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Abstract
Let {X ,Xn,n ≥ 1} be a sequence of i.i.d. random variables with zero mean, set
Sn =

∑n
k=1 Xk , EX

2 = σ 2 > 0, and λ(ε) =
∑∞

n=1 P(|Sn| ≥ nε). In this paper, the authors
discuss the rate of approximation of σ 2 by ε2λ(ε) under suitable conditions, improve
the results of Klesov (Theory Probab. Math. Stat. 49:83-87, 1994), and extend the work
He and Xie (Acta Math. Appl. Sin. 2012, doi:10.1007/s10255-012-0138-6).
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1 Introduction andmain results
Let {X,Xn,n ≥ } be a sequence of i.i.d. random variables, set Sn =

∑n
k=Xk , and λ(ε) =∑∞

n= P(|Sn| ≥ nε). Heyde [] proved that

lim
ε→

ελ(ε) = σ ,

whenever EX = σ  < ∞ and EX = .
There are various extensions of this result: Chen [], Gut and Spǎtara [], Lanzinger and

Stadtmüller []. Liu and Lin [] introduced a new kind of complete moment convergence;
Klesov [] studied the rate of approximation of σ  by ελ(ε) and proved the following
Theorem A.

Theorem A Let {X,Xn,n ≥ } be a sequence of i.i.d. random variables with zero mean, if
EX = σ  > , and E|X| < ∞, then

ελ(ε) – σ  = o
(
ε/

)
, as ε → .

Recently, He and Xie [] obtained Theorem B which improved Theorem A. Gut and
Steinebach [] extended the results of Klesov [].

Theorem B Let {X,Xn,n≥ } be a sequence of i.i.d. random variables, and  < δ ≤ , if

EX = , EX = σ  >  and E|X|+δ < ∞,
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then

ελ(ε) – σ  =

⎧⎨
⎩O(ε), δ = ,

o(εδ),  < δ < .

Let G be the set of functions g(x) that are defined for all real x and satisfy the following
conditions: (a) g(x) is nonnegative, even, nondecreasing in the interval x > , and g(x) �= 
for x �= ; (b) x

g(x) is nondecreasing in the interval x > .
Let G be the set of functions g(x) ∈ G satisfying the supplementary condition (c)

limx→∞ g(x)
xg(x) = . Obviously, the function g(x) = |x|δ with  < δ <  belongs to G and does

not belong to G if δ = . The purpose of this paper is to generalize Theorem B to the case
where the condition E|X|+δ < ∞ is replaced by a more general condition E|X|g(X) < ∞
in which the function g belongs to some subset of G. Denote Tg(v) = EXg(X)I(|X| > v),
Tg(v) is a nonnegative nonincreasing function in the interval v > , and limv→∞ Tg(v) = 
with EXg(X) < ∞. Now we state our results as follows.

Theorem . Let {X,Xn;n ≥ } be a sequence of i.i.d. random variables with zero mean
and EX = σ  > , if EXg(X) < ∞ for some function g(x) ∈G, and

∞∑
n=


ng(

√
n)

< ∞, (.)

then

ελ(ε) – σ  =O
(
ε/

)
+ o()

(
h(ε) + f(ε)

)
, as ε → , (.)

where f(ε) =
∑∞

n=[ 
ε

]+


ng(
√
n) , h(ε) = ε

∑[ 
ε

]
n=


g(

√
n) .

Theorem . Under the conditions of Theorem ., and g(x) ∈ G, then

ελ(ε) – σ  = o()
(
h(ε) + f(ε)

)
, as ε → . (.)

Throughout this paper, we suppose that C denotes a constant which only depends on
some given numbers and may be different at each appearance, and that [x] denotes the
integer part of x.

2 Proofs of themain results
Before we prove the main results we state some lemmas. Lemma . is from []. �(x) is
the standard normal distribution function, �(x) = √

π

∫ x
–∞ e–t/ dt.

Lemma . Let {X,Xn,n ≥ } be a sequence of i.i.d. standard normal distribution random
variables. Then

ελ(ε) = ε
∞∑
n=

√
π

∫ ∞

ε
√
n
e–t

/ dt =  –
ε


+O

(
ε

)
, as ε → . (.)
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If {Xn,n ≥ } is a sequence of independent random variables with zero mean and finite
variance, and put EX

j = σ 
j , Bn =

∑n
j= σ


j , Bikelis [] obtained the following inequality:

∣∣∣∣∣P
(

√
Bn

n∑
j=

Xj < x

)
–�(x)

∣∣∣∣∣
≤ C

{
B–
n

(
 + |x|)– n∑

j=

∫
|u|>(+|x|)B/n

u dVj(u)

+ B–/
n

(
 + |x|)– n∑

j=

∫
|u|≤(+|x|)B/n

|u| dVj(u)

}
,

for every x, where Vj(x) = P(Xj < x) is the distribution function of the random variable Xj.
By applying the above inequality to the sequence of i.i.d. random variables with zero mean
and variance , and letting |x| = ε

√
n, we have the following lemma.

