RESEARCH Open Access

Stability results in non-Archimedean \mathcal{L} -fuzzy normed spaces for a cubic functional equation

Jae-Hyeong Bae¹, Sang-Baek Lee² and Won-Gil Park^{3*}

*Correspondence: wgpark@mokwon.ac.kr *Department of Mathematics Education, College of Education, Mokwon University, Daejeon, 302-729, Republic of Korea Full list of author information is available at the end of the article

Abstract

We establish some stability results concerning the functional equation

$$nf(x+ny) + f(nx-y) = \frac{n(n^2+1)}{2} \big[f(x+y) + f(x-y) \big] + (n^4-1)f(y),$$

where $n \geq 2$ is a fixed integer in the setting of non-Archimedean \mathcal{L} -fuzzy normed spaces

MSC: 39B52; 46S10; 46S40; 47S10; 47S40

Keywords: Hyers-Ulam stability; cubic functional equation

1 Introduction

The theory of fuzzy sets was introduced by Zadeh [34] in 1965. After the pioneering work of Zadeh, there has been a great effort to obtain fuzzy analogues of classical theories. Among other fields, a progressive development has been made in the field of fuzzy topology [1, 8, 9, 12–14, 18, 22, 30]. One of the problems in \mathcal{L} -fuzzy topology is to obtain an appropriate concept of \mathcal{L} -fuzzy metric spaces and \mathcal{L} -fuzzy normed spaces. In 2004, Park [23] introduced and studied the notion of intuitionistic fuzzy normed spaces.

On the other hand, the study of stability problems for a functional equation is related to the question of Ulam [33] concerning the stability of group homomorphisms and affirmatively answered for Banach spaces by Hyers [19]. Subsequently, the result of Hyers was generalized by Aoki [2] for additive mappings and by Rassias [24] for linear mappings by considering an unbounded Cauchy difference. We refer the interested readers for more information on such problems to the papers [4, 6, 11, 20, 21, 25, 29, 32, 33].

Let *X* and *Y* be real linear spaces and $f: X \to Y$ a mapping. If $X = Y = \mathbb{R}$, the cubic function $f(x) = cx^3$, where *c* is a real constant, clearly satisfies the functional equation

$$f(2x + y) + f(2x - y) = 2f(x + y) + 2f(x - y) + 12f(x).$$

Hence, the above equation is called the *cubic functional equation*. Recently, Cho, Saadati and Wang [5] introduced the functional equation

$$3f(x+3y) + f(3x-y) = 15[f(x+y) + f(x-y)] + 80f(y),$$

which has $f(x) = cx^3$ ($x \in \mathbb{R}$) as a solution for $X = Y = \mathbb{R}$.

In this paper, we investigate the Hyers-Ulam stability of the functional equation as follows:

$$nf(x+ny) + f(nx-y) = \frac{n(n^2+1)}{2} [f(x+y) + f(x-y)] + (n^4-1)f(y), \tag{1.1}$$

where $n \ge 2$ is a fixed integer.

2 Preliminaries

In this section, we recall some definitions and results for our main result in this paper.

A triangular norm (shorter *t*-norm) is a binary operation on the unit interval [0,1], *i.e.*, a function $T:[0,1]\times[0,1]\to[0,1]$ satisfying the following four axioms: for all $a,b,c\in[0,1]$,

- (i) T(a,b) = T(b,a) (commutativity);
- (ii) T(a, T(b, c)) = T(T(a, b), c) (associativity);
- (iii) T(a, 1) = a (boundary condition);
- (iv) $T(a,b) \le T(a,c)$ whenever $b \le c$ (monotonicity).

Basic examples are the Łukasiewicz t-norm T_L and the t-norms T_P , T_M and T_D , where $T_L(a,b) := \max\{a+b-1,0\}, T_P(a,b) := ab, T_M(a,b) := \min\{a,b\}$ and

$$T_D(a,b) := \begin{cases} \min\{a,b\} & \text{if } \max\{a,b\} = 1, \\ 0 & \text{otherwise} \end{cases}$$

for all $a, b \in [0, 1]$.

For all $x \in [0,1]$ and all t-norms T, let $x_T^{(0)} := 1$. For all $x \in [0,1]$ and all t-norms T, define $x_T^{(r)}$ by the recursion equation $x_T^{(r)} = T(x_T^{(r-1)}, x)$ for all $r \in \mathbb{N}$. A t-norm T is said to be $Had\check{z}i\acute{c}$ type (we denote it by $T \in \mathcal{H}$) if the family $(x_T^{(r)})_{r \in \mathbb{N}}$ is equicontinuous at x = 1 (see [15]).

Other important triangular norms are as follows (see [16]):

• The Sugeno-Weber family $\{T_{\lambda}^{SW}\}_{\lambda\in[-1,\infty]}$ is defined by $T_{-1}^{SW}:=T_D$, $T_{\infty}^{SW}:=T_P$ and

$$T_{\lambda}^{SW}(x,y) := \max \left\{ 0, \frac{x+y-1+\lambda xy}{1+\lambda} \right\}$$

if $\lambda \in (-1, \infty)$.

