A supplement to the convergence rate in a theorem of Heyde

Jianjun He ${ }^{*}$ and Tingfan Xie

"Correspondence: hejj@cilu.edu.cn Department of Mathematics, China Jiliang University, Hangzhou, 310018, China

Abstract

Let $\left\{X, X_{n}, n \geq 1\right\}$ be a sequence of i.i.d. random variables with zero mean, set $S_{n}=\sum_{k=1}^{n} X_{k}, E X^{2}=\sigma^{2}>0$, and $\lambda(\epsilon)=\sum_{n=1}^{\infty} P\left(\left|S_{n}\right| \geq n \epsilon\right)$. In this paper, the authors discuss the rate of approximation of σ^{2} by $\epsilon^{2} \lambda(\epsilon)$ under suitable conditions, improve the results of Klesov (Theory Probab. Math. Stat. 49:83-87, 1994), and extend the work He and Xie (Acta Math. Appl. Sin. 2012, doi:10.1007/s10255-012-0138-6). MSC: 60F15; 60G50 Keywords: convergence rate; i.i.d. random variable; theorem of Heyde

1 Introduction and main results

Let $\left\{X, X_{n}, n \geq 1\right\}$ be a sequence of i.i.d. random variables, set $S_{n}=\sum_{k=1}^{n} X_{k}$, and $\lambda(\epsilon)=$ $\sum_{n=1}^{\infty} P\left(\left|S_{n}\right| \geq n \epsilon\right)$. Heyde [1] proved that

$$
\lim _{\epsilon \rightarrow 0} \epsilon^{2} \lambda(\epsilon)=\sigma^{2}
$$

whenever $E X^{2}=\sigma^{2}<\infty$ and $E X=0$.
There are various extensions of this result: Chen [2], Gut and Spǎtara [3], Lanzinger and Stadtmüller [4]. Liu and Lin [5] introduced a new kind of complete moment convergence; Klesov [6] studied the rate of approximation of σ^{2} by $\epsilon^{2} \lambda(\epsilon)$ and proved the following Theorem A.

Theorem A Let $\left\{X, X_{n}, n \geq 1\right\}$ be a sequence of i.i.d. random variables with zero mean, if $E X^{2}=\sigma^{2}>0$, and $E|X|^{3}<\infty$, then

$$
\epsilon^{2} \lambda(\epsilon)-\sigma^{2}=o\left(\epsilon^{1 / 2}\right), \quad \text { as } \epsilon \rightarrow 0 .
$$

Recently, He and Xie [7] obtained Theorem B which improved Theorem A. Gut and Steinebach [8] extended the results of Klesov [6].

Theorem B Let $\left\{X, X_{n}, n \geq 1\right\}$ be a sequence of i.i.d. random variables, and $0<\delta \leq 1$, if

$$
E X=0, \quad E X^{2}=\sigma^{2}>0 \quad \text { and } \quad E|X|^{2+\delta}<\infty,
$$

then

$$
\epsilon^{2} \lambda(\epsilon)-\sigma^{2}= \begin{cases}O(\epsilon), & \delta=1 \\ o\left(\epsilon^{\delta}\right), & 0<\delta<1\end{cases}
$$

Let G be the set of functions $g(x)$ that are defined for all real x and satisfy the following conditions: (a) $g(x)$ is nonnegative, even, nondecreasing in the interval $x>0$, and $g(x) \neq 0$ for $x \neq 0$; (b) $\frac{x}{g(x)}$ is nondecreasing in the interval $x>0$.
Let G_{0} be the set of functions $g(x) \in G$ satisfying the supplementary condition (c) $\lim _{x \rightarrow \infty} \frac{g\left(x^{2}\right)}{x g(x)}=0$. Obviously, the function $g(x)=|x|^{\delta}$ with $0<\delta<1$ belongs to G_{0} and does not belong to G_{0} if $\delta=1$. The purpose of this paper is to generalize Theorem B to the case where the condition $E|X|^{2+\delta}<\infty$ is replaced by a more general condition $E|X|^{2} g(X)<\infty$ in which the function g belongs to some subset of G. Denote $T_{g}(v)=E X^{2} g(X) I(|X|>v)$, $T_{g}(v)$ is a nonnegative nonincreasing function in the interval $v>0$, and $\lim _{v \rightarrow \infty} T_{g}(v)=0$ with $E X^{2} g(X)<\infty$. Now we state our results as follows.