Lemma . Let {X,Xn,n≥ } be a sequence of i.i.d. random variables with zero mean and
EX = . Then for any given ε > , we have

∣∣∣∣P(|Sn| > nε
)
–

√
π

∫ ∞

ε
√
n
e–t

/ dt
∣∣∣∣

≤ C( + ε
√
n)–

∫
|u|>(+ε

√
n)

√
n
u dV (u)

+Cn–/( + ε
√
n)–

∫
|u|≤(+ε

√
n)

√
n
|u| dV (u),

where V (x) = P(X < x) is the distribution function of a random variable X.

Proof of Theorem . Without loss of generality, we suppose that σ  = ,  < ε < , and
write

ελ(ε) = I + ε
∞∑
n=

√
π

∫ ∞

ε
√
n
e–t

/ dt,

where

I = ε
∞∑
n=

(
P
(|Sn| > nε

)
–

√
π

∫ ∞

ε
√
n
e–t

/ dt
)
.

Applying Lemma ., we obtain

ελ(ε) = I +  –
ε


+O

(
ε

)
,

then

ελ(ε) –  = –
ε


+ ε

∞∑
n=

Rn +O
(
ε

)
,
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here Rn = P(|Sn| > nε) – √
π

∫ ∞
ε
√
n e

–t/ dt. By Lemma .,

|Rn| ≤ Rn + Rn,

where

Rn = C( + ε
√
n)–

∫
|u|>(+ε

√
n)

√
n
u dV (u),

Rn = Cn–/( + ε
√
n)–

∫
|u|≤(+ε

√
n)

√
n
|u| dV (u).

We obtain

ελ(ε) –  = ε
∞∑
n=

Rn + ε
∞∑
n=

Rn +O
(
ε

)
. (.)

Firstly, we estimate ε
∑∞

n= Rn. Note that

ε
∞∑
n=

Rn = ε

[ 
ε

]∑
n=

Rn + ε
∞∑

n=[ 
ε

]+

Rn =: T + T.

Applying the condition EXg(X) < ∞, we have

lim
n→∞

∫
|u|> √n

ug(u)dV (u) = .

Therefore, for any η > , there is an integer N such that
∫
|u|> √n u

g(u)dV (u) ≤ η, when-
ever n >N. Hence

T ≤ Cε
N∑
n=

∫
|u|>√

n
u dV (u) +Cε

[ 
ε

]∑
n=N+

( + ε
√
n)–

∫
|u|>(+ε

√
n)

√
n
u dV (u)

≤ CεN +Cεη

[ 
ε

]∑
n=N+


( + ε

√
n)g(

√
n( + ε

√
n))

≤ Cε

(
N + η

[ 
ε

]∑
n=


g(

√
n)

)

= Ch(ε)
(

N∑[ 
ε

]
n=


g(

√
n)

+ η

)

≤ Ch(ε)(Nε + η)

= o
(
h(ε)

)
, (.)
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where h(ε) = ε
∑[ 

ε
]

n=


g(
√
n) . ForT, noting that g(x) ∈G, we have the following inequality:

T ≤ Cε
∞∑

n=[ 
ε

]+


nε

∫
|u|>√

n(+ε
√
n)
u dV (u)

≤ C
∞∑

n=[ 
ε

]+


ng(

√
n( + ε

√
n))

∫
|u|>√

n(+ε
√
n)
ug(u)dV (u)

≤ C
∞∑

n=[ 
ε

]+


ng(

√
n)

∫
|u|> 

ε

ug(u)dV (u)

≤ CTg

(

ε

)
f(ε). (.)

Next, we estimate the second term of (.). Note that

ε
∞∑
n=

Rn = Cε
∞∑
n=

n–/( + ε
√
n)–

∫
|u|≤(

√
n(+ε

√
n))/

|u| dV (u)

+Cε
∞∑
n=

n–/( + ε
√
n)–

∫
(
√
n(+ε

√
n))/<|u|<√

n(+ε
√
n)

|u| dV (u)

=: J + J.

For J, we can write

J = Cε

([ 
ε

]∑
n=

+
∞∑

n=[ 
ε

]+

)
n–/( + ε

√
n)–

∫
|u|≤(

√
n(+ε

√
n))/

|u| dV (u)

=: J + J.