• The *Domby family* $\{T_{\lambda}^D\}_{\lambda \in [0,\infty]}$ is defined by T_D , if $\lambda = 0$, T_M , if $\lambda = \infty$ and

$$T_{\lambda}^{D}(x,y):=\frac{1}{1+[(\frac{1-x}{x})^{\lambda}+(\frac{1-y}{y})^{\lambda}]^{1/\lambda}}$$

if $\lambda \in (0, \infty)$.

• The Aczel-Alsina family $\{T_{\lambda}^{AA}\}_{\lambda\in[0,\infty]}$ is defined by T_D , if $\lambda=0$, T_M , if $\lambda=\infty$ and

$$T_{\lambda}^{AA}(x,y) := e^{-(|\log x|^{\lambda} + |\log y|^{\lambda})^{1/\lambda}}$$

if $\lambda \in (0, \infty)$.

A *t*-norm T can be extended (by associativity) in a unique way to an r-array operation by taking, for any $(x_1, ..., x_r) \in [0,1]^r$, the value $T(x_1, ..., x_r)$ defined by

$$T_{i=1}^0 x_i := 1,$$
 $T_{i=1}^r x_i := T(T_{i=1}^{r-1} x_i, x_r) = T(x_1, \dots, x_r).$

A *t*-norm T can also be extended to a countable operation by taking, for any sequence $(x_r)_{r\in\mathbb{N}}$ in [0,1], the value

$$T_{j=1}^{\infty} x_j := \lim_{r \to \infty} T_{j=1}^r x_j. \tag{2.1}$$

The limit on the right side of (2.1) exists since the sequence $\{T_{j=1}^r x_j\}_{r \in \mathbb{N}}$ is non-increasing and bounded below.

Proposition 2.1 [16]

(1) For $T \geq T_L$, the following equivalence holds:

$$\lim_{r\to\infty}T^{\infty}_{j=1}x_{r+j}=1\quad\Longleftrightarrow\quad\sum_{r=1}^{\infty}(1-x_r)<\infty.$$

(2) If T is of Hadžić type, then

$$\lim_{r\to\infty}T_{j=1}^{\infty}x_{r+j}=1$$

for all sequence $\{x_r\}_{r\in\mathbb{N}}$ in [0,1] such that $\lim_{r\to\infty} x_r = 1$.

(3) If $T \in \{T_{\lambda}^{AA}\}_{\lambda \in (0,\infty)} \cup \{T_{\lambda}^{D}\}_{\lambda \in (0,\infty)}$, then

$$\lim_{r\to\infty}T_{j=1}^{\infty}x_{r+j}=1\quad\Longleftrightarrow\quad\sum_{r=1}^{\infty}(1-x_r)^{\alpha}<\infty.$$

(4) If $T \in \{T_{\lambda}^{SW}\}_{\lambda \in [-1,\infty)}$, then

$$\lim_{r\to\infty}T_{j=1}^\infty x_{r+j}=1\quad\Longleftrightarrow\quad\sum_{r=1}^\infty(1-x_r)<\infty.$$

3 L-fuzzy normed spaces

In this section, we give some definitions and related lemmas for our main result.

Definition 3.1 [10] Let $\mathcal{L} = (L, \leq_L)$ be a complete lattice and U a non-empty set called a universe. An \mathcal{L} -fuzzy set \mathcal{A} on U is defined by a mapping $\mathcal{A} : U \to L$. For any $u \in U$, $\mathcal{A}(u)$ represents the degree (in L) to which u satisfies \mathcal{A} .

Lemma 3.2 [7] Consider the set L^* and the operation \leq_{L^*} defined by

$$L^* = \{(x_1, x_2) : (x_1, x_2) \in [0, 1]^2 \text{ and } x_1 + x_2 \le 1\},$$

$$(x_1, x_2) \le_{L^*} (y_1, y_2) \iff x_1 \le y_1, \qquad x_2 \ge y_2$$

for all $(x_1, x_2), (y_1, y_2) \in L^*$. Then (L^*, \leq_{L^*}) is a complete lattice.

Definition 3.3 [3] An *intuitionistic fuzzy set* $A_{\zeta,\eta}$ on a universe U is an object $A_{\zeta,\eta} = \{(u,\zeta_A(u),\eta_A(u)): u \in U\}$, where $\zeta_A(u) \in [0,1]$ and $\eta_A(u) \in [0,1]$ for all $u \in U$ are called the *membership degree* and the *non-membership degree*, respectively, of u in $A_{\zeta,\eta}$, and furthermore, they satisfy $\zeta_A(u) + \eta_A(u) \leq 1$.

In Section 2, we presented the classical definition of t-norms, which can be straightforwardly extended to any lattice $\mathcal{L} = (L, \leq_L)$. Define first $0_{\mathcal{L}} := \inf L$ and $1_{\mathcal{L}} := \sup L$.

Definition 3.4 A triangular norm (*t*-norm) on \mathcal{L} is a mapping $\mathcal{T}: L^2 \to L$ satisfying the following conditions:

- (i) $\mathcal{T}(x, 1_{\mathcal{L}}) = x$ for all $x \in L$ (boundary condition);
- (ii) $\mathcal{T}(x,y) = \mathcal{T}(y,x)$ for all $(x,y) \in L^2$ (commutativity);
- (iii) $\mathcal{T}(x, \mathcal{T}(y, z)) = \mathcal{T}(\mathcal{T}(x, y), z)$ for all $(x, y, z) \in L^3$ (associativity);
- (iv) $x \leq_L x'$ and $y \leq_L y' \Rightarrow \mathcal{T}(x,y) \leq_L \mathcal{T}(x',y')$ for all $(x,x',y,y') \in L^4$ (monotonicity).

