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1 Introduction and preliminaries
In [1] and [2], the authors investigated a Sobolev space on the dual of the Laguerre hyper-
group and a generalized Besov space on the Laguerre hypergroup. In this paper, we define
a Sobolev space on the Laguerre hypergroup by the Bessel potential. Then, we define a
Besov space by the real interpolation of a Sobolev space and prove that our definition is a
generalization of that given in [1]. For the completeness, we also study a Triebel-Lizorkin
space on the Laguerre hypergroup.

We first give some notations about the Laguerre hypergroup. Let K = [0,00) x R

equipped with the measure

1
dmy(x,t) = ———x*Vdxdt, «>0.
al(a +1)

We denote by L% (K) the spaces of measurable functions on K such that [flla,p < +00, where

|Lf”ot,p = (/I(V(x’ t)|p dmy (x, t))p¢ 1<p<oo,

I ller,00 = €SSSUP (. ek [f(x, t)i
For (x, ) € K, the generalized translation operators T((zi) are defined by

T/ 049
o OZJTf(,/x2 +y% +2xycosO,s+t+xysind)dd, ifa=0,

£ 02” folf(\/x2 + 92+ 2xyrcos6,s + t + xyrsin@)r(l - r})*tdrdf, ifa>0.
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It is known that T((zi) satisfies
()
| T .y < 1 Ny )

Let M,(K) denote the space of bounded Radon measures on K. The convolution on M;(K)

is defined by

et - [ T 0,0 o).

Kx

Itis easy tosee that uxv = vk . Iff, g € LL (K) and w = fim,, v = gmy, then v = (f xg)my,

where f g is the convolution of functions f and g defined by

(f % @)(x, 1) = /K T (3,580, ~5) dma (3, 5).

The following lemma follows from (1).

Lemmal Letf € LL(K) and g € IL(K), 1 < p < co. Then

If * gllap < I1f a1 lIgla,p-

(K, *,i) is a hypergroup in the sense of Jewett (cf. [4, 9]), where i denotes the involu-
tion defined by i(x, t) = (x,—£). If @ = n — 1 is a nonnegative integer, then the Laguerre hy-

pergroup K can be identified with the hypergroup of radial functions on the Heisenberg

group H".
The dilations on K are defined by

8-(x,8) = (rx, rzt), r>0.

It is clear that the dilations are consistent with the structure of the hypergroup. Let

Flt) = r-@“*@f(’—‘, %). 2)
rr

Then we have

"ﬂ”ot,l = ”f”oz,b

We also introduce a homogeneous norm defined by |(x, £)| = (x* + 4t2)% (cf. [11]). Then we

can define the ball centered at (0, 0) of radius 7, i.e., the set B, = {(x, ) € K: |(x,£)| < r}.

Let f € LL (K). Set x = p(cos)?, t = 1p?sin6. We get

/ flx,t)dmg(x,t)
K

1 3 oo 1
= m/ / f(p(COSQ)%, ipzSin0>p2a+3(cose)adpd9'
- 0

s
2
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If f is radial, i.e., there is a function v on [0, 00) such that f(x, t) = ¥ (|(x, £)|), then

— 1 % o oo 20+3
/Kf(x,t)dma(x,t)— T @D _%(cosé) d@/o Y (p)p***dp
)
= o+ d .
2ﬁr(a+1)r(§+1)/o Y (p)p™dp
Specifically,
(et
ma(B,) = 5 st

dy/m(a+2)(a+1I(5 +1)

We consider the partial differential operator

<a2 200+1 0 232>
L=- + —+x .

3x2 x ox a2

3)

(4)

L is positive and symmetric in L2 (K), and is homogeneous of degree 2 with respect to the

dilations defined above. When « = n — 1, L is the radial part of the sublaplacian on the

Heisenberg group H". We call L the generalized sublaplacian.

Let L% be the Laguerre polynomial of degree m and order o defined in terms of the

generating function by
> (@) 1 xS
,;S Ly (x) = mexp(—;).
For (A, m) € R x N, we put

m!T (o +1)
———¢

iVt —Lnx2
Oom) (%, t) = Tomvas it p= g Ml LEZ)(MMZ)'

The following proposition summarizes some basic properties of functions ¢ ).

Proposition 1 The function ¢, ) satisfies
(ﬂ) ”w(k,m) ”a,oo = </’(x,m)(0: 0) =1
(B) P 6 )P0, 955) = Ty Pl 9 5),
(©) Logmy = 4M(m + 1) @p,m).

Let f € LL(K), the generalized Fourier transform of f is defined by
Fom) = [ 050101050 3,0,
K
It is easy to know that

(f % )" (\, m) = f (0., m)G(A, m)

and

ﬁ()»,m) =f(r2)», m).

