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1 Introduction
For n > 2,let I' : R — R” be a curve in R” with I'(0) = 0. To I" we associate the Hilbert

transform ‘H which is defined as a principal value integral

Hf(u):p.v.Af(u—F(t))%,

where u € R” and f € C3°(R"). Similarly, one can define the corresponding maximal func-
tion and the maximal Hilbert transform as

u)= Slll)— L{—I Is dt

H*f () = sup

>0

[ - ro)%|

The L?-boundedness for the Hilbert transform H and the maximal function M above
have been well studied by many scholars. See [10] for a survey of results through 1977.
More recent results can be found in [1, 2, 4-7].

Appropriate estimates for the maximal Hilbert transform give the pointwise existence
of the principal value Hilbert transform. So, we focus on the L”-bounds for the maxi-

mal Hilbert transform #* in this paper. Let us state some previous theorems to establish
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the background for our current work. The first result about 7* is the work of Stein and
Wainger (see [10]).

Theorem 1.1
(A) IfT is a two-sided homogeneous curve in R", then

|7l < Cllf s 1<p<oo.

(B) Assume that for small t, T'(t) lies in the subspace spanned by { F(7>(0)}]-°=°1. Then the

maximal Hilbert transform

Hif(u) = sup

0<e<1

d
[ rw-re)?
e<|t|<1

is bounded from LP(R") to itself, 1 < p < 0o.

For n =2 and T'(¢) = (¢, y(¢)), Cérdoba and Rubio de Francia considered the case y €
CYR) and y(0) = y'(0) = 0, with the following properties:
(i) y is biconvex, i.e., |y’(t)| is decreasing in (00, 0) and increasing in (0, 00);
(ii) |y’| has doubling time, i.e., there exists a constant A > 1 such that |y’ (xt)| > 2|y (?)|;
(iii) y is balanced, by which we mean the following: there exists k > 1 such that
ly (k7'8)] < |y (=t)| < |y (k)| for every ¢ > 0.
They proved the following theorem in [7].

Theorem 1.2 Under the assumptions (i), (ii) and (iii) on the y, the maximal Hilbert trans-
form H* is a bounded operator in L (R?) for 1 < p < cc.

In this note, we consider the curve I' with the form I'(¢) = (¢, P(y (¢))), where P(¢) is a

real-valued polynomial of ¢ in R, y satisfies
y € C%[0,00), convex on [0,00), even or odd on R, and y(0) = 0. (11)

Definition 1.3 A function f : R — R belongs to C;, if there exists a constant A > 1 such
that f(Az£) > 2f(¢) for ¢t € R. It is also said that f has doubling time.

For this case, Bez obtained the L”-boundedness of H and M in [1].

Theorem 1.4 Suppose that P is a polynomial, y satisfies (1.1) and y'(0) > 0. If T'(¢) =
(&, P(y (1)), 1 < p < 00, and either (1) P'(0) is zero, or (2) P'(0) is nonzero and y' € Cy, then

1Hfllir = Cliflr and  [|Mflir < Clif ll1e-

Moreover, the constant C depends only on p, y and the degree of P.

Remark 1.5 If P'(0) = 0, P(y(¢)) is “more convex” than y () in some sense, then I is “con-
vex” enough for the L”-boundedness of M and H. In the case P'(0) # 0, the linear term
P'(0)t of P(t) cannot improve the convexity of y. To obtain the L”-boundedness for asso-
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ciated operators, one needs to pose additional condition(s) on y, that is, ' € C;. For more
details, see [5] and [9].

Motivated by Bez’s result above, we obtain the L”-boundedness for H*. More precisely,
we prove the following theorem.

Theorem 1.6 Suppose that P is a polynomial, y satisfies (1.1) and y'(0) > 0. If I'(¢) =
(¢, P(y(t))), and either (1) P'(0) is zero, or (2) P'(0) is nonzero and y' € Cy, then

|+, < Clifllrs 1<p<oo.

Moreover, the constant C depends only on p, y and the degree of P.

Remark 1.7 Let P(t) = t. Comparing those conditions for y in Theorem 1.2, we find that
conditions in Theorem 1.6 are stricter. But we should note that P(y (¢£)) may be a nonconvex
function.