A *t*-norm can also be defined recursively as an (r+1)-array operation for each $r \in \mathbb{N}$ by $\mathcal{T}^1 = \mathcal{T}$ and

$$\mathcal{T}^{r}(x_{1},...,x_{r+1}) = \mathcal{T}(\mathcal{T}^{r-1}(x_{1},...,x_{r}),x_{r+1})$$

for all $r \ge 2$ and $x_j \in L$.

The *t*-norm \mathcal{M} defined by

$$\mathcal{M}(x,y) = \begin{cases} x & \text{if } x \leq_L y, \\ y & \text{if } y \leq_L x \end{cases}$$

is a continuous *t*-norm.

Definition 3.5 A *t*-norm \mathcal{T} on L^* is said to be *t*-representable if there exist a *t*-norm T and a *t*-conorm S on [0,1] such that

$$\mathcal{T}(x,y) = (T(x_1,y_1),S(x_2,y_2))$$

for all
$$x = (x_1, x_2), y = (y_1, y_2) \in L^*$$
.

Definition 3.6

- (1) A *negator* on \mathcal{L} is any decreasing mapping $\mathcal{N}: L \to L$ satisfying $\mathcal{N}(0_{\mathcal{L}}) = 1_{\mathcal{L}}$ and $\mathcal{N}(1_{\mathcal{L}}) = 0_{\mathcal{L}}$.
- (2) If a negator \mathcal{N} on \mathcal{L} satisfies $\mathcal{N}(\mathcal{N}(x)) = x$ for all $x \in L$, then \mathcal{N} is called an *involution negator*.

(3) The negator \mathcal{N}_s on ([0,1], \leq) defined as $\mathcal{N}_s(x) = 1 - x$ for all $x \in [0,1]$ is called the *standard negator* on ([0,1], \leq).

Definition 3.7 The 3-tuple $(V, \mathcal{P}, \mathcal{T})$ is said to be an \mathcal{L} -fuzzy normed space if V is a vector space, \mathcal{T} is a continuous t-norm on \mathcal{L} and \mathcal{P} is an \mathcal{L} -fuzzy set on $V \times (0, \infty)$ satisfying the following conditions: for all $x, y \in V$ and $t, s \in (0, \infty)$,

- (a) $0_{\mathcal{L}} <_L \mathcal{P}(x,t)$;
- (b) $\mathcal{P}(x,t) = 1_{\mathcal{L}} \Leftrightarrow x = 0$;
- (c) $\mathcal{P}(\alpha x, t) = \mathcal{P}(x, \frac{t}{|\alpha|})$ for all $\alpha \neq 0$;
- (d) $\mathcal{T}(\mathcal{P}(x,t),\mathcal{P}(y,s)) \leq_L \mathcal{P}(x+y,t+s);$
- (e) $\mathcal{P}(x,\cdot):(0,\infty)\to L$ is continuous;
- (f) $\lim_{t\to 0} \mathcal{P}(x,t) = 0_{\mathcal{L}}$ and $\lim_{t\to \infty} \mathcal{P}(x,t) = 1_{\mathcal{L}}$.

In this case, \mathcal{P} is called an \mathcal{L} -fuzzy norm. If $\mathcal{P} = \mathcal{P}_{\mu,\nu}$ is an intuitionistic fuzzy set and the t-norm \mathcal{T} is t-representable, then the 3-tuple $(V, \mathcal{P}_{\mu,\nu}, \mathcal{T})$ is said to be an *intuitionistic fuzzy normed space*.

Definition 3.8 (see [27]) Let $(V, \mathcal{P}, \mathcal{T})$ be an \mathcal{L} -fuzzy normed space.

(1) A sequence $\{x_r\}_{r\in\mathbb{N}}$ in $(V, \mathcal{P}, \mathcal{T})$ is called a *Cauchy sequence* if, for any $\varepsilon \in L \setminus \{0_{\mathcal{L}}\}$ and for any t > 0, there exists a positive integer r_0 such that

$$\mathcal{N}(\varepsilon) <_L \mathcal{P}(x_{r+p} - x_r, t)$$

for all $r \ge r_0$ and p > 0, where \mathcal{N} is a negator on \mathcal{L} .

- (2) A sequence $\{x_r\}_{r\in\mathbb{N}}$ in $(V,\mathcal{P},\mathcal{T})$ is said to be *convergent* to a point $x\in V$ in the \mathcal{L} -fuzzy normed space $(V,\mathcal{P},\mathcal{T})$ (denoted by $x_r \xrightarrow{\mathcal{P}} x$) if $\mathcal{P}(x_r x,t) \to 1_{\mathcal{L}}$ wherever $r \to \infty$ for all t > 0.
- (3) If every Cauchy sequence in $(V, \mathcal{P}, \mathcal{T})$ is convergent in V, then the \mathcal{L} -fuzzy normed space $(V, \mathcal{P}, \mathcal{T})$ is said to be *complete* and the \mathcal{L} -fuzzy normed space is called an \mathcal{L} -fuzzy Banach space.

