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Abstract
We show that given a convex subset K of a topological vector space X and a
multivalued map T : K ⇒ X*, if there exists a nonempty subset S of X* with the
surjective property on K and T +w is quasimonotone for each w ∈ S, then T is
monotone. Our result is a new version of the result obtained by N. Hadjisavvas (Appl.
Math. Lett. 19:913-915, 2006).
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1 Introduction and some definitions
Throughout the paper, X and X* denote a real topological vector space and the dual space
of X, respectively. Suppose K ⊆ X is a nonempty subset of X and T : K ⇒ X* is a multival-
ued map from K to X*. Recall that T is said to be monotone if for all x* ∈ T(x), y* ∈ T(y)
one has

〈
x* – y*,x – y

〉 ≥ .

T is said to be pseudomonotone and quasimonotone, in the sense of Karamardian (see [,
]), respectively, if for any x* ∈ T(x), y* ∈ T(y) the following implications hold:

〈
y*,x – y

〉 ≥  ⇒ 〈
x*,x – y

〉 ≥ 

and

〈
y*,x – y

〉
>  ⇒ 〈

x*,x – y
〉 ≥ .

It is clear that a monotone map is pseudomonotone, while a pseudomonotone map is
quasimonotone. The converse is not true. If T is pseudomonotone (quasimonotone) and
w ∈ X*\{}, then T + w is not pseudomonotone (quasimonotone) in general. In the case
of a single-valued linear map T defined on the whole space Rn, it is known that if T + w
is quasimonotone, then T is monotone []. Many authors (see, e.g., [, ]) extended this
result for a nonlinearGateaux differentiablemapdefined on a convex subsetK (of aHilbert
space) with a nonempty interior.
Recently, Hadjisavvas [] extended the above result to the multivalued maps defined on

a convex subset of a real topological vector space with no assumption of differentiability
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or even continuity on themap T whose domain need not have a nonempty interior. In this
paper, we first introduce the surjective property of a subset of X* on a segment of K . By
using this concept, we can extend the corresponding result obtained in []. Before stating
the main result, we recall some definitions.

Definition  Let x, y be two elements of K . We say that S ⊆ X* has the surjective property
on x and y whenever the following equality holds:

〈S,x – y〉 = {〈
x*,x – y

〉
: x* ∈ S

}
=R.

Remark that we can consider x– y as a linear functional (denoted by x̂ – y) on X* which is
defined by

〈x̂ – y, f 〉 = 〈f ,x – y〉.

Hence if S has the surjective property on x, y, then the image of S under the linear func-
tional x̂ – y is all of the real numbers, and that is why we used the phrase surjective prop-
erty.

Definition  Let K ⊆ X be a nonempty set and S ⊆ X*. We say that S has the surjective
property on K if for every x ∈ K there exists y ∈ K such that S has the surjective property
on x and y.

Definition  [] Let K be a convex subset of X. An element v of X* is called perpendicular
to K if v is constant on K , i.e.,

〈v,x〉 = 〈v, y〉, ∀x, y ∈ K .

Also the straight line S = {u + tv : t ∈ R}, where u, v ∈ X* with v 	= , is said to be perpen-
dicular to K if v is perpendicular to K .

Remark  If K ⊆ X is a nonempty convex set and u, v ∈ X* with v is not perpendicular to
K , then the straight line S = {u + tv : t ∈ R} has the surjective property on K . Indeed, let
x ∈ K be an arbitrary member of K . Because v is not perpendicular to K , there exists y ∈ K
such that c = 〈v,x – y〉 	= . For each a ∈ R, we put t = a–〈u,x–y〉

c and so a = 〈u + tv,x – y〉.
Hence 〈S,x – y〉 = R. This means that S has the surjective property. Therefore, v being
not perpendicular to K implies the surjective property while the simple example X = R

,
S = {(t, t) = (, ) + (, )t : t ∈R} and K = {(x, –x) : x ∈R} shows that the converse does not
hold in general. In this example, one can see that S has the surjective property and v = (, )
is perpendicular to K (note 〈v = (, ), (x, –x)〉 = 〈v = (, ), (y, –y)〉 = ). The notion v is not
perpendicular to K , which plays a crucial rule in proving the main results in []; while in
this note, the surjective property has an essential rule in the main result. Hence one can
consider this paper as an improvement of [] (slightly, of course).

We need the following lemma in the sequel.
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Lemma  Let X be a real topological vector space, K a nonempty convex subset of X and
T : K ⇒ X* a multivalued map. Suppose x, y ∈ K, S ⊆ X* has the surjective property on x,
y and T + w is quasimonotone on the line segment [x, y] = {tx + ( – t)y : t ∈ [, ]} for all
w ∈ S. Then T is monotone on [x, y].

