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Abstract
The Hilbert transform along curves is defined by the principal value integral. The
pointwise existence of the principal value Hilbert transform can be educed from the
appropriate estimates for the corresponding maximal Hilbert transform. By using the
estimates of Fourier transforms and Littlewood-Paley theory, we obtain
Lp-boundedness for the maximal Hilbert transform associated to curves (t,P(γ (t))),
where 1 < p <∞, P is a real polynomial and γ is convex on [0,∞). Then, we can
conclude that the Hilbert transform along curves (t,P(γ (t))) exists in pointwise sense.
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1 Introduction
For n ≥ , let � : R → R

n be a curve in R
n with �() = . To � we associate the Hilbert

transformH which is defined as a principal value integral

Hf (u) = p.v.
∫
R

f
(
u – �(t)

)dt
t
,

where u ∈R
n and f ∈ C∞

 (Rn). Similarly, one can define the corresponding maximal func-
tion and the maximal Hilbert transform as

Mf (u) = sup
h>


h

∫ h

–h

∣∣f (u – �(t)
)∣∣dt

and

H∗f (u) = sup
ε>

∣∣∣∣
∫

|t|≥ε

f
(
u – �(t)

)dt
t

∣∣∣∣.
The Lp-boundedness for the Hilbert transform H and the maximal function M above

have been well studied by many scholars. See [] for a survey of results through .
More recent results can be found in [, , –].
Appropriate estimates for the maximal Hilbert transform give the pointwise existence

of the principal value Hilbert transform. So, we focus on the Lp-bounds for the maxi-
mal Hilbert transformH∗ in this paper. Let us state some previous theorems to establish

© 2012 Liu; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.journalofinequalitiesandapplications.com/content/2012/1/191
mailto:hhliu@hpu.edu.cn
http://creativecommons.org/licenses/by/2.0


Liu Journal of Inequalities and Applications 2012, 2012:191 Page 2 of 14
http://www.journalofinequalitiesandapplications.com/content/2012/1/191

the background for our current work. The first result about H∗ is the work of Stein and
Wainger (see []).

Theorem .
(A) If � is a two-sided homogeneous curve in R

n, then

∥∥H∗f
∥∥
Lp ≤ C‖f ‖Lp ,  < p <∞.

(B) Assume that for small t, �(t) lies in the subspace spanned by {�(j)()}∞j=. Then the
maximal Hilbert transform

H∗
 f (u) = sup

<ε≤

∣∣∣∣
∫

ε≤|t|≤
f
(
u – �(t)

)dt
t

∣∣∣∣
is bounded from Lp(Rn) to itself,  < p <∞.

For n =  and �(t) = (t,γ (t)), Córdoba and Rubio de Francia considered the case γ ∈
C(R) and γ () = γ ′() = , with the following properties:

(i) γ is biconvex, i.e., |γ ′(t)| is decreasing in (–∞, ) and increasing in (,∞);
(ii) |γ ′| has doubling time, i.e., there exists a constant λ >  such that |γ ′(λt)| ≥ |γ ′(t)|;
(iii) γ is balanced, by which we mean the following: there exists k >  such that

|γ (k–t)| ≤ |γ (–t)| ≤ |γ (kt)| for every t > .
They proved the following theorem in [].

Theorem . Under the assumptions (i), (ii) and (iii) on the γ , the maximal Hilbert trans-
formH∗ is a bounded operator in Lp(R) for  < p <∞.

In this note, we consider the curve � with the form �(t) = (t,P(γ (t))), where P(t) is a
real-valued polynomial of t in R, γ satisfies

γ ∈ C[,∞), convex on [,∞), even or odd on R, and γ () = . (.)

Definition . A function f : R → R belongs to C, if there exists a constant λ >  such
that f (λt) > f (t) for t ∈ R. It is also said that f has doubling time.

For this case, Bez obtained the Lp-boundedness ofH andM in [].

Theorem . Suppose that P is a polynomial, γ satisfies (.) and γ ′() ≥ . If �(t) =
(t,P(γ (t))),  < p <∞, and either () P′() is zero, or () P′() is nonzero and γ ′ ∈ C, then

‖Hf ‖Lp ≤ C‖f ‖Lp and ‖Mf ‖Lp ≤ C‖f ‖Lp .

Moreover, the constant C depends only on p, γ and the degree of P.

Remark . If P′() = , P(γ (t)) is “more convex” than γ (t) in some sense, then � is “con-
vex” enough for the Lp-boundedness of M and H. In the case P′() 
= , the linear term
P′()t of P(t) cannot improve the convexity of γ . To obtain the Lp-boundedness for asso-
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ciated operators, one needs to pose additional condition(s) on γ , that is, γ ′ ∈ C. For more
details, see [] and [].