Lemma 3.9 [26] Let \mathcal{P} be an \mathcal{L} -fuzzy norm on V. Then we have the following:

- (1) $\mathcal{P}(x,t)$ is non-decreasing with respect to $t \in (0,\infty)$ for all x in V.
- (2) $\mathcal{P}(x-y,t) = \mathcal{P}(y-x,t)$ for all x, y in V and all $t \in (0,\infty)$.

Definition 3.10 Let $(V, \mathcal{P}, \mathcal{T})$ be an \mathcal{L} -fuzzy normed space. For any $t \in (0, \infty)$, we define the *open ball* B(x, r, t) with center $x \in V$ and radius $r \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$ as

$$B(x,r,t) = \{ y \in V : \mathcal{N}(r) <_L \mathcal{P}(x-y,t) \}.$$

A subset $A \subseteq V$ is called *open* if, for all $x \in A$, there exist t > 0 and $r \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$ such that $B(x, r, t) \subseteq A$.

Let $\tau_{\mathcal{P}}$ denote the family of all open subsets of V. Then $\tau_{\mathcal{P}}$ is called the *topology induced* by the \mathcal{L} -fuzzy norm \mathcal{P} .

4 \mathcal{L} -fuzzy Hyers-Ulam stability for cubic functional equations in non-Archimedean \mathcal{L} -fuzzy normed spaces

In 1897, Hensel [17] introduced the field with valuation in which does not have the Archimedean property.

Definition 4.1 Let \mathcal{K} be a field. A *non-Archimedean absolute value* on \mathcal{K} is a function $|\cdot|:\mathcal{K}\to [0,\infty)$ such that, for any $a,b\in\mathcal{K}$,

- (1) $|a| \ge 0$ and equality holds if and only if a = 0,
- (2) |ab| = |a||b|,
- (3) $|a + b| \le \max\{|a|, |b|\}$ (the strict triangle inequality).

Note that $|n| \le 1$ for each integer n. We always assume, in addition, that $|\cdot|$ is non-trivial, *i.e.*, there is $a_0 \in \mathcal{K}$ such that $|a_0| \notin \{0,1\}$.

Definition 4.2 A non-Archimedean \mathcal{L} -fuzzy normed space is a triple $(V, \mathcal{P}, \mathcal{T})$, where V is a vector space, \mathcal{T} is a continuous t-norm on \mathcal{L} and \mathcal{P} is an \mathcal{L} -fuzzy set on $V \times (0, \infty)$ satisfying the following conditions: for all $x, y \in V$ and $t, s \in (0, \infty)$,

- (a) $0_{\mathcal{L}} <_L \mathcal{P}(x,t)$;
- (b) $\mathcal{P}(x,t) = 1_{\mathcal{L}} \Leftrightarrow x = 0$;
- (c) $\mathcal{P}(\alpha x, t) = \mathcal{P}(x, \frac{t}{|\alpha|})$ for all $\alpha \neq 0$;
- (d) $\mathcal{T}(\mathcal{P}(x,t),\mathcal{P}(y,s)) \leq_L \mathcal{P}(x+y,\max\{t,s\});$
- (e) $\mathcal{P}(x,\cdot):(0,\infty)\to L$ is continuous;
- (f) $\lim_{t\to 0} \mathcal{P}(x,t) = 0_{\mathcal{L}}$ and $\lim_{t\to \infty} \mathcal{P}(x,t) = 1_{\mathcal{L}}$.

From now on, let \mathcal{K} be a non-Archimedean field, X a vector space over \mathcal{K} and $(Y, \mathcal{P}, \mathcal{T})$ a non-Archimedean \mathcal{L} -fuzzy Banach space over \mathcal{K} . We investigate the Hyers-Ulam stability of the cubic functional equation (1.1).

Next, we define an \mathcal{L} -fuzzy approximately cubic mapping. Let Ψ be an \mathcal{L} -fuzzy set on $X \times X \times (0, \infty)$ such that $\Psi(x, y, \cdot)$ is non-decreasing,

$$\Psi(cx, cx, t) \ge_L \Psi\left(x, x, \frac{t}{|c|}\right)$$

and

$$\lim_{t\to\infty}\Psi(x,y,t)=1_{\mathcal{L}}$$

for all $x, y \in X$, all t > 0 and all $c \in \mathcal{K} \setminus \{0\}$.

Definition 4.3 A mapping $f: X \to Y$ is said to be Ψ -approximately cubic if

$$\mathcal{P}\left(nf(x+ny) + f(nx-y) - \frac{n(n^2+1)}{2} [f(x+y) + f(x-y)] - (n^4-1)f(y), t\right)$$

$$\geq_L \Psi(x, y, t) \tag{4.1}$$

for all $x, y \in X$ and all t > 0.

The following is the main result in this paper.