The convexity of the polynomial P is important for our main result. P has different con-
vexity in different intervals, which suggests that #* will be decomposed according to the
properties of P. The decay of associated multipliers is essential for the proof of Theo-
rem 1.6. This set of techniques originated from the work [1] and [3]. Notice that H* is
a nonlinear operator, Minkowski’s inequality cannot be used as in Section 1 of [1], the
linearization method is invoked to treat it. Similarly, the essential Proposition 1.2 in [1] is
useless for the maximal Hilbert transform. Littlewood-Paley theory and interpolation the-
orem are effective tools to treat those problems. Those ideas are due to the contribution
of Cérdoba, Nagel, Vance, Wainger, Rubio de Francia.

The organization of our paper is as follows. In Section 2, we list some key properties
concerning the polynomial and give some lemmas for the proof of the main result. The
L?-estimates for H* will be proved in Section 3.

2 Preliminaries
Without loss of generality, we suppose that P(¢) = ZZ:I pit*, whered > 2. Let z1,23,...,24
be d-complex roots of P ordered as

0=lz| < |z <--- <zl

Let A be a positive constant which will be chosen in Lemma 2.1. Define G; = (A|z],
A‘1|zj+1|] if it is nonempty for 1 <j < d and G, = (Alzq4|,00). Let J = {j : G; # ¥}, then
(0,00) \ Ujej Gj can be decomposed as | ;i Dk, where Dy is the interval between two
adjacent G;. It is obvious that Dy is disjoint. Then, we can decompose (0, c0) as

(0,00 =y GuJy D),

jeJ kelkC

where y~1(I) is the inverse image of a subset I restricted in (0, 00).
The properties of P on Dy and G; are important for our proof. The following related
lemma can be found in [1] and [3].
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Lemma 2.1 There exists a number Cy > 1 such that forany A > Cyand any j € J,
(©) 1P@&)] ~ IpjlIty for |t| € Gy
(ii) % >0 forteG, % <0 for-teGj;
(iii) |58| ~ + for|t| € G;

(iv) i >0 and i) ~ 55 for 1t € Gy j€ T\ (1),

The following fact can be induced from the proof of Lemma 2.1 (see [1]), that is, we can
choose A > 0 such that, for |f| € G;,

; 1, - . -
|P(t)] <2lpjllel  and Spillel L< [P @] < 2iplier. (21)

Let A be the doubling constant for y’, define p = max{3,A}. Let I be a subset of (0, 00),
x,5 € R and u = (x,s), H; and M) are given by

= [ famns-plro) T

ltley ()

and

keZ P

1
Muft =sup = [ (=t~ P(r(0))] .
[tley =1 ()N(pk,pkH1]

Forj € J and k € Z, we define cones in R? by

1 N N
Agj= {C =(&,n): lejl(y’) (0*) < % <4lpl(v/) (0", 6 m € R},

and the corresponding projection operators by f;:f :f' Xay;- Then, we have the following

lemma which is Lemma 1 in [7].

Lemma 2.2 Forje J and 1< p < oo, we have
) 1z | Trif ) o < Cyllf v
(i) | Lher Teifillr < Coll(Eie D)2 s
(iii) N1 supiez | D k=i Trif llze < Cpllf ll 2o

The bootstrap argument (see [8]) plays an important role in the proof of the main result,

so we present the following well-known result which can be found in [2] and [7].

Lemma 2.3 Suppose that Uif = uy * f is a sequence of positive operators uniformly
bounded in L*°, and U*f = sup,y luy * f| is bounded in L1 for 1 < q < 0o, then

()], sl (2w} ],

keZ

29
fOI"p > m.

Page 4 of 14
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3 Proof of Theorem 1.6
Let K and J be given as in Section 2, then

dt
Hifw <Y I

f(u) kel Ssl:(l)) '/l;Eyl(Dk)ﬂ{t>8]f(x s (y( ))) _t
Z dt
—ts=P(y(®))—
+ P Sgl;l(l)) /;|EV_1(G/)ﬁ{t2£}f(x S (y )) p

= E Hp, S () + ZH*G,f(u)
kekC jeT

Note that C and J are finite sets, it suffices to show that H}, " and ’H*G,, are I”-bounded,

respectively.