Motivated by Bez’s result above, we obtain the Lp-boundedness forH∗. More precisely,
we prove the following theorem.

Theorem . Suppose that P is a polynomial, γ satisfies (.) and γ ′() ≥ . If �(t) =
(t,P(γ (t))), and either () P′() is zero, or () P′() is nonzero and γ ′ ∈ C, then

∥∥H∗f
∥∥
Lp ≤ C‖f ‖Lp ,  < p <∞.

Moreover, the constant C depends only on p, γ and the degree of P.

Remark . Let P(t) = t. Comparing those conditions for γ in Theorem ., we find that
conditions inTheorem . are stricter. Butwe should note that P(γ (t))may be a nonconvex
function.

The convexity of the polynomial P is important for our main result. P has different con-
vexity in different intervals, which suggests thatH∗ will be decomposed according to the
properties of P. The decay of associated multipliers is essential for the proof of Theo-
rem .. This set of techniques originated from the work [] and []. Notice that H∗ is
a nonlinear operator, Minkowski’s inequality cannot be used as in Section  of [], the
linearization method is invoked to treat it. Similarly, the essential Proposition . in [] is
useless for themaximal Hilbert transform. Littlewood-Paley theory and interpolation the-
orem are effective tools to treat those problems. Those ideas are due to the contribution
of Córdoba, Nagel, Vance, Wainger, Rubio de Francia.
The organization of our paper is as follows. In Section , we list some key properties

concerning the polynomial and give some lemmas for the proof of the main result. The
Lp-estimates forH∗ will be proved in Section .

2 Preliminaries
Without loss of generality, we suppose that P(t) =

∑d
k= pktk , where d ≥ . Let z, z, . . . , zd

be d-complex roots of P ordered as

 = |z| ≤ |z| ≤ · · · ≤ |zd|.

Let A be a positive constant which will be chosen in Lemma .. Define Gj = (A|zj|,
A–|zj+|] if it is nonempty for  ≤ j < d and Gd = (A|zd|,∞). Let J = {j : Gj 
= ∅}, then
(,∞) \ ⋃

j∈J Gj can be decomposed as
⋃

k∈KDk , where Dk is the interval between two
adjacent Gj. It is obvious that Dk is disjoint. Then, we can decompose (,∞) as

(,∞) =
⋃
j∈J

γ –(Gj)∪
⋃
k∈K

γ –(Dk),

where γ –(I) is the inverse image of a subset I restricted in (,∞).
The properties of P on Dk and Gj are important for our proof. The following related

lemma can be found in [] and [].

http://www.journalofinequalitiesandapplications.com/content/2012/1/191
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Lemma . There exists a number Cd >  such that for any A≥ Cd and any j ∈ J ,
(i) |P(t)| ∼ |pj||t|j for |t| ∈Gj ;
(ii) P′(t)

P(t) >  for t ∈Gj , P′(t)
P(t) <  for –t ∈Gj ;

(iii) | P′(t)
P(t) | ∼ 

|t| for |t| ∈ Gj ;
(iv) P′′(t)

P(t) >  and P′′(t)
P(t) ∼ 

t for |t| ∈Gj , j ∈ J \ {}.

The following fact can be induced from the proof of Lemma . (see []), that is, we can
choose A >  such that, for |t| ∈Gj,

∣∣P(t)∣∣ ≤ |pj||t|j and


j|pj||t|j– ≤ ∣∣P′(t)

∣∣ ≤ j|pj||t|j–. (.)

Let λ be the doubling constant for γ ′, define ρ = max{,λ}. Let I be a subset of (,∞),
x, s ∈R and u = (x, s),HI andMI are given by

HI f (u) =
∫

|t|∈γ –(I)
f
(
x – t, s – P

(
γ (t)

))dt
t
,

and

MI f (u) = sup
k∈Z


ρk

∫
|t|∈γ –(I)∩(ρk ,ρk+]

∣∣f (x – t, s – P
(
γ (t)

))∣∣dt.
For j ∈ J and k ∈ Z, we define cones in R

 by

�k,j =
{
ζ = (ξ ,η) :




|pj|
(
γ j)′(

ρk) < |ξ |
|η| < |pj|

(
γ j)′(

ρk+), ξ ,η ∈R

}
,

and the corresponding projection operators by T̂k,jf = f̂ ·χ�k,j . Then, we have the following
lemma which is Lemma  in [].