Theorem 4.4 Let $f: X \to Y$ be a Ψ -approximately cubic mapping. If $n \in \mathcal{K} \setminus \{0\}$ and there are $\alpha \in (0, \infty)$ and an integer k $(k \ge 2)$ with $|n|^k < \alpha$ such that

$$\Psi(n^{-k}x, n^{-k}y, t) \ge_L \Psi(x, y, \alpha t) \tag{4.2}$$

and

$$\lim_{r\to\infty}\mathcal{T}_{j=r}^{\infty}\mathcal{M}\left(x,\frac{\alpha^{j}t}{|n|^{kj}}\right)=1_{\mathcal{L}}$$

for all $x, y \in X$ and all t > 0, then there exists a unique cubic mapping $C: X \to Y$ such that

$$\mathcal{P}(f(x) - C(x), t) \ge_L \mathcal{T}_{j=1}^{\infty} \mathcal{M}\left(x, \frac{\alpha^{j+1}}{|n|^{kj}} t\right)$$
(4.3)

for all $x \in X$ and all t > 0, where

$$\mathcal{M}(x,t) := \mathcal{T}(\Psi(x,0,t), \Psi(nx,0,t), \dots, \Psi(n^{k-1}x,0,t))$$

for all $x \in X$ and all t > 0.

Proof Let $\mathcal{T}^0: L \to L$ be the identity mapping $I_L: L \to L$. First, we show, by induction on j, that

$$\mathcal{P}(f(n^{j}x) - n^{3j}f(x), t) \ge_{L} \mathcal{M}_{i}(x, t) := \mathcal{T}^{j-1}(\Psi(x, 0, t), \dots, \Psi(n^{j-1}x, 0, t))$$
(4.4)

for all $x \in X$, all t > 0 and all j > 1. Putting y = 0 in (4.1), we obtain

$$\mathcal{P}(f(nx) - n^3 f(x), t) \ge_L \Psi(x, 0, t)$$

for all $x \in X$ and all t > 0. This proves (4.4) for j = 1. Let (4.4) hold for some $j \ge 1$. Replacing y by 0 and x by $3^j x$ in (4.1), we get

$$\mathcal{P}(f(n^{j+1}x) - n^3f(n^jx), t) \ge_L \Psi(n^jx, 0, t)$$

for all $x \in X$ and all t > 0. Since $|n|^3 \le 1$, it follows that

$$\mathcal{P}(f(n^{j+1}x) - n^{3(j+1)}f(x), t)
\geq_{L} \mathcal{T}(\mathcal{P}(f(n^{j+1}x) - n^{3}f(n^{j}x), t), \mathcal{P}(n^{3}f(n^{j}x) - n^{3(j+1)}f(x), t))
= \mathcal{T}\left(\mathcal{P}(f(n^{j+1}x) - n^{3}f(n^{j}x), t), \mathcal{P}\left(f(n^{j}x) - n^{3j}f(x), \frac{t}{|n|^{3}}\right)\right)
\geq_{L} \mathcal{T}(\mathcal{P}(f(n^{j+1}x) - n^{3}f(n^{j}x), t), \mathcal{P}(f(n^{j}x) - n^{3j}f(x), t))
\geq_{L} \mathcal{T}(\Psi(n^{j}x, 0, t), \mathcal{M}_{i}(x, t)) = \mathcal{M}_{i+1}(x, t)$$

for all $x \in X$ and all t > 0. Thus (4.4) holds for all $j \ge 1$. In particular, we have

$$\mathcal{P}(f(n^k x) - n^{3k} f(x), t) \geq_L \mathcal{M}(x, t)$$

for all $x \in X$ and all t > 0. Replacing x by $\frac{x}{n^{k(r+1)}}$ in the above inequality and using the inequality (4.2), we obtain

$$\mathcal{P}\left(f\left(\frac{x}{n^{kr}}\right) - n^{3k}f\left(\frac{x}{n^{k(r+1)}}\right), t\right) \ge_L \mathcal{M}\left(\frac{x}{n^{k(r+1)}}, t\right) \ge_L \mathcal{M}\left(x, \alpha^{r+1}t\right)$$

for all $x \in X$, all t > 0 and all $r \ge 0$, and so

$$\mathcal{P}\left(n^{3kr}f\left(\frac{x}{n^{kr}}\right) - n^{3k(r+1)}f\left(\frac{x}{n^{k(r+1)}}\right), t\right)$$

$$\geq_{L} \mathcal{M}\left(x, \frac{\alpha^{r+1}}{|n|^{3kr}}t\right) \geq_{L} \mathcal{M}\left(x, \frac{\alpha^{r+1}}{|n|^{kr}}t\right)$$

for all $x \in X$, all t > 0 and all $r \ge 0$. Hence it follows that

$$\begin{split} &\mathcal{P}\left(n^{3kr}f\left(\frac{x}{n^{kr}}\right) - n^{3k(r+p)}f\left(\frac{x}{n^{k(r+p)}}\right), t\right) \\ &\geq_L \mathcal{T}_{j=r}^{r+p-1}\mathcal{P}\left(n^{3kj}f\left(\frac{x}{n^{kj}}\right) - n^{3k(j+1)}f\left(\frac{x}{n^{k(j+1)}}\right), t\right) \\ &\geq_L \mathcal{T}_{j=r}^{r+p-1}\mathcal{M}\left(x, \frac{\alpha^{j+1}}{|n|^{kj}}t\right) \end{split}$$