3.1 The LP-boundedness for #7,

Let £() be some measurable function from R? to R* such that

d
fl-ts-P(r©) =], (3.1)

s
tley

“LDN{tze(w)

By Minkowski’s inequality, we can control the L”-norm of 1}, f by

dt|? ’
(/ / f(x—t,s—P(y(t)))T du)
R2 | J|tley "LHDp)N{t=e(w)}
s ba) &
S/tlall(Dk)( ]R2lf(x bs P()/(t)))| du) |Z]
dt
2 —. 3.2
=201y | . 32)

Let Dy = (A™|z;],A|2j4m|] for some 2 <j <d and 0 <m < d -, then
Azl =AMzl < Alzl < -+ < Alzjml <A Zmal

and

A2 < A|Zj+m| < A|Zj+m| §A2m+1.
Atz T A2z,

Notice that y is convex and y(0) = 0, so y(¢) < ty’(¢) for t > 0. Thus,

/ dr /V‘I(AIZ,-W) dr /A|Zj+m| dr
yiog t o Jyagy £ Jang Oy (H®)

Alzjml dt
< / "R odina, (3.3)

CJayg

where y71(¢) is the inverse function of y(£).
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(3.1), (3.2) and (3.3) yield

||7-[7_f,kf||uj <C|fllzr forl<p<oo,kek.

3.2 The LP-boundedness for ’sz
Forje J and k € Z, set Iy; = (1, p] N ,o‘ky‘l(Gj) and define measures vy ; by

d
(Vi Y1) = f y w(pkt,P(V(pkt)))jt
tle kj

for ¥ € S(R?). For any ¢ > 0, there exists ko € Z such that pf < ¢ < p*0*1, Then

dt
/ Fle—tis— P(y(t)))—‘
ltley 1 (G)Nit=e) ¢

1
< — x—t,s—P(y(t)))|dt
P Jigey-1(Gn(pko ko) 4 o))l
o0
| D v fw)|-
k=ko+1
Therefore,
[ee]
6/ @) = Maf (u) +sup| ) v 5 f(u).
€z |

By the LP-boundedness of MG]. (see [1]), it suffices to consider the latter term. Let ® €
S(R) such that ®(&) =1 for |€] <1 and ®(&) = 0 for |&] > 2. Write ®;(§) = P(p'€) and
denote by x convolution in the first variable. For i € Z, the truncated Hilbert transform
can be decomposed as

ka,j*fz D; (’HG}f—ka,j *f) +(5—<D,-)*ka,,-* Ti,f

k>i k<i k=i

+ (8= D)% Y vy (T = Te)f = Aif + Bif +Ciff

k>i

where § is the Dirac measure in R, and Z is the identity operator. Then, we just need to
estimate sup,.; | A ;f |, sup,c; |1B;,f] and sup,.; |C; f |, respectively.

The decay of v ;(¢) is important for the boundedness of three maximal operators above.
Essentially, estimates for v ; in the following subsection have been proved in [1]. We repeat
them just for completeness.

3.2.1 Fourier transform estimates of vy
Before the proof of Proposition 3.2, we need the following lemma which is Lemma 2.2
in [1].

Lemma 3.1 Forallje J \ {1}, the function
e Py (0"0)y (01)" + P (v (040))y" (0*1)

is singled-signed on Iy j.

Page 6 of 14
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Proposition 3.2 Forje J and k € Z, if { ¢ Ay, then

[75(0)] < C(pM1EN) ™

Proof For fixed ¢ = (&,1), let i () = p¥t& + nP(y (pXt)), then

/ o
tely; t

Casel.je J\{1}.1f¢ ¢ Agjand |€] > 4|pj|(y/)/(pk*1)|n|, for |t| € Iy}, (2.1) implies

[ve;(2)] <

)
/ e tt’ =EE,n)+FEn).
te-Iy;

(0] = [0*€| = [0"P (v (0*2)) v/ (0" t)n |> 5P “l). (3.4)

Note that /7 (£) is monotone on Iy j, this fact follows from Lemma 3.1. By Van der Corput’s
lemma and (3.4), we get E(&,1) < C(p*|€])~".

If y is even, then F(-§,n) = E(§,7n). If y is odd, Lemma 3.1 still holds for t € —Ix ;, F(&,7)
can be considered in the same way. Then, we have

|50 < E@m) + FE,m) =< C(o41E1) ™ (35)
If ¢ ¢ Agjand |£] < %ij|(y7)’(pk)|n|. In the same way, for |£| € I j, we have
1 N/
[ ®] = [P (v (0"6)) ' (0" 0)n| = [0&] = 2 1pi1(v') (0 )P Il = CpllEL - (3.6)
In the same way as above, we can get

00| < C(p*1E) ™

Case 2.j=1.If ¢ ¢ Ary and |£] > 4|p1]y’ (0**)|n|, (3.4) still holds for |¢| € Ix,. By inte-
grating by parts,

E(‘E, 77) =

; dt
e—lhk(t)h/ (t) ‘
/Ik,l o

_ h/ //
k1

_ ny
C(ot161)” + /1 |h’k ((f))z' .