Lemma . For j ∈ J and  < p <∞, we have
(i) ‖(∑k∈Z |Tk,jf |)  ‖Lp ≤ Cp‖f ‖Lp ;
(ii) ‖∑

k∈ZTk,jfk‖Lp ≤ Cp‖(∑k∈Z |fk|)  ‖Lp ;
(iii) ‖ supi∈Z |∑k≥i Tk,jf |‖Lp ≤ Cp‖f ‖Lp .

The bootstrap argument (see []) plays an important role in the proof of themain result,
so we present the following well-known result which can be found in [] and [].

Lemma . Suppose that Ukf = uk ∗ f is a sequence of positive operators uniformly
bounded in L∞, and U∗f = supk∈Z |uk ∗ f | is bounded in Lq for  < q <∞, then

∥∥∥∥
(∑

k∈Z
|Ukfk|

) 

∥∥∥∥
Lp

≤ Cp

∥∥∥∥
(∑

k∈Z
|fk|

) 

∥∥∥∥
Lp

for p > q
+q .

http://www.journalofinequalitiesandapplications.com/content/2012/1/191
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3 Proof of Theorem 1.6
Let K and J be given as in Section , then

H∗f (u) ≤
∑
k∈K

sup
ε>

∣∣∣∣
∫

|t|∈γ –(Dk )∩{t≥ε}
f
(
x – t, s – P

(
γ (t)

))dt
t

∣∣∣∣
+

∑
j∈J

sup
ε>

∣∣∣∣
∫

|t|∈γ –(Gj)∩{t≥ε}
f
(
x – t, s – P

(
γ (t)

))dt
t

∣∣∣∣
:=

∑
k∈K

H∗
Dk
f (u) +

∑
j∈J

H∗
Gj f (u).

Note that K and J are finite sets, it suffices to show thatH∗
Dk

andH∗
Gj are L

p-bounded,
respectively.

3.1 The Lp-boundedness forH∗
Dk

Let ε(u) be some measurable function from R
 to R

+ such that

H∗
Dk
f (u)≤ 

∣∣∣∣
∫

|t|∈γ –(Dk )∩{t≥ε(u)}
f
(
x – t, s – P

(
γ (t)

))dt
t

∣∣∣∣. (.)

By Minkowski’s inequality, we can control the Lp-norm ofH∗
Dk
f by

(∫
R

∣∣∣∣
∫

|t|∈γ –(Dk )∩{t≥ε(u)}
f
(
x – t, s – P

(
γ (t)

))dt
t

∣∣∣∣p du
) 

p

≤
∫

|t|∈γ –(Dk )

(∫
R

∣∣f (x – t, s – P
(
γ (t)

))∣∣p du) 
p dt
|t|

≤ ‖f ‖Lp
∫

γ –(Dk )

dt
t
. (.)

Let Dk = (A–|zj|,A|zj+m|] for some ≤ j ≤ d and ≤ m ≤ d – j, then

A–|zj| ≤ A–|zj+| ≤ A|zj| ≤ · · · ≤ A|zj+m| < A–|zj+m+|

and

A ≤ A|zj+m|
A–|zj| ≤ A|zj+m|

A–m|zj+m| ≤ Am+.

Notice that γ is convex and γ () = , so γ (t)≤ tγ ′(t) for t > . Thus,

∫
γ –(Dk )

dt
t

=
∫ γ –(A|zj+m|)

γ –(A–|zj|)
dt
t
=

∫ A|zj+m|

A–|zj|
dt

γ –(t)γ ′(γ –(t))

≤
∫ A|zj+m|

A–|zj|
dt
t

≤ d lnA, (.)

where γ –(t) is the inverse function of γ (t).

http://www.journalofinequalitiesandapplications.com/content/2012/1/191
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(.), (.) and (.) yield
∥∥H∗

Dk
f
∥∥
Lp ≤ C‖f ‖Lp for  < p <∞,k ∈K.

3.2 The Lp-boundedness forH∗
Gj

For j ∈ J and k ∈ Z, set Ik,j = (,ρ]∩ ρ–kγ –(Gj) and define measures νk,j by

〈νk,j,ψ〉 =
∫

|t|∈Ik,j
ψ

(
ρkt,P

(
γ
(
ρkt

)))dt
t

for ψ ∈ S(R). For any ε > , there exists k ∈ Z such that ρk ≤ ε < ρk+. Then∣∣∣∣
∫

|t|∈γ –(Gj)∩{t≥ε}
f
(
x – t, s – P

(
γ (t)

))dt
t

∣∣∣∣
≤ 

ρk

∫
|t|∈γ –(Gj)∩(ρk ,ρk+]

∣∣f (x – t, s – P
(
γ (t)

))∣∣dt
+

∣∣∣∣∣
∞∑

k=k+
νk,j ∗ f (u)

∣∣∣∣∣.
Therefore,

H∗
Gj f (u)≤MGj f (u) + sup

i∈Z

∣∣∣∣∣
∞∑
k=i

νk,j ∗ f (u)
∣∣∣∣∣.