for all $x \in X$, all t > 0 and all $r \ge 0$. Since $\lim_{r \to \infty} \mathcal{T}_{j=r}^{\infty} \mathcal{M}(x, \frac{\omega^{j+1}}{|n|^{k_j}}t) = 1_{\mathcal{L}}$ for all $x \in X$ and all t > 0, $\{n^{3kr}f(\frac{x}{n^{kr}})\}_{r \in \mathbb{N}}$ is a Cauchy sequence in the non-Archimedean \mathcal{L} -fuzzy Banach space $(Y, \mathcal{P}, \mathcal{T})$. Hence we can define a mapping $C: X \to Y$ such that

$$\lim_{r \to \infty} \mathcal{P}\left(n^{3kr} f\left(\frac{x}{n^{kr}}\right) - C(x), t\right) = 1_{\mathcal{L}}$$
(4.5)

for all $x \in X$ and all t > 0. Next, for all $r \ge 1$, all $x \in X$ and all t > 0, we have

$$\begin{split} \mathcal{P}\bigg(f(x) - n^{3kr} f\bigg(\frac{x}{n^{kr}}\bigg), t\bigg) &= \mathcal{P}\bigg(\sum_{j=0}^{r-1} \bigg[n^{3kj} f\bigg(\frac{x}{n^{kj}}\bigg) - n^{3k(j+1)} f\bigg(\frac{x}{n^{k(j+1)}}\bigg)\bigg], t\bigg) \\ &\geq_L \mathcal{T}_{j=0}^{r-1} \mathcal{P}\bigg(n^{3kj} f\bigg(\frac{x}{n^{kj}}\bigg) - n^{3k(j+1)} f\bigg(\frac{x}{n^{k(j+1)}}\bigg), t\bigg) \\ &\geq_L \mathcal{T}_{j=0}^{r-1} \mathcal{M}\bigg(x, \frac{\alpha^{j+1}}{|n|^{kj}} t\bigg) \end{split}$$

for all $x \in X$ and all t > 0, and so

$$\mathcal{P}(f(x) - C(x), t) \ge_L \mathcal{T}\left(\mathcal{P}\left(f(x) - n^{3kr} f\left(\frac{x}{n^{kr}}\right), t\right),$$

$$\mathcal{P}\left(n^{3kr} f\left(\frac{x}{n^{kr}}\right) - C(x), t\right)\right)$$

$$\ge_L \mathcal{T}\left(\mathcal{T}_{j=0}^{r-1} \mathcal{M}\left(x, \frac{\alpha^{j+1}}{|n|^{kj}} t\right),$$

$$\mathcal{P}\left(n^{3kr} f\left(\frac{x}{n^{kr}}\right) - C(x), t\right)\right)$$

for all $x \in X$ and all t > 0. Taking the limit as $r \to \infty$ in the above inequality, we obtain

$$\mathcal{P}(f(x) - C(x), t) \geq_L \mathcal{T}_{j=0}^{\infty} \mathcal{M}\left(x, \frac{\alpha^{j+1}}{|n|^{k_j}} t\right)$$

for all $x \in X$ and all t > 0, which proves (4.3).

Since \mathcal{T} is continuous, from the well-known result in an \mathcal{L} -fuzzy (probabilistic) normed space (see [31], Chapter 12), it follows that

$$\lim_{r \to \infty} \mathcal{P}\left(n \cdot n^{3kr} f(n^{-kr}(x+ny)) + n^{3kr} f(n^{-kr}(nx-y)) - \frac{n(n^2+1)}{2} n^{3kr} f(n^{-kr}(x+y)) - \frac{n(n^2+1)}{2} n^{3kr} f(n^{-kr}(x-y)) - (n^4-1) n^{3kr} f(n^{-kr}y), t\right)$$

$$= \mathcal{P}\left(n \cdot C(x+ny) + C(nx-y) - \frac{n(n^2+1)}{2} C(x+y) - \frac{n(n^2+1)}{2} C(x-y) - (n^4-1) C(y), t\right)$$

for all $x, y \in X$ and all t > 0. On the other hand, replacing x, y by $n^{-kr}x$, $n^{-kr}y$ in (4.1) and (4.2), we get

$$\mathcal{P}\left(n \cdot n^{3kr} f\left(n^{-kr}(x+ny)\right) + n^{3kr} f\left(n^{-kr}(nx-y)\right) - \frac{n(n^2+1)}{2} n^{3kr} f\left(n^{-kr}(x+y)\right) - \frac{n(n^2+1)}{2} n^{3kr} f\left(n^{-kr}(x-y)\right) - \left(n^4-1\right) n^{3kr} f\left(n^{-kr}y\right), t\right)$$

$$\geq_L \Psi\left(n^{-kr} x, n^{-kr} y, \frac{t}{|n|^{3kr}}\right) \geq_L \Psi\left(x, y, \frac{\alpha^r t}{|n|^{3kr}}\right)$$

for all $x, y \in X$ and all t > 0. Since $\lim_{r \to \infty} \Psi(x, y, \frac{\alpha^r t}{|n|^{3kr}}) = 1_{\mathcal{L}}$, we infer that C is a cubic mapping.