(5)
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Let dy, be the positive measure defined on R x N by

“ Im+a+1)

/I{xNg()\" Vl’l) d)’a()», m) = 2_:0 m Rg()\., m)|)\|01+1 d)\“

Write IZ (K) instead of L?(R x N, dy,). We have the following Plancherel formula:

llaz = Il 2@ f € Lb(K) N L2(K).

Then the generalized Fourier transform can be extended to the tempered distributions.

We also have the inverse formula of the generalized Fourier transform

fla,t) = A Nf‘(k,M)m,m)(x,t)dya()\,M)

provided f € L! (K).

In the following, we give some basic properties about the heat kernel whose proofs can
be found in [7]. Let {H*} = {e~*L} be the heat semigroup generated by L. There is a unique
smooth function A((x, t), s) = hs(x, ) on K x (0, +00) such that

Hf(x,t) =f * hy(x, £).

We call 4, the heat kernel associated to L. We have

A a+l
hy(x, £) = / : e—%kcolh(2As)x2 &M
r \ 2 sinh(2As)

and
hy(x,t) < Cs @25 1@

where A is a constant.

Let S(K) be the Schwartz space of functions 1 : R — C even with respect to the first
variable, C* on R? and rapidly decreasing together with all their derivatives, ie., for all
k,p,q € N we have

gr+a

axP ot

./\/f/;,/q(lﬂ) = sup {(1 a0+ tz)k
(

x,t)eK

¥(x, t)‘ } < 00.

Assume V is a function defined on R x N. Then let A_W(X,0) = W (A, 0) and for m > 1,
A_ WA, m)=W(A,m)— VA, m-1).

We write

A VA, m)=V(A,m+1)—- V(A m),
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then we define the following differential operators:

AW (A, m) = ﬁ(mmA_xp(x,m) +(a+ 1AW (A, m))

and

AW (A, m) = ;—i((a +m+ )AL WA, m) + mA_W (A, m)).

S(R x N) is the space of functions ¥ : R x N — C satisfying
(i) forall m,p,q,r,s €N, the function

1)\ 2\’
)»l—))»p(|)»|(m+a+ )) A{<A2+ﬁ> W, m)

is bounded and continuous on R, C* on R and such that the left and the right
derivatives at zero exist;

(ii) for all k,p,q € N, we have

Vipa(W) = sup {(1 + Az(l + mz))k
(A, m)ERXN

A} (Az + %)q\L’(A,m) } < 0.
D(R x N) is the subspace of S(R x N) of functions V¥ satisfying the following:

(i) there exists my € N such that W(A,m) = 0, for all (A, ) € R x N such that m > m,.

(ii) for all m < my, the function A > W(A,m) is C* on R, with compact support and

vanishes out of a neighborhood of zero.

In the following, we introduce some basic notation about the real and complex interpo-
lation, more about these can be found in [3].

The real interpolation includes K-method and /-method. We first give the K-method
as follows: let X and Y be two Banach spaces, then for any u € X + Y, denote

K(t,u)= min (Jullx + tally)

and

[e9) dt 1/q
lulloqx = </ (K, u))q7> )
0

where 1 < g < oo. The K-method of real interpolation consists in taking Ky ,(X, Y) to be
the set of all # in X + Y such that ||u||g,5,x < 00.

The J-method of real interpolation is defined as follows: forany u e X N Y, let
J(t, ) = max(||ullx, tluly).

Then, u is in Jy 4(X, Y) if and only if it can be written as

o dt
u= /O~ V(t)T,
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where v(t) is measurable with value in X N Y and such that

oo 1/
dD(v):( f t‘ﬁq(](t,v(t)))q?> s
0

The norm of u is ||u]lg,gy := inf, P(v).

The complex interpolation consists in looking at the space of analytic functions f with
values in X + Y defined on the open strip 0 < 91Z < 1 and continuous on the closed strip
0 <MZ <1, and such that f(iy) is bounded in X, f(1 + iy) is bounded in Y. We define the
norm

111 = max sup /(i)
y

osup|lf+iy)] Y}.
y

For 0 < 6 <1, one defines [X, Y]y = {z € X + Y}, with the norm [|u| = infr@)-, I|If]].

The paper is organized as follows. In Section 2, we will investigate Sobolev spaces on K.
A Besov space and a Triebel-Lizorkin space will be studied in Section 3 and Section 4
respectively.

Throughout the paper, we will use C to denote the positive constant, which is not nec-

essarily the same at each occurrence.