By the Lp-boundedness of MGj (see []), it suffices to consider the latter term. Let � ∈
S(R) such that �̂(ξ ) =  for |ξ | ≤  and �̂(ξ ) =  for |ξ | ≥ . Write �̂i(ξ ) = �̂(ρ iξ ) and
denote by � convolution in the first variable. For i ∈ Z, the truncated Hilbert transform
can be decomposed as

∑
k≥i

νk,j ∗ f = �i �

(
HGj f –

∑
k<i

νk,j ∗ f
)
+ (δ –�i) �

∑
k≥i

νk,j ∗ Tk,jf

+ (δ –�i) �
∑
k≥i

νk,j ∗ (I – Tk,j)f =:Ai,jf +Bi,jf + Ci,jf ,

where δ is the Dirac measure in R, and I is the identity operator. Then, we just need to
estimate supi∈Z |Ai,jf |, supi∈Z |Bi,jf | and supi∈Z |Ci,jf |, respectively.
The decay of ν̂k,j(ζ ) is important for the boundedness of threemaximal operators above.

Essentially, estimates for ν̂k,j in the following subsection have been proved in [].We repeat
them just for completeness.

.. Fourier transform estimates of νk,j
Before the proof of Proposition ., we need the following lemma which is Lemma .
in [].

Lemma . For all j ∈ J \ {}, the function

t �→ P′′(γ (
ρkt

))
γ ′(ρkt

) + P′(γ (
ρkt

))
γ ′′(ρkt

)
is singled-signed on Ik,j .

http://www.journalofinequalitiesandapplications.com/content/2012/1/191
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Proposition . For j ∈ J and k ∈ Z, if ζ /∈ �k,j , then

∣∣ν̂k,j(ζ )∣∣ ≤ C
(
ρk|ξ |)–.

Proof For fixed ζ = (ξ ,η), let hk(t) = ρktξ + ηP(γ (ρkt)), then

∣∣ν̂k,j(ζ )∣∣ ≤
∣∣∣∣
∫
t∈Ik,j

e–ihk (t) dt
t

∣∣∣∣ +
∣∣∣∣
∫
t∈–Ik,j

e–ihk (t) dt
t

∣∣∣∣ := E(ξ ,η) + F(ξ ,η).

Case . j ∈ J \ {}. If ζ /∈ �k,j and |ξ | > |pj|(γ j)′(ρk+)|η|, for |t| ∈ Ik,j, (.) implies

∣∣h′
k(t)

∣∣ ≥ ∣∣ρkξ
∣∣ – ∣∣ρkP′(γ (

ρkt
))

γ ′(ρkt
)
η
∣∣ ≥ 


ρk|ξ |. (.)

Note that h′
k(t) is monotone on Ik,j, this fact follows from Lemma .. By Van der Corput’s

lemma and (.), we get E(ξ ,η)≤ C(ρk|ξ |)–.
If γ is even, then F(–ξ ,η) = E(ξ ,η). If γ is odd, Lemma . still holds for t ∈ –Ik,j, F(ξ ,η)

can be considered in the same way. Then, we have

∣∣ν̂k,j(ζ )∣∣ ≤ E(ξ ,η) + F(ξ ,η)≤ C
(
ρk|ξ |)–. (.)

If ζ /∈ �k,j and |ξ | < 
 |pj|(γ j)′(ρk)|η|. In the same way, for |t| ∈ Ik,j, we have

∣∣h′
k(t)

∣∣ ≥ ∣∣ρkP′(γ (
ρkt

))
γ ′(ρkt

)
η
∣∣ – ∣∣ρkξ

∣∣ ≥ 


|pj|
(
γ j)′(

ρkt
)
ρk|η| ≥ Cρk|ξ |. (.)

In the same way as above, we can get

∣∣ν̂k,j(ζ )∣∣ ≤ C
(
ρk|ξ |)–.

Case . j = . If ζ /∈ �k, and |ξ | > |p|γ ′(ρk+)|η|, (.) still holds for |t| ∈ Ik,. By inte-
grating by parts,

E(ξ ,η) =
∣∣∣∣
∫
Ik,

e–ihk (t)h′
k(t)

dt
h′
k(t)t

∣∣∣∣
≤ 

(
ρk|ξ |)– + ∫

Ik,

|h′
k(t) + th′′

k (t)|
[th′

k(t)]
dt

≤ C
(
ρk|ξ |)– + ∫

Ik,

|h′′
k (t)|

h′
k(t)

dt.