Theorem 1.1 Let $\left\{X, X_{n} ; n \geq 1\right\}$ be a sequence of i.i.d. random variables with zero mean and $E X^{2}=\sigma^{2}>0$, if $E X^{2} g(X)<\infty$ for some function $g(x) \in G$, and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n g(\sqrt{n})}<\infty \tag{1.1}
\end{equation*}
$$

then

$$
\begin{equation*}
\epsilon^{2} \lambda(\epsilon)-\sigma^{2}=O\left(\epsilon^{1 / 2}\right)+o(1)\left(h_{1}(\epsilon)+f_{1}(\epsilon)\right), \quad \text { as } \epsilon \rightarrow 0, \tag{1.2}
\end{equation*}
$$

where $f_{1}(\epsilon)=\sum_{n=\left[\frac{1}{\epsilon^{2}}\right]+1}^{\infty} \frac{1}{n g(\sqrt{n})}, h_{1}(\epsilon)=\epsilon^{2} \sum_{n=1}^{\left[\frac{1}{\epsilon^{2}}\right]} \frac{1}{g(\sqrt{n})}$.
Theorem 1.2 Under the conditions of Theorem 1.1, and $g(x) \in G_{0}$, then

$$
\begin{equation*}
\epsilon^{2} \lambda(\epsilon)-\sigma^{2}=o(1)\left(h_{1}(\epsilon)+f_{1}(\epsilon)\right), \quad \text { as } \epsilon \rightarrow 0 \tag{1.3}
\end{equation*}
$$

Throughout this paper, we suppose that C denotes a constant which only depends on some given numbers and may be different at each appearance, and that $[x]$ denotes the integer part of x.

2 Proofs of the main results

Before we prove the main results we state some lemmas. Lemma 2.1 is from [7]. $\Phi(x)$ is the standard normal distribution function, $\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-t^{2} / 2} d t$.

Lemma 2.1 Let $\left\{X, X_{n}, n \geq 1\right\}$ be a sequence of i.i.d. standard normal distribution random variables. Then

$$
\begin{equation*}
\epsilon^{2} \lambda(\epsilon)=\epsilon^{2} \sum_{n=1}^{\infty} \frac{2}{\sqrt{2 \pi}} \int_{\epsilon \sqrt{n}}^{\infty} e^{-t^{2} / 2} d t=1-\frac{\epsilon^{2}}{2}+O\left(\epsilon^{3}\right), \quad \text { as } \epsilon \rightarrow 0 \tag{2.1}
\end{equation*}
$$

If $\left\{X_{n}, n \geq 1\right\}$ is a sequence of independent random variables with zero mean and finite variance, and put $E X_{j}^{2}=\sigma_{j}^{2}, B_{n}=\sum_{j=1}^{n} \sigma_{j}^{2}$, Bikelis [9] obtained the following inequality:

$$
\begin{aligned}
& \left|P\left(\frac{1}{\sqrt{B_{n}}} \sum_{j=1}^{n} X_{j}<x\right)-\Phi(x)\right| \\
& \leq C\left\{B_{n}^{-1}(1+|x|)^{-2} \sum_{j=1}^{n} \int_{|u|>(1+|x|) B_{n}^{1 / 2}} u^{2} d V_{j}(u)\right. \\
& \left.\quad+B_{n}^{-3 / 2}(1+|x|)^{-3} \sum_{j=1}^{n} \int_{|u| \leq(1+|x|) B_{n}^{1 / 2}}|u|^{3} d V_{j}(u)\right\},
\end{aligned}
$$

for every x, where $V_{j}(x)=P\left(X_{j}<x\right)$ is the distribution function of the random variable X_{j}. By applying the above inequality to the sequence of i.i.d. random variables with zero mean and variance 1 , and letting $|x|=\epsilon \sqrt{n}$, we have the following lemma.