2 Sobolev spaces on K
In this section, we will study a Bessel potential space on the Laguerre hypergroup K.
Let s € R. Then the Bessel potential on K is defined by

+00
J = (1+L)_TS = F(%)/ (51t gt gy
0

It is easy to prove that the Bessel potentials satisfy the following semigroup property: J5J* =
Jttand J7"J5 = J¥ where s,t € R, m € N and s > m1.

The Bessel potentials also satisfy the following property.

Proposition 2 The Bessel potential J* : L5(K) — L5(K) is bounded, where s > 0 and 1 <
p =00

Proof Let1 < p < oo and f € L5(K). Then

(]sf)(x,r)zF(%> /K /0 - LD Ty, Df (9, ~1) dt dmy (3,1). (6)

Since

S R S
r(; / / £ e T iy, 1) dt dmg (x, 7)
K

0

:I‘<£>/ t(%)—le—t/ T((;:z)ht(y,l)dma(x,r)dt
2/ Jo K

5r(5>/ £t [ 1,9, 0) dime (x, 7) dit
2 0 K

Sl)
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J* : IE(K) — L5(K) is bounded for s > 0 and 1 < p < oo follows from (6). This gives the
proof of Proposition 2. d

Now, we define the Bessel potential space on K.

Definition1 For1 <p <00, s € R, we define the Bessel potential space W),(K) as follows:

If s > 0, then W;(K) is the collection of all functions f € L% (K) such that f = J*k for some
h e I5(K) with the norm |[f||W; = [|4la,ps

If s < 0, then W;(K) is the collection of all distributions f € &'(K) such that f = ="} for
some /1 € WPZ”‘”(K), where m € N with 2m + s > 0, and |[f||W; = IIhIIWI§m+s;

If s = 0, then W;(K) =I5(K).

Remark 1
(1) When s> 0and 1< p <00, we call Wj(K) the Sobolev space on K.
(2) ltis easy to know that the definition of the space W),(K) with s < 0 is independent
of m.

In the following, we prove that the spaces W, (K) are complete.

Proposition 3 The Bessel potential spaces W;(K), where 1 < p < 0o and s € R, are com-
plete.

Proof 1f s > 0, let {f,} be a Cauchy sequence in W (K), then {/~%f,} is a Cauchy sequence
in L5 (K). So there exists g € L% (K) such that

||]’an —g”ap —-0, n— oo
Therefore,

1 =relvs = -2l,, > 0 n—o0.
By Proposition 2, J°g € I5(K). This proves that W,(K) is complete with s > 0 and
l<p=oo.

If s <0, let {f,} be a Cauchy sequence in W;(K), then there exists a sequence {/,} in
W2"+(K) such that f, = J">"h, and Wfllwg = ||h,,||W3m+s. Therefore, {/,} is a Cauchy se-
quence in sz’”*s(l(). Following from the case of s > 0, there exists /1 € sz’””(l() such that

17,, —h||W3m+s -0, n— oo
Since i € W"**(K), we have 7"k € W3(K) and

Ifen =77%"h| ws = 172" 1y = 72" h | wy = Wn = hlygznes = 0, 11— oo,

Therefore, W, (K) is complete with s < 0.
If s = 0, the result is obvious. This completes the proof of Proposition 3. d

The Bessel potential space satisfies:
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Proposition 4 Lets,t € Rand 1 < p < oo, we have
(1) If s>t then W,(K) © W/;(K);
2) J5: W;(K) — W;“(K) is an isomorphism;
(3) (Wy(K)) = W,*(K), where % + 1} =1

Proof We will give the proof of the case s > 0, the other cases can be proved similarly.
(1) Letf € W;(K). Then there exists 4 € L% (K) such that

f=U+L)3h=(+L)y 2 +L) " Th
Since s > t, by Proposition 2, J** is bounded on L% (K). Therefore, (I + L)"7h e LK),
then f € W;(K). This proves W,(K) € W;(K).
(2) For f € W}f(K), there exists 4 € L% (K) such that f = (I + L)’%h. Therefore,
Jf=U+Ly3f =+ L)% he W(K)
and

175 | wrt = Mllap = 1f Ml

(3) For f € W;(K) and g € Wp‘,s(K), there exist /1 € L5(K), hy € W;,m‘s (K) such that f =
Johy, g = J7¥"hy. Since hy = J*"~hs, where h3 € Lﬁ/(K), we have

(f.g) = °hi, ] " ha) = F°h, ] ).
By the part (2) that we have proved, we have
(fg) = /"1, ] *hs) = (J**hy, hi3).

Note J2h, € L2(K), hs e L2 (K), we can get W,*(K) € (W;(K)).
For the reverse, let T € (W;(K))’, then there exists C > 0 such that

ITfl < Cllflhwg,  f € Wo(K).