Essentially, we just need to consider the second term, which can be dominated by

∫
Ik,

ρk|η||P′(γ (ρkt))|γ ′′(ρkt)
h′
k(t)

dt +
∫
Ik,

ρk|η||P′′(γ (ρkt))|γ ′(ρkt)

h′
k(t)

dt := α + α.

In order to estimate the term α, we define ϕk(t) = ρkt|ξ | + |p|γ (ρkt)|η|, then ϕ′
k(t) =

ρk|ξ | + |p|ρkγ ′(ρkt)|η|. By (.), for t ∈ Ik,, it is obvious that

∣∣ϕ′
k(t)

∣∣ ≤ 


ρk|ξ | ≤ Ch′
k(t). (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/191
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On the other hand, for t ∈ Ik,,

∣∣ϕ′
k(t)

∣∣ ≥ ρk|ξ | – |p|ρkγ ′(ρkt
)|η| ≥ 


ρk|ξ |. (.)

Further, by (.), for t ∈ Ik,,

ϕ′′
k (t) = |p|ρkγ ′′(ρkt

)|η| ≥ 

ρk|η|∣∣P′(γ (

ρkt
))∣∣γ ′′(ρkt

)
. (.)

Thus, combining (.), (.) and (.), we have

α ≤ C
∫
Ik,

ϕ′′
k (t)

ϕ′
k(t)

dt ≤ C
(
ρk|ξ |)–. (.)

For α, by (.),

α ≤ C
∫
Ik,

∣∣P′′(γ (
ρkt

))∣∣γ ′(ρkt
)
ρk ρk|η|γ ′(ρk+)

h′
k(t)

dt

≤ C
(|p|ρk|ξ |)– ∫

G

∣∣P′′(t)
∣∣dt. (.)

Note that G can be split into a finite number of disjoint intervals such that P′′ is singled-
signed on each interval. Suppose that [s, s] is such an interval and P′′ ≥  by (.), then∫
[s,s] |P′′(t)|dt = P′(s) – P′(s)≤ C|p|. So α ≤ C(ρk|ξ |)–.
If (ξ ,η) /∈ �k, and |ξ | ≤ 

 |p|γ ′(ρk)|η|, (.) holds for |t| ∈ Ik,. The same arguments
used above imply

E(ξ ,η)≤ C
(|p|ρkγ ′(ρk)|η|)– + ∫

Ik,

|h′′
k (t)|

h′
k(t)

dt ≤ C
(
ρk|ξ |)– + α + α,

where α and α are as previous ones. For ϕk above, we have




|p|ρkγ ′(ρkt
)|η| ≤ ∣∣ϕ′

k(t)
∣∣ ≤ 


|p|γ ′(ρkt

)
ρk|η| ≤ h′

k(t). (.)

Thus, (.) and (.) give

α ≤ C
∫
Ik,

ϕ′′
k (t)

ϕ′
k(t)

dt ≤ C
(|p|ρkγ ′(ρk)|η|)– ≤ C

(
ρk|ξ |)–. (.)

For α, by (.) and (.),

α ≤ C
∫
Ik,

ρk|η||P′′(γ (ρkt))|γ ′(ρkt)

[|p|ρkγ ′(ρkt)|η|] dt

= C
∫
Ik,

|p|–ρk∣∣P′′(γ (
ρkt

))∣∣γ ′(ρkt
) 
|p|ρkγ ′(ρkt

)|η| dt

≤ C
(|p|ρkγ ′(ρk)|η|)– ∫

G
|p|–

∣∣P′′(t)
∣∣dt

≤ C
(
ρk|ξ |)–. (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/191
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F(ξ ,η) can be treated in the same way as in Case . Thus, (.), (.), (.) and (.)
imply

∣∣ν̂k,j(ξ ,η)∣∣ ≤ C
(
ρk|ξ |)–. �

.. Lp-estimates for supi∈Z |Ai,jf |
... The case of even γ By a linear transformation, we have

�i �
∑
k<i

νk,j ∗ f (u)

=
∑
k<i

∫
|t|∈ρkIk,j


t

∫
R

�i(x – y – t)f
(
y, s – P

(
γ (t)

))
dydt

=
∑
k<i

∫
|t|∈ρkIk,j


t

∫
R

[
�i(x – y – t) –�i(x – y)

]
f
(
y, s – P

(
γ (t)

))
dydt.