Lemma 2.2 Let $\left\{X, X_{n}, n \geq 1\right\}$ be a sequence of i.i.d. random variables with zero mean and $E X^{2}=1$. Then for any given $\epsilon>0$, we have

$$
\begin{aligned}
& \left|P\left(\left|S_{n}\right|>n \epsilon\right)-\frac{2}{\sqrt{2 \pi}} \int_{\epsilon \sqrt{n}}^{\infty} e^{-t^{2} / 2} d t\right| \\
& \leq \\
& \quad C(1+\epsilon \sqrt{n})^{-2} \int_{|u|>(1+\epsilon \sqrt{n}) \sqrt{n}} u^{2} d V(u) \\
& \quad+C n^{-1 / 2}(1+\epsilon \sqrt{n})^{-3} \int_{|u| \leq(1+\epsilon \sqrt{n}) \sqrt{n}}|u|^{3} d V(u),
\end{aligned}
$$

where $V(x)=P(X<x)$ is the distribution function of a random variable X.

Proof of Theorem 1.1 Without loss of generality, we suppose that $\sigma^{2}=1,0<\epsilon<1$, and write

$$
\epsilon^{2} \lambda(\epsilon)=I+\epsilon^{2} \sum_{n=1}^{\infty} \frac{2}{\sqrt{2 \pi}} \int_{\epsilon \sqrt{n}}^{\infty} e^{-t^{2} / 2} d t
$$

where

$$
I=\epsilon^{2} \sum_{n=1}^{\infty}\left(P\left(\left|S_{n}\right|>n \epsilon\right)-\frac{2}{\sqrt{2 \pi}} \int_{\epsilon \sqrt{n}}^{\infty} e^{-t^{2} / 2} d t\right)
$$

Applying Lemma 2.1, we obtain

$$
\epsilon^{2} \lambda(\epsilon)=I+1-\frac{\epsilon^{2}}{2}+O\left(\epsilon^{3}\right)
$$

then

$$
\epsilon^{2} \lambda(\epsilon)-1=-\frac{\epsilon^{2}}{2}+\epsilon^{2} \sum_{n=1}^{\infty} R_{n}+O\left(\epsilon^{3}\right)
$$

here $R_{n}=P\left(\left|S_{n}\right|>n \epsilon\right)-\frac{2}{\sqrt{2 \pi}} \int_{\epsilon \sqrt{n}}^{\infty} e^{-t^{2} / 2} d t$. By Lemma 2.2,

$$
\left|R_{n}\right| \leq R_{1 n}+R_{2 n}
$$

where

$$
\begin{aligned}
& R_{1 n}=C(1+\epsilon \sqrt{n})^{-2} \int_{|u|>(1+\epsilon \sqrt{n}) \sqrt{n}} u^{2} d V(u), \\
& R_{2 n}=C n^{-1 / 2}(1+\epsilon \sqrt{n})^{-3} \int_{|u| \leq(1+\epsilon \sqrt{n}) \sqrt{n}}|u|^{3} d V(u)
\end{aligned}
$$

We obtain

$$
\begin{equation*}
\epsilon^{2} \lambda(\epsilon)-1=\epsilon^{2} \sum_{n=1}^{\infty} R_{1 n}+\epsilon^{2} \sum_{n=1}^{\infty} R_{2 n}+O\left(\epsilon^{2}\right) . \tag{2.2}
\end{equation*}
$$

Firstly, we estimate $\epsilon^{2} \sum_{n=1}^{\infty} R_{1 n}$. Note that

$$
\epsilon^{2} \sum_{n=1}^{\infty} R_{1 n}=\epsilon^{2} \sum_{n=1}^{\left[\frac{1}{\epsilon^{2}}\right]} R_{1 n}+\epsilon^{2} \sum_{n=\left[\frac{1}{\epsilon^{2}}\right]+1}^{\infty} R_{1 n}=: T_{1}+T_{2} .
$$

Applying the condition $E X^{2} g(X)<\infty$, we have

$$
\lim _{n \rightarrow \infty} \int_{|u|>\sqrt[4]{n}} u^{2} g(u) d V(u)=0
$$

Therefore, for any $\eta>0$, there is an integer N_{0} such that $\int_{|u|>\sqrt[4]{n}} u^{2} g(u) d V(u) \leq \eta$, whenever $n>N_{0}$. Hence