Essentially, we just need to consider the second term, which can be dominated by

PP (v (0*0)ly" (0*) P>l (y (o5 )y (0" )
dt + dt = o1 + 0.
I I

i ()? I (£)?

In order to estimate the term «;, we define ¢ (£) = pXt|&| + |p1]y (0*t)|n|, then @ (t) =
oFIE] + |11 0%y (¥t)|n|. By (3.4), for t € I, it is obvious that

o ()] < p Klgl < (. (3.7)

Page 7 of 14
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On the other hand, for ¢ € I ;,
0] = pN1E1 = P11 0"y () In| = Zpkm (38)
Further, by (2.1), for ¢t € I,
oL (1) = Ip1lp™y" (0" t) Inl = %kalnlIP’(V(pkt))\y”(p"t)- (3.9)

Thus, combining (3.7), (3.9) and (3.8), we have

@ (t) .
o < Cflk,l (p,':((t)z dt < C(p*€]) " (3.10)

For a, by (3.4),

k 1( Ak+1
a < C ‘P”(y(,okt))‘y'(pkt)pkp |77|/V (0"*)
I hk(t)z

< C(ipilotlel)™ fG 1P(0) dt. a.10)

dt

Note that G; can be split into a finite number of disjoint intervals such that P” is singled-
signed on each interval. Suppose that [s,s;] is such an interval and P” > 0 by (2.1), then
Sisusy) 1P/ @)1 dt = P'(s2) = P'(51) < Clpal. So oz < C(p" €)™

If (5,n7) € Axy and [§] < i|p1|y’(pk)|n|, (3.6) holds for [t| € It;. The same arguments
used above imply

) (¢ )
EE ) < C(Imlp*y' (o) nl) ™ +/ | /k( )2| dt < C(pMEN) "+ + s,
1y M(®)

where o; and «; are as previous ones. For ¢y above, we have

3 ’ ! 5 ! ’
2121P Y (")l < |oi@)] = ZIpnly' ("2) 0" Inl < 5h; o). (3.12)
Thus, (3.9) and (3.12) give
9 (9) k. 1( k -1 ke -1
a<C T2 dt <C(Iplp"y'(0")Inl)~ < C(p"IE1) " (3.13)
Ir1 (pk(t)

For ay, by (3.12) and (2.1),

2k /7 k 1( k)2
o §C/ P InlIP (ky(p ?)W(f t) at
o Uple*y (p%8)nl]
1
— C/ | |71 kP// kt / kt dt
o AP () v (e )Ipllpky/(pkt)lnl

< C(pilo®y (0 ) / P (0)] de
1

< C(phEN) ™. (3.14)
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F(&,1n) can be treated in the same way as in Case 1. Thus, (3.10), (3.11), (3.13) and (3.14)
imply

|oRj(E,m| < C(ok1EN ™ O

3.2.2 LP-estimates for sup;.; |A;f|
3.2.2.1 The case ofeven y By alinear transformation, we have

dDi*ka,j*f(u)

k<i

1
= Z/ —/ ®i(x—y-t)f (y,s - P(y(t))) dydt
o Jitleokn; EIR
1
-y / : [ (@i~ 5~ 1) - Dilx =)/ (3,5 - Py (1)) dyar.
|tlep Ik] R
Note that ® € S, then for any N > 0,

’@i*ka,j * f(u)

k<i

|t|p™
/neopwl @ |t|/ L7 g/ s =Pl @) dyde

o 1 f
< - , - ,s—=P(y(t)))|dtd
B f]R A+ lp~x = p~yDN o Jinew.piinv-1(6) f ns = P(y (@) | ey

< CN) (w),

where f*(x, s) is the Hardy-Littlewood maximal function acting on f(y,s) in the first vari-

able and V; is given by

Nig(s) = sup — lg(s—P(y(9))] de.

i€Z IO €(0,p? ]ﬁy’l(Gl)

Thus, we obtain
$u£|¢4i,;f(u)| < C[(./\/jf)*(u) + (ng)*(u)].