Note that � ∈ S , then for any N > ,
∣∣∣∣�i �

∑
k<i

νk,j ∗ f (u)
∣∣∣∣

≤
∫

|t|∈(,ρi]∩γ –(Gj)


|t|

∫
R

|t|ρ–i

ρ i( + ρ–i|x – y|)N
∣∣f (y, s – P

(
γ (t)

))∣∣dydt
≤

∫
R

ρ–i

( + |ρ–ix – ρ–iy|)N

ρ i

∫
|t|∈(,ρi]∩γ –(Gj)

∣∣f (y, s – P
(
γ (t)

))∣∣dt dy
≤ C(Njf )�(u),

where f �(x, s) is the Hardy-Littlewood maximal function acting on f (y, s) in the first vari-
able andNj is given by

Njg(s) = sup
i∈Z


ρ i

∫
t∈(,ρi]∩γ –(Gj)

∣∣g(s – P
(
γ (t)

))∣∣dt.
Thus, we obtain

sup
i∈Z

∣∣Ai,jf (u)
∣∣ ≤ C

[
(Njf )�(u) + (HGj f )

�(u)
]
.

If we can show that Nj is Lp-bounded, according to the Lp-boundedness of HGj (see []),
we will get

∥∥∥sup
i∈Z

|Ai,jf |
∥∥∥
Lp

≤ C‖f ‖Lp ,  < p <∞. (.)

So, it suffices to prove the following result.

Lemma . For j ∈ J ,Nj is a bounded operator in Lp(R),  < p <∞.

Proof We denote P(γ (t)) by ϒ(t) for short, then ϒ(t)′ = P′(γ (t))γ ′(t). Note that there is
no root of P(s) in Gj, that is, P(s) is singled-signed. For t ∈ γ –(Gj), γ (t) ∈ Gj, by () of
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Lemma ., P′(γ (t)) is also singled-signed on γ –(Gj). By γ ′()≥  and the convexity of γ ,
γ ′(t) >  for t > . Then,ϒ(t) ismonotonous on γ –(Gj). On the other hand, by Lemma .,
for j ∈ J \ {}, ϒ(t)′ is monotonous on γ –(Gj).
Suppose that ϒ(t) is increasing on γ –(Gj), then


ρ i

∫
t∈(,ρi]∩γ –(Gj)

∣∣g(s –ϒ(t)
)∣∣dt = 

ρ i

∫
t∈(,ϒ(ρi)]∩P(Gj)

∣∣g(s – t)
∣∣ dt
ϒ ′(ϒ–(t))

:=
∫ ∞



∣∣g(s – t)
∣∣φi,j(t)dt.

For j ∈ J \ {}, if ϒ ′(t) is increasing on γ –(Gj), then, for i ∈ Z, φi,j(t) is nonnegative and
decreasing on P(Gj). Furthermore, note that

∫ ∞


φi,j(t)dt ≤ 

ρ i

∫
t∈(,ϒ(ρi)]

dt
ϒ ′(ϒ–(t))

= .

Therefore, for i ∈ Z, we have


ρ i

∫
t∈(,ρi]∩γ –(Gj)

∣∣g(s –ϒ(t)
)∣∣dt ≤ CMg(s),

whereM is the Hardy-Littlewood maximal function.
If ϒ ′(t) is decreasing on γ –(Gj), write

∫ ∞



∣∣g(s – t)
∣∣φi,j(t)dt =

∫ ∞



∣∣g̃(–s + t)
∣∣φ̃i,j(–t)dt =

∫ 

–∞

∣∣g̃(–s – t)
∣∣φ̃i,j(t)dt,

where g̃ denotes the reflection of g . Notice that φ̃i,j(t) is nonnegative and decreasing on
–P(Gj) and ‖φ̃i,j‖L ≤ . Similarly,


ρ i

∫
t∈(,ρi]∩γ –(Gj)

∣∣g(s –ϒ(t)
)∣∣dt ≤ CMg̃(–s).