$$
\begin{align*}
T_{1} & \leq C \epsilon^{2} \sum_{n=1}^{N_{0}} \int_{||| |>\sqrt{n}} u^{2} d V(u)+C \epsilon^{2} \sum_{n=N_{0}+1}^{\left[\frac{1}{\left.c^{2}\right]}\right.}(1+\epsilon \sqrt{n})^{-2} \int_{|u|\rangle(1+\epsilon \sqrt{n}) \sqrt{n}} u^{2} d V(u) \\
& \leq C \epsilon^{2} N_{0}+C \epsilon^{2} \eta \sum_{n=N_{0}+1}^{\left[\frac{1}{\left.\epsilon^{2}\right]}\right.} \frac{1}{(1+\epsilon \sqrt{n})^{2} g(\sqrt{n}(1+\epsilon \sqrt{n}))} \\
& \leq C \epsilon^{2}\left(N_{0}+\eta \sum_{n=1}^{\left[\frac{1}{\left.\epsilon^{2}\right]}\right.} \frac{1}{g(\sqrt{n})}\right) \\
& =C h_{1}(\epsilon)\left(\frac{N_{0}}{\sum_{n=1}^{\left[\frac{1}{2}\right]} \frac{1}{g(\sqrt{n})}}+\eta\right) \\
& \leq C h_{1}(\epsilon)\left(N_{0} \epsilon+\eta\right) \\
& =o\left(h_{1}(\epsilon)\right) \tag{2.3}
\end{align*}
$$

where $h_{1}(\epsilon)=\epsilon^{2} \sum_{n=1}^{\left[\frac{1}{\epsilon^{2}}\right]} \frac{1}{g(\sqrt{n})}$. For T_{2}, noting that $g(x) \in G$, we have the following inequality:

$$
\begin{align*}
T_{2} & \leq C \epsilon^{2} \sum_{n=\left[\frac{1}{\epsilon^{2}}\right]+1}^{\infty} \frac{1}{n \epsilon^{2}} \int_{|u|>\sqrt{n}(1+\epsilon \sqrt{n})} u^{2} d V(u) \\
& \leq C \sum_{n=\left[\frac{1}{\epsilon^{2}}\right]+1}^{\infty} \frac{1}{n g(\sqrt{n}(1+\epsilon \sqrt{n}))} \int_{|u|>\sqrt{n}(1+\epsilon \sqrt{n})} u^{2} g(u) d V(u) \\
& \leq C \sum_{n=\left[\frac{1}{\epsilon^{2}}\right]+1}^{\infty} \frac{1}{n g(\sqrt{n})} \int_{|u|>\frac{1}{\epsilon}} u^{2} g(u) d V(u) \\
& \leq C T_{g}\left(\frac{1}{\epsilon}\right) f_{1}(\epsilon) . \tag{2.4}
\end{align*}
$$

Next, we estimate the second term of (2.2). Note that

$$
\begin{aligned}
\epsilon^{2} \sum_{n=1}^{\infty} R_{2 n}= & C \epsilon^{2} \sum_{n=1}^{\infty} n^{-1 / 2}(1+\epsilon \sqrt{n})^{-3} \int_{|u| \leq(\sqrt{n}(1+\epsilon \sqrt{n}))^{1 / 2}}|u|^{3} d V(u) \\
& +C \epsilon^{2} \sum_{n=1}^{\infty} n^{-1 / 2}(1+\epsilon \sqrt{n})^{-3} \int_{(\sqrt{n}(1+\epsilon \sqrt{n}))^{1 / 2}<|u|<\sqrt{n}(1+\epsilon \sqrt{n})}|u|^{3} d V(u) \\
= & J_{1}+J_{2} .
\end{aligned}
$$

For J_{1}, we can write

$$
\begin{aligned}
J_{1} & =C \epsilon^{2}\left(\sum_{n=1}^{\left[\frac{1}{\epsilon^{2}}\right]}+\sum_{n=\left[\frac{1}{\epsilon^{2}}\right]+1}^{\infty}\right) n^{-1 / 2}(1+\epsilon \sqrt{n})^{-3} \int_{|u| \leq(\sqrt{n}(1+\epsilon \sqrt{n}))^{1 / 2}}|u|^{3} d V(u) \\
& =J_{11}+J_{12} .
\end{aligned}
$$