If we can show that V; is L -bounded, according to the L”-boundedness of He (see [1]),

we will get

sup | A; f | H <Clfller, 1l<p<oo. (3.15)
i€z v

So, it suffices to prove the following result.
Lemma 3.3 Forj € J, N is a bounded operator in LF(R), 1 < p < o0.

Proof We denote P(y(¢)) by Y(¢) for short, then Y (¢)' = P'(y(£))y’(¢t). Note that there is
no root of P(s) in G, that is, P(s) is singled-signed. For ¢ € y’l(G,), y(t) € Gj, by (2) of
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Lemma 2.1, P'(y (¢)) is also singled-signed on y !(G;). By y/(0) > 0 and the convexity of y,

y'(£) > 0 for ¢ > 0. Then, Y'(¢) is monotonous on y‘l(Gj). On the other hand, by Lemma 3.1,
forje J\ {1}, Y(¢)' is monotonous on y‘l(Gj).

Suppose that Y(¢) is increasing on y‘l(Gj), then

1 / 1 dt
— s—"Y(t))|dt —/ (s—t)|——r——
P! Jee0,01ny1(G)) & ) P' Jeeo,x(phne(G) ¢ | T'(T-L(t)

fo |g(s — )| ¢i,(2) dt.

Forje J\ {1}, if Y'(¢) is increasing on y }(G;)), then, for i € Z, ¢;;(¢) is nonnegative and
decreasing on P(G;j). Furthermore, note that

/w¢ (t)dt < 1/ a___
o 7 0 ooy Y(XE)

Therefore, for i € Z, we have

1
— / ‘ lg(s = Y (0)|dt < CMg(s),
P Je0,0nyH(G))

where M is the Hardy-Littlewood maximal function.

If Y'(¢) is decreasing on y 7(G;), write

e} e} — 0 -
fo lo(s - 0)|uy(0) dt = /0 (8(=s + 0| (~0) dit = / 8(=s - 0)| B (0) d,

—00

where g denotes the reflection of g. Notice that (EEj(t) is nonnegative and decreasing on
~P(Gj) and ||¢y)ll;1 < 1. Similarly,

1 -
= / 4 lg(s =T (@®)| dt < CMg(~s).
P Jte(0,01ny~1(G))

For j = 1, Y(¢) and y(¢) are increasing on y~1(G;) and R*, respectively. Then, P(¢) is
increasing on G, that is, P'(¢) > 0. According to (2.1), %|p1| < P'(t) < 2|py|; furthermore,
%lpllt < P(t) <2|p:|t for t € G;. Therefore, combining the convexity of y, we have

1

o (0,7 (pH)INP(G1)

dt
|g(s—t)|m

1 dt
<= , lg(s - 0| £
07 Jte0,21p11y (0)1N21p11G1 2

sy (v 12lp| )
) (=% (&)
<— s——— =7 <CMgpu| —s |,
P! Jie0,4y (pi)nac, ¢ 2 Y (y=41) £l |p1
where g\%u(t) :g(%).

By the L”-boundedness of M, we complete the proof of Lemma 3.3.

Page 10 of 14
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3.2.2.2 The case of odd y We decompose vy as vi; = Vg, + My, where mm;(€,1) =
Eﬁ(pké)ﬁ}(}(o, n). Therefore,

+ . (3.16)

s‘@*Zﬁk}*ﬂu)

k<i

‘CIDi * Z vk * f ()

k<i

D% Y i * f(w)

k<i

For ®; » )", _, Urj * f, note that

CDi*ﬁ}gj*f(u):/

k.
[elep” Iy,

! /R [ =y — ) — by 5 Dx (= )]f (5 — Py (1)) dy .
For k < i, ®; = ®; - Dy, we have

/R[d%(x —y) = @i x Dr(x-y)]f (55— P(r(0)) dy = 0.
Similar to the case of even y, we obtain

sup
i€

< CW) (). (3.17)

D%y 0y f(u)

k<i

For the second term in the right-hand side of (3.16),

) ().