For j = , ϒ(t) and γ (t) are increasing on γ –(G) and R
+, respectively. Then, P(t) is

increasing on G, that is, P′(t) > . According to (.), 
 |p| ≤ P′(t) ≤ |p|; furthermore,


 |p|t ≤ P(t)≤ |p|t for t ∈G. Therefore, combining the convexity of γ , we have


ρ i

∫
t∈(,ϒ(ρi)]∩P(G)

∣∣g(s – t)
∣∣ dt
ϒ ′(ϒ–(t))

≤ 
ρ i

∫
t∈(,|p|γ (ρi)]∩|p|G

∣∣g(s – t)
∣∣ dt

 |p|γ ′(γ –(|p|–t))

≤ 
ρ i

∫
t∈(,γ (ρi))∩G

∣∣∣∣g
(
s – t|p|



)∣∣∣∣ dt
γ ′(γ –(t))

≤ CMg |p |


(


|p| s
)
,

where g |p |

(t) = g( |p|t

 ).
By the Lp-boundedness ofM, we complete the proof of Lemma .. �
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... The case of odd γ We decompose νk,j as νk,j = ν̃k,j + mk,j, where m̂k,j(ξ ,η) =
�̂(ρkξ )ν̂k,j(,η). Therefore,

∣∣∣∣�i �
∑
k<i

νk,j ∗ f (u)
∣∣∣∣ ≤

∣∣∣∣�i �
∑
k<i

ν̃k,j ∗ f (u)
∣∣∣∣ +

∣∣∣∣�i �
∑
k<i

mk,j ∗ f (u)
∣∣∣∣. (.)

For �i �
∑

k<i ν̃k,j ∗ f , note that

�i � ν̃k,j ∗ f (u) =
∫

|t|∈ρkIk,j


t

∫
R

[
�i(x – y – t) –�i ∗ �k(x – y)

]
f
(
y, s – P

(
γ (t)

))
dydt.

For k < i, �̂i = �̂i · �̂k , we have

∫
R

[
�i(x – y) –�i ∗ �k(x – y)

]
f
(
y, s – P

(
γ (t)

))
dy = .

Similar to the case of even γ , we obtain

sup
i∈Z

∣∣∣∣�i �
∑
k<i

ν̃k,j ∗ f (u)
∣∣∣∣ ≤ C(Njf )�(u). (.)

For the second term in the right-hand side of (.),

sup
i∈Z

∣∣∣∣�i �
∑
k<i

mk,j ∗ f (u)
∣∣∣∣ ≤ C

(
sup
i∈Z

∣∣∣∣∑
k<i

mk,j ∗ f
∣∣∣∣
)�

(u).

Then, we get the estimate

sup
i∈Z

∣∣Ai,jf (u)
∣∣ ≤ C

[
(Njf )�(u) +

(
sup
i∈Z

∣∣∣∣∑
k<i

mk,j ∗ f
∣∣∣∣
)�

(u) + (HGj f )
�(u)

]
.

By Lemma . and the Lp-boundedness forHGj , we just need to prove that

∥∥∥∥sup
i∈Z

∣∣∣∣∑
k<i

mk,j ∗ f
∣∣∣∣
∥∥∥∥
Lp

≤ C‖f ‖Lp ,  < p <∞. (.)

To obtain (.), we denote the set {(ξ ,η) : [|pj|γ j(ρk+)]– ≤ |η| ≤ [|pj|γ j(ρk)]–} by Lk,j
and define projection operators Sk,j by Ŝk,jf = f̂ ·χLk,j . Then, we use the followingmajoriza-
tion:

sup
i∈Z

∣∣∣∣∑
k<i

mk,j ∗ f
∣∣∣∣ ≤

∑
l∈Z

sup
i∈Z

∣∣∣∣∑
k<i

mk,j ∗ Sl+kf
∣∣∣∣ ≤

∑
l∈Z

El,jf , (.)

where El,jf = (
∑

k∈Z |mk,j ∗ Sl+kf |)  .
We will prove that for j ∈ J and l ∈ Z,

‖El,jf ‖Lp ≤ C‖f ‖Lp ,  < p <∞, (.)
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and

‖El,jf ‖L ≤ Cρ–|l|‖f ‖L . (.)

(.) and interpolation between (.) and (.) give (.).
To prove (.), we use the fact supk∈Z |mk,j ∗ f (u)| ≤ C(Njf )�(u), Lemma . and

Lemma .,

‖El,jf ‖Lp =
∥∥∥∥
(∑

k∈Z
|mk,j ∗ Sl+kf |

) 

∥∥∥∥
Lp

≤ C
∥∥∥∥
(∑

k∈Z
|Sl+kf |

) 

∥∥∥∥
Lp

≤ C‖f ‖Lp .

For (.), by Plancherel theorem,

‖El,jf ‖L =
∑
k∈Z

∫
Ll+k,j

∣∣̂f (ζ )∣∣∣∣m̂k,j(ζ )
∣∣ dζ .

So, it suffices to show

∣∣m̂k,j(ζ )
∣∣ ≤ ρ–|l| for ζ ∈ Ll+k,j and l ∈ Z. (.)