For the uniqueness of C, let $C': X \to Y$ be another cubic mapping such that

$$\mathcal{P}(C'(x) - f(x), t) \geq_L \mathcal{M}(x, t)$$

for all $x \in X$ and all t > 0. Then we have, for all $x, y \in X$ and all t > 0,

$$\mathcal{P}(C(x) - C'(x), t)$$

$$\geq_{L} \mathcal{T}\left(\mathcal{P}\left(C(x) - n^{3kr} f\left(\frac{x}{n^{kr}}\right), t\right), \mathcal{P}\left(n^{3kr} f\left(\frac{x}{n^{kr}}\right) - C'(x), t\right)\right).$$

Therefore, from (4.5), we conclude that C = C'. This completes the proof.

Corollary 4.5 Let $T \in \mathcal{H}$ and let $f: X \to Y$ be a Ψ -approximately cubic mapping. If $n \in \mathcal{K} \setminus \{0\}$ and there are $\alpha \in (0, \infty)$ and an integer k $(k \ge 2)$ with $|n|^k < \alpha$ such that

$$\Psi(n^{-k}x, n^{-k}y, t) >_I \Psi(x, y, \alpha t)$$

and

$$\lim_{r\to\infty} \mathcal{M}\left(x, \frac{\alpha^r t}{|n|^{kr}}\right) = 1_{\mathcal{L}}$$

for all $x, y \in X$ and all t > 0, then there exists a unique cubic mapping $C: X \to Y$ such that

$$\mathcal{P}(f(x) - C(x), t) \ge_L \mathcal{T}_{j=1}^{\infty} \mathcal{M}\left(x, \frac{\alpha^{j+1}}{|n|^{kj}} t\right)$$

for all $x \in X$ and all t > 0, where

$$\mathcal{M}(x,t) := \mathcal{T}(\Psi(x,0,t), \Psi(nx,0,t), \dots, \Psi(n^{k-1}x,0,t))$$

for all $x \in X$ and all t > 0.

Proof Since

$$\lim_{r\to\infty}\mathcal{M}\left(x,\frac{\alpha^r}{|n|^{kr}}t\right)=1_{\mathcal{L}}$$

for all $x \in X$ and all t > 0 and T is of *Hadžić* type, it follows from Proposition 2.1 that

$$\lim_{r\to\infty}\mathcal{T}_{j=r+1}^{\infty}\mathcal{M}\left(x,\frac{\alpha^{j}}{|n|^{kj}}t\right)=1_{\mathcal{L}}$$

for all $x \in X$ and all t > 0. Therefore, if we apply Theorem 4.4, then we get the conclusion. This completes the proof.

Example 4.6 Let $(X, \|\cdot\|)$ be a non-Archimedean Banach space, $(X, \mathcal{P}_{\mu,\nu}, \mathcal{T}_M)$ a non-Archimedean \mathcal{L} -fuzzy normed space (intuitionistic fuzzy normed space) in which

$$\mathcal{P}_{\mu,\nu}(x,t) = \left(\frac{t}{t + \|x\|}, \frac{\|x\|}{t + \|x\|}\right)$$

for all $x \in X$ and all t > 0 and $(Y, \mathcal{P}_{\mu,\nu}, \mathcal{T}_M)$ a complete non-Archimedean \mathcal{L} -fuzzy normed space (intuitionistic fuzzy normed space). Define

$$\Psi(x, y, t) = \left(\frac{t}{1+t}, \frac{1}{1+t}\right)$$

for all $x, y \in X$ and all t > 0. It is easy to see that (4.2) holds for $\alpha = 1$. Also, since

$$\mathcal{M}(x,t) = \left(\frac{t}{1+t}, \frac{1}{1+t}\right)$$

for all $x \in X$ and all t > 0, we have

$$\lim_{r \to \infty} (\mathcal{T}_{M})_{j=r}^{\infty} \mathcal{M}\left(x, \frac{\alpha^{j}}{|n|^{kj}}t\right) = \lim_{r \to \infty} \left[\lim_{s \to \infty} (\mathcal{T}_{M})_{j=r}^{s} \mathcal{M}\left(x, \frac{\alpha^{j}}{|n|^{kj}}t\right)\right]$$

$$= \lim_{r \to \infty} \lim_{s \to \infty} \left(\frac{t}{t + |n|^{kj}}, \frac{|n|^{kr}}{t + |n|^{kr}}\right) = (1, 0) = 1_{L^{s}}$$

for all $x \in X$ and all t > 0. Let $f: X \to Y$ be a Ψ -approximately cubic mapping. A straightforward computation shows that

$$\mathcal{P}_{\mu,\nu}\left(nf(x+ny)+f(nx-y)-\frac{n(n^2+1)}{2}\left[f(x+y)+f(x-y)\right]-(n^4-1)f(y),t\right)$$

$$\geq_{I^*}\mathcal{P}_{\mu,\nu}(x+y,t)$$

for all $x, y \in X$ and all t > 0. Therefore, all the conditions of Theorem 4.4 hold, and so there exists a unique cubic mapping $C: X \to Y$ such that

$$\mathcal{P}_{\mu,\nu}(f(x) - C(x), t) \ge_{L^*} \left(\frac{t}{t + |n|^k}, \frac{|n|^k}{t + |n|^k}\right)$$

for all $x \in X$ and all t > 0.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors conceived of the study, participated in its design and coordination, drafted the manuscript, participated in the sequence alignment, and read and approved the final manuscript.