Noting that $\frac{x}{g(x)}$ is nondecreasing in the interval $x>0$, we have

$$
\begin{align*}
J_{11} & =C \epsilon^{2} \sum_{n=1}^{\left[\frac{1}{\epsilon^{2}}\right]} \frac{1}{\sqrt{n}(1+\epsilon \sqrt{n})^{3}} \int_{|u| \leq(\sqrt{n}(1+\epsilon \sqrt{n}))^{1 / 2}}|u|^{3} d V(u) \\
& \leq C \epsilon^{2} \sum_{n=1}^{\left[\frac{1}{\epsilon^{2}}\right]} \frac{1}{n^{1 / 4}(1+\epsilon \sqrt{n})^{5 / 2} g\left((\sqrt{n}(1+\epsilon \sqrt{n}))^{1 / 2}\right)} \int_{|u| \leq(\sqrt{n}(1+\epsilon \sqrt{n}))^{1 / 2}} u^{2} g(u) d V(u) \\
& \leq C \epsilon^{2} \sum_{n=1}^{\left[\frac{1}{\epsilon^{2}}\right]} \frac{1}{n^{1 / 4} g\left(n^{1 / 4}\right)} \\
& =C h_{2}(\epsilon) \tag{2.5}
\end{align*}
$$

where $h_{2}(\epsilon)=\epsilon^{2} \sum_{n=1}^{\left[\frac{1}{\epsilon^{2}}\right]} \frac{1}{n^{1 / 4} g\left(n^{1 / 4}\right)}$.

Similarly, we can obtain

$$
\begin{align*}
J_{12} & =C \epsilon^{2} \sum_{n=\left[\frac{1}{\epsilon^{2}}\right]+1}^{\infty} \frac{1}{\sqrt{n}(1+\epsilon \sqrt{n})^{3}} \int_{|u| \leq\left(\sqrt{n}(1+\epsilon \sqrt{n})^{1 / 2}\right.}|u|^{3} d V(u) \\
& \leq C \epsilon^{2} \sum_{n=\left[\frac{1}{\epsilon^{2}}\right]+1}^{\infty} \frac{1}{n^{1 / 4}(1+\epsilon \sqrt{n})^{5 / 2} g\left((\sqrt{n}(1+\epsilon \sqrt{n}))^{1 / 2}\right)} \int_{|u| \leq(\sqrt{n}(1+\epsilon \sqrt{n}))^{1 / 2}} u^{2} g(u) d V(u) \\
& \leq C \epsilon^{2} \sum_{n=\left[\frac{1}{\epsilon^{2}}{ }^{2}+1\right.}^{\infty} \frac{1}{\epsilon^{5 / 2} n^{3 / 2} g\left(n^{1 / 4}\right)} \\
& =C \frac{1}{\sqrt{\epsilon}} f_{2}(\epsilon), \tag{2.6}
\end{align*}
$$

where $f_{2}(\epsilon)=\sum_{n=\left[\frac{1}{\epsilon^{2}}\right]+1}^{\infty} \frac{1}{n^{3 / 2} g\left(n^{1 / 4}\right)}$.
For J_{2}, we write

$$
\begin{aligned}
J_{2} & =C \epsilon^{2}\left(\sum_{n=1}^{\left[\frac{1}{c^{2}}\right]}+\sum_{n=\left[\frac{1}{\epsilon^{2}}\right]+1}^{\infty}\right) n^{-1 / 2}(1+\epsilon \sqrt{n})^{-3} \int_{\left(\sqrt{n}(1+\epsilon \sqrt{n})^{1 / 2}\langle | u \mid<\sqrt{n}(1+\epsilon \sqrt{n})\right.}|u|^{3} d V(u) \\
& =J_{21}+J_{22} .
\end{aligned}
$$

Using the properties of $g(x)$ by simple calculation, it follows that

$$
\begin{align*}
J_{21}= & C \epsilon^{2} \sum_{n=1}^{\left[\frac{1}{\epsilon^{2}}\right]} n^{-1 / 2}(1+\epsilon \sqrt{n})^{-3} \int_{(\sqrt{n}(1+\epsilon \sqrt{n}))^{1 / 2}<|u|<\sqrt{n}(1+\epsilon \sqrt{n})}|u|^{3} d V(u) \\
\leq & C \epsilon^{2}\left(\sum_{n=1}^{N_{0}}+\sum_{n=N_{0}+1}^{\left[\frac{1}{\epsilon^{2}}\right]}\right) \frac{1}{(1+\epsilon \sqrt{n})^{2} g(\sqrt{n}(1+\epsilon \sqrt{n}))} \\
& \times \int_{(\sqrt{n}(1+\epsilon \sqrt{n}))^{1 / 2}<|u|<\sqrt{n}(1+\epsilon \sqrt{n})} u^{2} g(u) d V(u) \\
\leq & C \epsilon^{2}\left(\sum_{n=1}^{N_{0}}+\sum_{n=N_{0}+1}^{\left[\frac{1}{\epsilon^{2}}\right]}\right) \frac{1}{g(\sqrt{n})} \int_{|u|>n^{1 / 4}} u^{2} g(u) d V(u) \\
\leq & C \epsilon^{2}\left(N_{0}+\eta \sum_{n=1}^{\left[\frac{1}{\epsilon^{2}}\right]} \frac{1}{g(\sqrt{n})}\right) \\
= & o\left(h_{1}(\epsilon)\right), \tag{2.7}
\end{align*}
$$