Noting that x
g(x) is nondecreasing in the interval x > , we have

J = Cε

[ 
ε

]∑
n=

√
n( + ε

√
n)

∫
|u|≤(

√
n(+ε

√
n))/

|u| dV (u)

≤ Cε

[ 
ε

]∑
n=


n/( + ε

√
n)/g((

√
n( + ε

√
n))/)

∫
|u|≤(

√
n(+ε

√
n))/

ug(u)dV (u)

≤ Cε

[ 
ε

]∑
n=


n/g(n/)

= Ch(ε), (.)

where h(ε) = ε
∑[ 

ε
]

n=


n/g(n/) .
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Similarly, we can obtain

J = Cε
∞∑

n=[ 
ε

]+

√
n( + ε

√
n)

∫
|u|≤(

√
n(+ε

√
n))/

|u| dV (u)

≤ Cε
∞∑

n=[ 
ε

]+


n/( + ε

√
n)/g((

√
n( + ε

√
n))/)

∫
|u|≤(

√
n(+ε

√
n))/

ug(u)dV (u)

≤ Cε
∞∑

n=[ 
ε

]+


ε/n/g(n/)

= C
√
ε
f(ε), (.)

where f(ε) =
∑∞

n=[ 
ε

]+


n/g(n/) .
For J, we write

J = Cε

([ 
ε

]∑
n=

+
∞∑

n=[ 
ε

]+

)
n–/( + ε

√
n)–

∫
(
√
n(+ε

√
n))/<|u|<√

n(+ε
√
n)

|u| dV (u)

=: J + J.

Using the properties of g(x) by simple calculation, it follows that

J = Cε

[ 
ε

]∑
n=

n–/( + ε
√
n)–

∫
(
√
n(+ε

√
n))/<|u|<√

n(+ε
√
n)

|u| dV (u)

≤ Cε

( N∑
n=

+
[ 
ε

]∑
n=N+

)


( + ε
√
n)g(

√
n( + ε

√
n))

×
∫
(
√
n(+ε

√
n))/<|u|<√

n(+ε
√
n)
ug(u)dV (u)

≤ Cε

( N∑
n=

+
[ 
ε

]∑
n=N+

)


g(
√
n)

∫
|u|>n/

ug(u)dV (u)

≤ Cε

(
N + η

[ 
ε

]∑
n=


g(

√
n)

)

= o
(
h(ε)

)
, (.)

and

J ≤ Cε
∞∑

n=[ 
ε

]+

n–

 ( + ε

√
n)–

∫
(
√
n(+ε

√
n))/<|u|<√

n(+ε
√
n)

|u| dV (u)

≤ C
∞∑

n=[ 
ε

]+


ng(

√
n)

∫
(
√
n(+ε

√
n))/<|u|<√

n(+ε
√
n)
ug(u)dV (u)
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≤ CTg

(
√
ε

) ∞∑
n=[ 

ε
]+


ng(

√
n)

≤ CTg

(
√
ε

)
f(ε). (.)

From (.) to (.), we conclude that

ελ(ε) –  ≤ C
√
ε
f(ε) +CTg

(
√
ε

)
f(ε) + o()h(ε) +Ch(ε). (.)

Since

√
ε
f(ε) ≤ C√

ε

∞∑
n=[ 

ε
]+


n/

≤ C
√

ε,

and

h(ε) = ε

[ 
ε

]∑
n=


√ng( √n)

≤ Cε

[ 
ε

]∑
n=


√n

≤ C
√

ε,

by (.), we have

ελ(ε) –  =O
(
ε/

)
+ o()

(
f(ε) + h(ε)

)
.

This completes the proof of Theorem .. �

Proof of Theorem . By the conditions g(x) ∈G, and limx→∞ g(x)
xg(x) = , for any η > , there

is an integer N such that g(
√
n)

√ng( 
√
n) ≤ η, whenever n >N. We have

h(ε) ≤ ε
N∑
n=


√ng( √n)

+ ε

[ 
ε

]∑
n=N

η

g(
√
n)

≤ CεN + ε

[ 
ε

]∑
n=N+

η

g(
√
n)

≤ CεN + ε

[ 
ε

]∑
n=

η

g(
√
n)

= o()h(ε), (.)

and

√
ε
f(ε) ≤ √

ε

∞∑
n=[ 

ε
]+

η

n/g(
√
n)

≤
∞∑

n=[ 
ε

]+

η

ng(
√
n)

= o()f(ε). (.)
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By (.)-(.), note that Tg( √
ε
) = o(), as ε → , we have

ελ(ε) – σ  = o()
(
h(ε) + f(ε)

)
, as ε → .

This completes the proof of Theorem .. �

Remark . If g(x) = |x|δ ,  < δ < , then f(ε) = O(εδ), h(ε) = O(εδ). By Theorem ., we
get

ελ(ε) – σ  = o
(
εδ

)
, as ε → .

Remark . If g(x) = |x|, δ = , then √
ε
f(ε) =O(ε), f(ε) =O(ε), h(ε) =O(ε), h(ε) =O(ε).

By (.), we get

ελ(ε) – σ  =O(ε), as ε → .
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