Proof We can define an order on [x, y] as follows:

a 
 b ⇔ t ≤ t, where a = x + t(y – x),b = x + t(y – x).

On the contrary, assume T is not monotone on [x, y]. So there exist a,b ∈ [x, y] and a* ∈
T(a), b* ∈ T(b) with a≺ b and 〈a* – b*,a – b〉 < . Hence we have

〈
a*, y – x

〉
>

〈
b*, y – x

〉
.

Since S is surjective on x, y, there exists w ∈ S such that

〈
a*, y – x

〉
> 〈w,x – y〉 > 〈

b*, y – x
〉
.

Therefore,

〈
a* +w, y – x

〉
> ,

〈
b* +w, y – x

〉
< ,

which is a contradiction. This completes the proof. �

Now we are ready to present the main result.

Theorem  Let X be a real topological vector space, K a nonempty convex subset of X and
T : X ⇒ X* amultivaluedmap. Assume S ⊆ X* is connected and has the surjective property
on K. If T +w is quasimonotone for all w ∈ S, then T is monotone on K.

Proof Let x, y ∈ K , x* ∈ T(x) and y* ∈ T(y) be arbitrary elements. If S is surjective on x, y
then, by Lemma , T is monotone on [x, y] and the proof is complete. Assume S does not
have the surjective property on x, y. So S(x– y) 	=R. Since S has the surjective property on
K , then there exists z ∈ K such that S is surjective on x, z; and since S is connected, then
〈S, y– z〉 is a connected subset of the real numbers unbounded from above and below, and
so it is equal to the real numbers. This means that S has the surjective property on y, z
and also on x+y

 , z. Therefore, it follows from Lemma  that T is monotone on [y, z] and
[ x+y , z]. Similarly, T is monotone on the segments [x, zs] and [y, zs], for all s ∈ ], [, where
zs = sz + ( – s) x+y . Therefore, for any z*s ∈ T(zs) and z* ∈ T(z), we have

〈
z*s, zs – x

〉 ≥ 〈
x*, zs – x

〉
, ()〈

z*s, zs – y
〉 ≥ 〈

y*, zs – y
〉
, ()〈

z*, z – zs
〉 ≥ 〈

z*s, z – zs
〉
. ()

From () and (), we deduce that

s
〈
z*s, z –

x + y


〉
≥ 〈

x*, zs – x
〉
+

〈
y*, zs – y

〉
. ()
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Now from z – zs = ( – s)(z – x+y
 ) and (), we obtain

〈
z*, z –

x + y


〉
≥

〈
z*s , z –

x + y


〉
. ()

Combining () and (), we have

s
〈
z*, z –

x + y


〉
≥ 〈

x*, zs – x
〉
+

〈
y*, zs – y

〉
.

So if in the previous inequality we tend s→ , then zs → x+y
 , and hence we deduce

 ≥ 〈
x*, y – x

〉
+

〈
y*, y – x

〉
.

This means T is monotone and the proof is now complete. �

Remark  shows that Theorem  is a new version of Theorem  in [], although our proof
is, in fact, completely similar to it.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally and all authors read and approved the final manuscript.

Author details
1Department of Mathematics, Razi University, Kermanshah, 67149, Iran. 2Department of Mathematics, Faculty of Science,
Naresuan University, Phitsanulok, 65000, Thailand.

Received: 4 April 2012 Accepted: 15 August 2012 Published: 31 August 2012

References
1. Karamardian, S, Schaible, S: Seven kinds of monotone maps. J. Optim. Theory Appl. 66, 37-46 (1990)
2. Karamardian, S, Schaible, S, Crouuzeix, JP: Characterizations of generalized monotone maps. J. Optim. Theory Appl.

76, 399-413 (1993)
3. Hadjisavvas, N: Translations of quasimonotone maps and monotonicity. Appl. Math. Lett. 19, 913-915 (2006)
4. He, Y: A relationship between pseudomonotone and monotone mappings. Appl. Math. Lett. 17, 459-461 (2004)
5. Isac, G, Motreanu, D: Pseudomonotonicity and quasimonotonicity by translations versus monotonicity in Hilbert

spaces. Aust. J. Math. Anal. Appl. 1(1), 1-8 (2004)

doi:10.1186/1029-242X-2012-192
Cite this article as: Farajzadeh et al.: On the translations of quasimonotone maps and monotonicity. Journal of
Inequalities and Applications 2012 2012:192.

http://www.journalofinequalitiesandapplications.com/content/2012/1/192

	On the translations of quasimonotone maps and monotonicity
	Abstract
	Keywords

	Introduction and some deﬁnitions
	Competing interests
	Authors' contributions
	Author details
	References