and

$$
\begin{aligned}
J_{22} & \leq C \epsilon^{2} \sum_{n=\left[\frac{1}{\epsilon^{2}}\right]+1}^{\infty} n^{-\frac{1}{2}}(1+\epsilon \sqrt{n})^{-3} \int_{(\sqrt{n}(1+\epsilon \sqrt{n}))^{1 / 2}<|u|<\sqrt{n}(1+\epsilon \sqrt{n})}|u|^{3} d V(u) \\
& \leq C \sum_{n=\left[\frac{1}{\epsilon^{2}}\right]+1}^{\infty} \frac{1}{n g(\sqrt{n})} \int_{(\sqrt{n}(1+\epsilon \sqrt{n}))^{1 / 2}<|u|<\sqrt{n}(1+\epsilon \sqrt{n})} u^{2} g(u) d V(u)
\end{aligned}
$$

$$
\begin{align*}
& \leq C T_{g}\left(\frac{1}{\sqrt{\epsilon}}\right) \sum_{n=\left[\frac{1}{\epsilon^{2}}\right]+1}^{\infty} \frac{1}{n g(\sqrt{n})} \\
& \leq C T_{g}\left(\frac{1}{\sqrt{\epsilon}}\right) f_{1}(\epsilon) \tag{2.8}
\end{align*}
$$

From (2.2) to (2.8), we conclude that

$$
\begin{equation*}
\epsilon^{2} \lambda(\epsilon)-1 \leq C \frac{1}{\sqrt{\epsilon}} f_{2}(\epsilon)+C T_{g}\left(\frac{1}{\sqrt{\epsilon}}\right) f_{1}(\epsilon)+o(1) h_{1}(\epsilon)+C h_{2}(\epsilon) . \tag{2.9}
\end{equation*}
$$

Since

$$
\frac{1}{\sqrt{\epsilon}} f_{2}(\epsilon) \leq \frac{C}{\sqrt{\epsilon}} \sum_{n=\left[\frac{1}{\epsilon^{2}}\right]+1}^{\infty} \frac{1}{n^{3 / 2}} \leq C \sqrt{\epsilon}
$$

and

$$
h_{2}(\epsilon)=\epsilon^{2} \sum_{n=1}^{\left[\frac{1}{\epsilon^{2}}\right]} \frac{1}{\sqrt[4]{n} g(\sqrt[4]{n})} \leq C \epsilon^{2} \sum_{n=1}^{\left[\frac{1}{\epsilon^{2}}\right]} \frac{1}{\sqrt[4]{n}} \leq C \sqrt{\epsilon}
$$

by (2.9), we have

$$
\epsilon^{2} \lambda(\epsilon)-1=O\left(\epsilon^{1 / 2}\right)+o(1)\left(f_{1}(\epsilon)+h_{1}(\epsilon)\right) .
$$

This completes the proof of Theorem 1.1.
Proof of Theorem 1.2 By the conditions $g(x) \in G_{0}$, and $\lim _{x \rightarrow \infty} \frac{g\left(x^{2}\right)}{x g(x)}=0$, for any $\eta>0$, there is an integer N_{1} such that $\frac{g(\sqrt{n})}{\sqrt[4]{n} g(\sqrt[4]{n})} \leq \eta$, whenever $n>N_{1}$. We have

$$
\begin{align*}
h_{2}(\epsilon) & \leq \epsilon^{2} \sum_{n=1}^{N_{1}} \frac{1}{\sqrt[4]{n} g(\sqrt[4]{n})}+\epsilon^{2} \sum_{n=N_{1}}^{\left[\frac{1}{\epsilon^{2}}\right]} \frac{\eta}{g(\sqrt{n})} \\
& \leq C \epsilon^{2} N_{1}+\epsilon^{2} \sum_{n=N_{1}+1}^{\left[\frac{1}{\epsilon^{2}}\right]} \frac{\eta}{g(\sqrt{n})} \\
& \leq C \epsilon^{2} N_{1}+\epsilon^{2} \sum_{n=1}^{\left[\frac{1}{\epsilon^{2}}\right]} \frac{\eta}{g(\sqrt{n})} \\
& =o(1) h_{1}(\epsilon), \tag{2.10}
\end{align*}
$$