By (.), we have

∣∣ν̂k,j(,η)∣∣ =
∣∣∣∣
∫

|t|∈Ik,j

(
e–iηP(γ (ρkt)) – 

)dt
t

∣∣∣∣ ≤ C|pj||η|γ j(ρk+). (.)

On the other hand, by (.) and the convexity of γ ,

∣∣P(
γ
(
ρkt

))′∣∣ ≥ 

|pj|jγ j–(ρkt

)
γ ′(ρkt

)
ρk ≥ 


|pj|γ j(ρk).

By the argument similar to that in the proof of Proposition ., we obtain

∣∣ν̂k,j(,η)∣∣ ≤ C
[|η||pj|γ j(ρk)]–. (.)

Notice that |�̂(ζ )| ≤ . (.) and (.) imply

∣∣m̂k,j(ζ )
∣∣ ≤ Cmin

{[|pj||η|γ j(ρk)]–, |pj||η|γ j(ρk+)}. (.)

For ζ ∈ Ll+k,j, by (.) and the convexity of γ , we have

∣∣m̂k,j(ζ )
∣∣ ≤ |pj||η|γ j(ρk+) ≤ C γ j(ρk+)

γ j(ρk+l)
≤ Cρ–l, l ≥ ;

and

∣∣m̂k,j(ζ )
∣∣ ≤ C

[|pj||η|γ j(ρk)]– ≤ C γ j(ρk+l+)
γ j(ρk)

≤ Cρ l, l < .

This ends the proof of (.).
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.. Lp-estimates for supi∈Z |Bi,jf |
For fixed j ∈ J ,

∑
k∈Z χ�k,j = Cj, where Cj are positive integers less than . Then

∑
k≥i

νk,j ∗ Tk,jf = C–
j

∑
k≥i

Tk,j

(∑
l∈Z

νl,j ∗ Tl,jf
)
:= C–

j
∑
k≥i

Tk,jHI
Gj f .

Therefore,

sup
i∈Z

|Bi,jf | ≤ C sup
i∈Z

∣∣∣∣(δ –�i) �
∑
k≥i

Tk,jHI
Gj f

∣∣∣∣ ≤ C
(

sup
i∈Z

∣∣∣∣∑
k≥i

Tk,jHI
Gj f

∣∣∣∣
)�

. (.)

For operatorsHI
Gj , by Lemma . and Lemma ., we have

∥∥HI
Gj f

∥∥
Lp =

∥∥∥∥∑
l∈Z

Tl,j ∗ νl,j ∗ Tl,jf
∥∥∥∥
Lp

≤ Cp

∥∥∥∥
(∑

l∈Z
|νl,j ∗ Tl,jf |

)/∥∥∥∥
Lp

≤ Cp

∥∥∥∥
(∑

l∈Z
|Tl,jf |

)/∥∥∥∥
Lp

≤ Cp‖f ‖Lp , (.)

where we have used the fact that supl∈Z |νl,j ∗ f | ≤MGj f .
Finally, Lemma ., (.) and (.) give

∥∥∥sup
i∈Z

|Bi,jf |
∥∥∥
Lp

≤ C‖f ‖Lp ,  < p <∞.

.. Lp-estimates for supi∈Z |Ci,jf |
The last term can be decomposed as

sup
i∈Z

|Ci,jf | = sup
i∈Z

∣∣∣∣∣(δ –�i) �
∞∑
k=

νk+i,j ∗ (I – Tk+i,j)f
∣∣∣∣∣ ≤

∞∑
k=

Pk,jf , (.)

where

Pk,jf = sup
i∈Z

∣∣(δ –�i) � νk+i,j ∗ (I – Tk+i,j)f
∣∣.

Set T∗
j f = supk∈Z |Tk,jf |, then, Pk,jf ≤ C(MGj f +MGjT∗

j f )�. By the Lp-boundedness of
MGj and Lemma ., we obtain

‖Pk,jf ‖Lp ≤ C‖f ‖Lp ,  < p <∞. (.)

On the other hand, for p = , Plancherel theorem and Proposition . imply

‖Pk,jf ‖L ≤
∑
i∈Z

∫
ζ /∈�k+i,j

∣∣ – �̂
(
ρ iξ

)∣∣∣∣ν̂k+i,j(ζ )∣∣∣∣̂f (ζ )∣∣ dζ

≤ C
∫
R

∑
i:≤ρi|ξ |

∣∣ρ i+kξ
∣∣–∣∣̂f (ζ )∣∣ dζ

≤ Cρ–k‖f ‖L . (.)
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Interpolation between (.)-(.) and (.) gives
∥∥∥sup
i∈Z

|Ci,jf |
∥∥∥
Lp

≤ C‖f ‖Lp ,  < p <∞.
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