y,x)T∇f (x) +G′(f (y))η(x, y)T∇f (y) < .

This completes the proof. �

Remark . As a matter of fact, the assumption of continuity for f can be extended to
lower semicontinuity in Lemma ..

4 Semistrict G-preinvexity and optimality
In the section, we consider a class of multiobjective optimization problems and obtain an
important optimality result under semistrict G-preinvexity.
Fromnow on, we suppose that f = (f, . . . , fn) : X → Rn is a vector-valuedmapping, where

X is an invex subset of Rn endowed with the Euclidean norm ‖ · ‖.

http://www.journalofinequalitiesandapplications.com/content/2012/1/198
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We consider the following multiobjective optimization problem:

(MOP): minimize f (x) =
(
f(x), f(x), . . . , fp(x)

)
subject to x ∈ X,

where fi : X → R, i = , , . . . ,n.

In the sequel, we use the following notations. For x, y ∈ X
(i) f (x) < f (y) ⇐⇒ fi(x) < fi(y) for every i = , , . . . ,n;
(ii) f (x)≮ f (y) is the negation of f (x) < f (y).

Definition. Letm ≥  be an integer. A point x ∈ X is said to be a strictly localminimizer
of orderm for (MOP) if there exist an ε >  and a vector c ∈ intRn

+ such that

f (x)≮ f (x) + c
∥∥η(x,x)

∥∥m, ∀x ∈N(x, ε)∩X,

where N(x, ε) is an ε neighbor of x.

Now, we give the notion of a strict minimizer in the global sense if the neighbor N(x, ε)
is replaced by the whole space Rn.

Definition . Let m ≥  be an integer. A point x ∈ X is said to be a strictly global mini-
mizer of orderm for (MOP) if there exists a vector c ∈ intRn

+ such that

f (x)≮ f (x) + c
∥∥η(x,x)

∥∥m, ∀x ∈ X.

Remark . If η(x, y) = x– y, then Definitions .-. reduce to Definitions .-. intro-
duced by Bhatia [], respectively.

Remark . From Definitions . and ., we know that the concepts of a strictly local
minimizer of order m and a strictly global minimizer of order m for (MOP) are stronger
than the concepts of a strictly local minimizer and a strictly global minimizer for (MOP),
respectively.

It is clear that any strictly global minimizer of orderm is a strictly global minimizer. But
the converse may not be true. We can see the case in the following example.

Example . Let f : R → R be defined as

f (x) =
(
f(x), f(x), f(x)

)
=

{
(–x,x 

x , – 
x) if x > ;

(, , ) if x = .

Consider the multiobjective optimization problem,

minimize f (x)

s.t. x ≥ .

http://www.journalofinequalitiesandapplications.com/content/2012/1/198
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x =  is a strictly globalminimizer but is not a strictly globalminimizer of orderm, because
for anym > , c = (c, c, c) ∈ intR

+ and x >  sufficiently small, we have f (x) < cxm, where
η(x, y) = x – y or η(x, y) = x + y.

Theorem . Let X be an invex set with respect to η. Suppose the following conditions are
satisfied:

(i) Let G be increasing and concave on If (X);
(ii) η : X ×X → Rn satisfies Condition C;
(iii) x ∈ X is a strictly local minimizer of order m for (MOP).

If fi : X → R, i = , , . . . ,n, are semistrictly G-preinvex on X with respect to η, then x is a
strictly global minimizer of order m for (MOP).

Proof Let x ∈ X be a strictly local minimizer of orderm for (MOP). Then there exist an ε

neighborhood N(x, ε) of x and a vector c ∈ intRn
+ such that

f (x)≮ f (x) + c
∥∥η(x,x)

∥∥m, ∀x ∈N(x, ε)∩X. (.)

Hence, there exists no x ∈ N(x, ε)∩X such that

fi(x) < fi(x) + ci
∥∥η(x,x)

∥∥m, i = , , . . . ,n,

where c = (c, c, . . . , cn).
Suppose by contradiction that x is not a strictly global minimizer of order m for (VP),

then there exists x* ∈ X with f (x*) �= f (x) such that

fi
(
x*

)
< fi(x) + c*i

∥∥η
(
x*,x

)∥∥m, i = , , . . . ,n (.)

for any c* = (c*, c*, . . . , c*n) ∈ intRn
+. Since X is an invex set with respect to η,

x + λη
(
x*,x

) ∈ X, ∀λ ∈ (, ).

Because fi : X → R, i = , , . . . ,n, are semistrictly G-preinvex on X with respect to η, G is
increasing on If and G– is convex, it follows that for any λ ∈ (, )

fi
(
x + λη

(
x*,x

))
<G–(λG(

fi
(
x*

))
+ ( – λ)G

(
fi(x)

))
≤ λfi

(
x*

)
+ ( – λ)fi(x), (.)

where Lemma . is used in the second inequality.
According to (.), (.) and Condition C, we have

fi
(
x + λη

(
x*,x

))
– fi(x) ≤ λ

(
fi
(
x*

)
– fi(x)

)
< λc*i

∥∥η
(
x*,x

)∥∥m

= λ–mc*i
∥∥η

(
x + λη

(
x*,x

)
,x

)∥∥m

= di
∥∥η

(
x + λη

(
x*,x

)
,x

)∥∥m,

http://www.journalofinequalitiesandapplications.com/content/2012/1/198
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where di = λ–mc*i . For a sufficiently small λ > , we obtain

x + λη
(
x*,x

) ∈ X ∩N(x, ε).