Author detail:

¹ Graduate School of Education, Kyung Hee University, Yongin, 446-701, Republic of Korea. ²Department of Mathematics, Chungnam National University, Daejeon, 305-764, Republic of Korea. ³Department of Mathematics Education, College of Education, Mokwon University, Daejeon, 302-729, Republic of Korea.

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant number 2012003499).

Received: 22 February 2012 Accepted: 31 May 2012 Published: 3 September 2012

References

- 1. Amini, M, Saadati, R: Topics in fuzzy metric space. J. Fuzzy Math. 4, 765-768 (2003)
- 2. Aoki, T: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 2, 64-66 (1950)
- 3. Atanassov, KT: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87-96 (1986)
- 4. Baak, C, Moslehian, MS: On the stability of \hat{J} -homomorphisms. Nonlinear Anal., Theory Methods Appl. **63**, 42-48 (2005)
- 5. Cho, YJ, Saadati, R, Wang, S: Nonlinear \mathcal{L} -fuzzy stability of functional equations. Preprint
- 6. Czerwik, S. Functional Equations and Inequalities in Several Variables, World Scientific, River Edge (2002)
- Deschrijver, G, Kerre, EE: On the relationship between some extensions of fuzzy set theory. Fuzzy Sets Syst. 123, 227-235 (2003)
- 8. George, A, Veeramani, P: On some result in fuzzy metric space. Fuzzy Sets Syst. 64, 395-399 (1994)
- 9. George, A, Veeramani, P: On some result of analysis for fuzzy metric spaces. Fuzzy Sets Syst. 90, 365-368 (1997)
- 10. Goguen, J: *L*-fuzzy sets. J. Math. Anal. Appl. **18**, 145-174 (1967)
- Gordji, ME, Ghaemi, MB, Hajani, H: Generalized Hyers-Ulam-Rassias theorem in Menger probabilistic normed spaces. Discrete Dyn. Nat. Soc. 2010, Article ID 162371 (2010)
- 12. Gregory, V, Romaguera, S: Some properties of fuzzy metric spaces. Fuzzy Sets Syst. 115, 485-489 (2000)
- 13. Gregory, V, Romaguera, S: On completion of fuzzy metric spaces. Fuzzy Sets Syst. 130, 399-404 (2002)
- 14. Gregory, V, Romaguera, S: Characterizing completable fuzzy metric spaces. Fuzzy Sets Syst. 144, 411-420 (2004)
- 15. Hadžić, O, Pap, E: Fixed Point Theory in Probabilistic Metric Spaces. Kluwer Academic, Dordrecht (2001)
- 16. Hadžić, O, Pap, E, Budincević, M: Countable extension of triangular norms and their applications to the fixed point theory in probabilistic metric spaces. Kybernetika 38, 363-381 (2002)
- 17. Hensel, K. Über eine neue Begrüngdung der Theorie der algebraishen Zahlen. Jahresber. Dtsch. Math.-Ver. **6**, 83-88 (1897)
- 18. Hu, C: C-structure of FTS. V: fuzzy metric spaces. J. Fuzzy Math. 3, 711-721 (1995)
- 19. Hyers, DH: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27, 222-224 (1941)
- 20. Hyers, DH, Isac, G, Rassias, TM: Stability of Functional Equations in Several Variables. Birkhäuser, Basel (1998)
- 21. Jung, S: Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis. Hadronic Press, Palm Harbor (2001)
- 22. Lowen, R: Fuzzy Set Theory. Kluwer Academic, Dordrecht (1996)
- 23. Park, J: Intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 22, 1039-1046 (2004)

- 24. Rassias, TM: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297-300 (1978)
- 25. Rassias, TM: Functional Equations, Inequalities and Applications. Kluwer Academic, Dordrecht (2003)
- 26. Saadati, R: A note on "Some results on the IF-normed spaces". Chaos Solitons Fractals 41, 206-213 (2009)
- Saadati, R, Park, C: Non-Archimedean £-fuzzy normed spaces and stability of functional equations. Comput. Math. Appl. 60, 2488-2496 (2010)
- 28. Saadati, R, Park, J: On the intuitionistic fuzzy topological spaces. Chaos Solitons Fractals 27, 331-344 (2006)
- Saadati, R, Razani, A, Adibi, H: A common fixed point theorem in *L*-fuzzy metric spaces. Chaos Solitons Fractals 33, 358-363 (2007)
- 30. Schweizer, B, Sklar, A: Statistical metric spaces. Pac. J. Math. 10, 314-334 (1960)
- 31. Schweizer, B, Sklar, A: Probabilistic Metric Spaces. North Holand, New York (1983)
- 32. Shakeri, S, Saadati, R, Park, C: Stability of the quadratic functional equation in non-Archimedean £-fuzzy normed spaces. Int. J. Nonlinear Anal. Appl. 1, 72-83 (2010)
- 33. Ulam, SM: Problems in Modern Mathematics. Science Editions, Chapter VI. Wiley, New York (1964)
- 34. Zadeh, LA: Fuzzy sets. Inf. Control 8, 338-353 (1965)

doi:10.1186/1029-242X-2012-193

Cite this article as: Bae et al.: Stability results in non-Archimedean \mathcal{L} -fuzzy normed spaces for a cubic functional equation. *Journal of Inequalities and Applications* 2012 **2012**:193.

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com