D; x ka,,» * f(u)

< C(sup
k<i =

e

sup
i€’

> i f
k<i

Then, we get the estimate

ZI’I’I](J‘ *f

k<i

Sug|Ai,jf(M)| < C|:(./\Gf)*(u) + (sup

IS

) () + (Hc,f)*(u)]-
By Lemma 3.3 and the L”-boundedness for H,, we just need to prove that

sup
i€’

ka,,» *f

k<i

<Clfllrr, 1l<p<oo. (3.18)

HU’

To obtain (3.18), we denote the set {(£,7) : [|pjly/ (o)™ < [l < [Ip;ly/(p)]7} by L,
and define projection operators Si; by S/kl\f =f- X1 Then, we use the following majoriza-

tion:

Z I’l’lkd' *f

k<i

> m Sl+kf‘ <> Ef, (3.19)

sup
€L ke<i leZ

e

<D _sup

lez '€

where Ejif = (3" Imi; * Siif12)2.
We will prove that for j € J and [ € Z,

IEsifllzr < Cllflle,  1<p<oo, (3.20)
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and

IELfll2 < CoMIf 2. (3.21)

(3.19) and interpolation between (3.20) and (3.21) give (3.18).
To prove (3.20), we use the fact sup;; |my; * f(u)] < CNif)*(u), Lemma 3.3 and
Lemma 2.3,

<Z|mk,,-*sl+kf|2)2H SCH (Z |Sl+kf|2>2H < Clfllze-
s r

keZ kel

I Esif llzr = ‘

For (3.21), by Plancherel theorem,

IEf12, =) fL F@)| i) de.

keZ ¥ Flikj

So, it suffices to show

|gj(¢)| < p™ for¢ € Lyjand e Z. (3.22)
By (2.1), we have
—~ i k dt .
|9;(0,m)| = ’ / (e 1) —| < Clpilinly’ (o). (3.23)
[t|€ly,;

On the other hand, by (2.1) and the convexity of y,

IP(y (0"t)) | = %ijliyi‘l(pkt)y/(pkt)pk > %ijly"(pk)'
By the argument similar to that in the proof of Proposition 3.2, we obtain

15500, m| < CInllply’ (o)) (3.24)
Notice that |®()| < 1. (3.23) and (3.24) imply

|71c;(8)] < Cmin{[Ipy1Inly/ ()] 1111y (05*1) ). (3.25)
For ¢ € Ly, by (3.25) and the convexity of y, we have

Y (pk)

[m(0)] < Ipilinly (0*) < C—=F < Cp™, 1=
Y/ (p**)
and
) B J( Hk+I+1
|71550)| = CIpslInly (04)] lfc% =Cpl, 1<0.

This ends the proof of (3.22).
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3.2.3 LP-estimates for sup,.y | B;f |
For fixed j € J, ZkeZ XAy = C;, where C; are positive integers less than 5. Then

Z Vk,j * def = Cj_l Z Tk,}' (Z W}j * lelf) = C]._l Z Tk}jHIfo.

k>i k>i leZ. k>i
Therefore,
sup|B Sl < Csup 6 - ®; )*ZTk,HGf < C(sup ZTk/HG,f > (3.26)
i€’

k>i k>i

For operators 7—[11_, by Lemma 2.2 and Lemma 2.3, we have

172
|76/ = | D Ti# v+ Tuf ’ <G (Z v, Tuf|2)
leZ p leZ w
1/2
o (Z |T1,1f|2> < Gollf v, (327)
leZ L
where we have used the fact that sup,.z |vi; * f| < Mgf.
Finally, Lemma 2.2, (3.26) and (3.27) give
sup1B.fl| < Clfllr, 1<p<oc.
i€ v
3.2.4 IP-estimates for sup;.y |C;f |
The last term can be decomposed as
sup |Cif | = sup|(8 — @;) Z Verij % (L = Tiai))f | < ZPk/ (3.28)
i€Z i€Z
where

Prif =sup|(8 = ;) % veyij * (T = Tri))f |-
i€l

Set T]*f = Supyez | Tiif |, then, Prf < C(Mgf + Mg, Tj*f)*. By the L”-boundedness of

MGj and Lemma 2.2, we obtain

1Peifllr < Clif e, 1<p<oo. (3:29)

On the other hand, for p = 2, Plancherel theorem and Proposition 3.2 imply

IPafit =Y [ -8 Pl Fof de

e {éAkH]
itk g | 72170 1|2
SC/Z,IZJ/O e ") de
i1<p!

< CpIf 172 (3.30)
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Interpolation between (3.29)-(3.30) and (3.28) gives

Higga,jﬂ“w <Clfllw, 1<p<oo.
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