Let d = (d, . . . ,dn). Since c* = (c*, c*, . . . , c*n) ∈ intRn
+ is arbitrary, d = (d, . . . ,dn) ∈ intRn

+ is
also arbitrary. Therefore,

f
(
x + λη

(
x*,x

))
– f (x) < d

∥∥η
(
x + λη

(
x*,x

)
,x

)∥∥m, ∀d ∈ intRn
+,

or

fi
(
x + λη

(
x*,x

))
< fi(x) + di

∥∥η
(
x + λη

(
x*,x

)
,x

)∥∥m, i = , , . . . ,n,

which implies that x is not a strictly localminimizer of orderm. It is a contradiction.Hence,
x is a strict minimizer of orderm for (MOP). �

Now, we give an example of an optimization problem to illustrate Theorem ..

Example . Let f : R → R be defined as

f (x) =

{
(ln(–|x| + ), ln(–|x| + ), ln(–|x| + )) if |x| ≤ ,
(, , ) if |x| ≥ ,

where

fi(x) =

{
ln(–|x| + ) if |x| ≤ ,
 if |x| ≥ 

(i = , , ),

η(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x – y if x > ,  ≤ y < , or x < –,– < y≤ ;
x – y if y > ,  ≤ x < , or y < –,– < x≤ ;
 – y if  ≤ x < ,  < y≤ ;
x – y if |x| ≥ , |y| ≥ ;
y – x if x > ,– < y < , or y > ,– < x < ;
y – x if x < –,  < y < , or y < –,  < x < ;
– – 

y if |x| < ,– ≤ y≤ ;
x + 

y if x = ,  < y < , or x = –,– < y < ;
–y – x – x +  if – < x < , < y≤ ;
y – x if x = ,– < y≤ , or x = –,  ≤ y < .

From Definition ., we can verify that fi (i = , , ) are semistrictly G-preinvex functions
with respect to η, where G(t) = et . x =  is a strictly local minimizer of orderm for (MOP).
From Theorem ., we can get x =  is also a strictly global minimizer of order m for
(MOP), and f (x) = (, , ) is a global minimal value of (MOP).

Competing interests
The author declares that they have no competing interests.

http://www.journalofinequalitiesandapplications.com/content/2012/1/198


Peng Journal of Inequalities and Applications 2012, 2012:198 Page 11 of 11
http://www.journalofinequalitiesandapplications.com/content/2012/1/198

Acknowledgements
The author is very grateful to the three anonymous referees for valuable comments and suggestions which helped to
improve the paper. This work was supported by the Natural Science Foundation of China (No. 11271389, 11201509,
71271226), the Natural Science Foundation Project of Chongqing (No. CSTC, 2011AC6104.2012jjA00016) and the
Education Committee Project Research Foundation of Chongqing (No. KJ100711).

Received: 4 April 2012 Accepted: 6 August 2012 Published: 7 September 2012

References
1. Mangasarin, OL: Nonlinear Programming. Mcgraw-Hill, New York (1969)
2. Bazaraa, MS, Sherali, HD, Shetty, CM: Nonlinear Programming Theory and Algorithms. Wiley, New York (1979)
3. Schaible, S, Ziemba, WT: Generalized Concavity in Optimization and Economics. Academic Press, London (1981)
4. Ward, DE: Characterizations of strict local minima and necessary conditions for weak sharp minima. J. Optim. Theory

Appl. 80, 551-571 (1994)
5. Hanson, MA: On sufficiency of Kuhn-Tucker conditions. J. Math. Anal. Appl. 80, 545-550 (1981)
6. Weir, T, Mond, B: Pre-invex functions in multiple objective optimization. J. Optim. Theory Appl. 136, 29-38 (1988)
7. Weir, T, Jeyakumar, V: A class of nonconvex functions and mathematical programming. Bull. Aust. Math. Soc. 38,

177-189 (1988)
8. Yang, XM, Li, D: On properties of preinvex functions. J. Math. Anal. Appl. 256, 229-241 (2001)
9. Yang, XM, Li, D: Semistrictly preinvex functions. J. Math. Anal. Appl. 258, 287-308 (2001)
10. Yang, XM, Yang, XQ, Teo, KL: Characterizations and applications of prequasi-invex functions. J. Optim. Theory Appl.

110, 645-668 (2001)
11. Peng, JW, Yang, XM: Two properties of strictly preinvex functions. Oper. Res. Trans. 9, 37-42 (2005)
12. Avriel, M, Diewert, WE, Schaible, S, Zang, I: Generalized Concavity. Plenum, New York (1975)
13. Antczak, T: On G-invex multiobjective programming. I. Optimality. J. Glob. Optim. 43, 97-109 (2009)
14. Antczak, T: G-preinvex functions in mathematical programming. J. Comput. Appl. Math. 217, 212-226 (2008)
15. Antczak, T: r-preinvexity and r-invexity in mathematical programming. Comput. Math. Appl. 50, 551-566 (2005)
16. Luo, HZ, Wu, HX: On the relationships between G-preinvex functions and semistrictly G-preinvex functions. J.

Comput. Appl. Math. 222, 372-380 (2008)
17. Bhatia, G: Optimality and mixed saddle point criteria in multiobjective optimization. J. Math. Anal. Appl. 342, 135-145

(2008)

doi:10.1186/1029-242X-2012-198
Cite this article as: Peng: Semistrict G-preinvexity and its application. Journal of Inequalities and Applications 2012
2012:198.

http://www.journalofinequalitiesandapplications.com/content/2012/1/198

	Semistrict G-preinvexity and its application
	Abstract
	Keywords

	Introduction
	Preliminaries
	Some properties of semistrictly G-preinvex functions
	Semistrict G-preinvexity and optimality
	Competing interests
	Acknowledgements
	References