and

$$
\begin{align*}
\frac{1}{\sqrt{\epsilon}} f_{2}(\epsilon) & \leq \frac{1}{\sqrt{\epsilon}} \sum_{n=\left[\frac{1}{\epsilon^{2}}\right]+1}^{\infty} \frac{\eta}{n^{5 / 4} g(\sqrt{n})} \\
& \leq \sum_{n=\left[\frac{1}{\epsilon^{2}}\right]+1}^{\infty} \frac{\eta}{n g(\sqrt{n})}=o(1) f_{1}(\epsilon) . \tag{2.11}
\end{align*}
$$

By (2.9)-(2.11), note that $T_{g}\left(\frac{1}{\sqrt{\epsilon}}\right)=o(1)$, as $\epsilon \rightarrow 0$, we have

$$
\epsilon^{2} \lambda(\epsilon)-\sigma^{2}=o(1)\left(h_{1}(\epsilon)+f_{1}(\epsilon)\right), \quad \text { as } \epsilon \rightarrow 0
$$

This completes the proof of Theorem 1.2.

Remark 2.1 If $g(x)=|x|^{\delta}, 0<\delta<1$, then $f_{1}(\epsilon)=O\left(\epsilon^{\delta}\right), h_{1}(\epsilon)=O\left(\epsilon^{\delta}\right)$. By Theorem 1.2, we get

$$
\epsilon^{2} \lambda(\epsilon)-\sigma^{2}=o\left(\epsilon^{\delta}\right), \quad \text { as } \epsilon \rightarrow 0 .
$$

Remark 2.2 If $g(x)=|x|, \delta=1$, then $\frac{1}{\sqrt{\epsilon}} f_{2}(\epsilon)=O(\epsilon), f_{1}(\epsilon)=O(\epsilon), h_{1}(\epsilon)=O(\epsilon), h_{2}(\epsilon)=O(\epsilon)$. By (2.9), we get

$$
\epsilon^{2} \lambda(\epsilon)-\sigma^{2}=O(\epsilon), \quad \text { as } \epsilon \rightarrow 0 .
$$

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors read and approved the final manuscript.

Acknowledgements

The authors are very grateful to the referees and editors for their valuable comments and some helpful suggestions that improved the clarity and readability of the paper.

Received: 27 May 2012 Accepted: 20 August 2012 Published: 4 September 2012

References

1. Heyde, CC: A supplement to the strong law of large numbers. J. Appl. Probab. 12, 903-907 (1975)
2. Chen, R: A remark on the strong law of large numbers. Proc. Am. Math. Soc. 61, 112-116 (1976)
3. Gut, A, Spǎtaru, A: Precise asymptotics in the Baum-Kate and Davis law of large numbers. J. Math. Anal. Appl. 248, 233-246 (2000)
4. Lanzinger, H, Stadtmüller, U: Refined Baum-Katz laws for weighted sums of iid random variables. Stat. Probab. Lett. 69, 357-368 (2004)
5. Liu, WD, Lin, ZY: Precise asymptotic for a new kind of complete moment convergence. Stat. Probab. Lett. 76, 1787-1799 (2006)
6. Klesov, Ol: On the convergence rate in a theorem of Heyde. Theory Probab. Math. Stat. 49, 83-87 (1994)
7. He, JJ, Xie, TF: Asymptotic property for some series of probability. Acta Math. Appl. Sin. (2012). doi:10.1007/s10255-012-0138-6
8. Gut, A, Steinebach, J: Convergence rates in Precise asymptotics. J. Math. Anal. Appl. 390, 1-14 (2012)
9. Bikelis, A: Estimates of the remainder in the central limit theorem. Litovsk. Mat. Sb. 6, 323-346 (1966)

doi:10.1186/1029-242X-2012-195

Cite this article as: He and Xie: A supplement to the convergence rate in a theorem of Heyde. Journal of Inequalities and Applications 2012 2012:195.