For any & € L§(K), let f = J*h, then | TJ*h| < C|lhlla,p, i.€., TJ* € (L5 (K))'. Therefore, there
exists g € 4, (K), such that

17 = [ s 000 b5, = [ s 070, 0) o 0,0
- /K 5, 0200 ) o 3, 2) = /K Pl 250, dma ().
Since /%3 € L% (K), let k = J(/*g) e W,*(K), then
If = 3 f(x, Ok(x, ) dmg (x, £).

Therefore, (W;(K))’ C W[;S (K). We complete the proof of Proposition 4. O
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3 Besov space on K
In this section, we will define a Besov space on K by the real interpolation of the Bessel

potential spaces.

Definition 2 p € L'(R x N) is called a Fourier multiplier on L% (K) if the convolution
(F1p) *f € LL(K) for all f € L (K) and

lplla, = sup [(F™p)*f],, <o
\f

| ”o{,p:l

where 1 < p < co. The linear space of all such p is denoted by M, the norm on M, is

- llag,-
We have the following property about the Fourier multiplier on L% (K).

Proposition 5 If p € M), then p, € My, and ||p;llm, = ||plls, where 1 < p < 0o and
(A, m) = p(r*x, m).

Proof 1t is easy to prove
<J—_-—1 ) ( t)_ —(2a+4)(f—1 ) Q_C i
pr) < ft) =1 p)efi( )

Therefore,

_ Qa+4)(p-1)

[F o) 2l =7 [(Fp) 2,

Qa+4)(p-1)
By ”f% ”a,p =r r ”f”a,p’ we get

_ Qat+4)(p-1)
lorllag, = sup ([(F7 o) S|, =77 sup [(F70) %1,

Ifllap=1 fllap=1

= sup [(F7p) =gl =0l
lgllap=1

_ (2a+4)(p-1) . .
where g =r ?» — f1. This proves Proposition 5. d

Let ® € D(R x N) satisfy supp ® = {(A, m) : 272 < |A| < 4,m < mo} and ¢(k, m) > 0, for
272 < |A| < 4, m < mg. Then, for m < my, let

(A, m)
fos oo @(27FA, m)

(p()hr WZ) =

and ¢ (A, m) = 0 for m > mg, we have
(i) suppg = {(A,m):272 < |A| < 4,m < my};
(i) @A, m)>0,for 272 < |A| < 4, m < my;
(ili) Y32 (2%, m) =1, for A #0, m < my.
We define functions ¢ and ¥ on K by (For)(h,m) = (2721, m), (Fy)(A,m) =1 -
> 52, 9(272%), m). Then, we have:
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Lemma 2 Letf € S'(K) and assume ¢ x f € [5(K), where1 <p < oo and s € R. Then

o s, < €2l flaps

where k > 1.
If Y * f € I5(K), then

17w« f],, < Clv *fllap-

a,p —
Proof For k € N, we have

=1

Qrxf =Y (Pror % 9k % f).

=1

Therefore, it is sufficient to prove that
| 7P i) [y, =27

By
F o rat) ) = (1+ 1|2 +2 + 4im)) "2 (2726403, )

and Proposition 5, we know that the above function has the same norm in M), as the func-

tion
9 (keDs (926D 4 |30 + 2 + dim)) 2 (A, m).
Then Lemma 2 gives
2003 (226D 4 131200 + 2 + 4mm)) 2 @, ) | m, <C2°F.

Since ¥ xf = (¥ + ¢1) * ¥ * f, we just need to prove F(J*/) € M,,. Let [ > "‘T*z. Then

/K 5 (a, 1) i, 1)

= / [P (x, )| dime (x,8) + / [Py (x, 1) dima (x, 1)
It 1 Ieso<1

:[1 +12.

Let A=Ay +2(Ay + %), then by the Holder inequality,

L= / (*+ 4t2)_l (" + 4t2)’ [y (x, 8)| dime (x, 0)
IGe) 151

=y : 2 2 :
< (/ (" +482) " dmg(x, t)> </ (" +482) 7 [Py (x,0)|” dmg (%, t))
lGe8)1>1 |G 0)l1>1

1
2

- ( / (x* + 46%) ™ dim, (v, t)> ’ ( / | FYAF () 1) dmg (a, t))
x0)[1>1 ll(x0)l1>1
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Since [ > "‘T"z, by the Plancherel theorem,

1
2

I < c(/R N|(A1Jf( ) (%, m)|2dya(k,m))

Since A'F(J*¢) € L2(R x N), we get [ < 00.

Now, we estimate I,

1

b< dmat)) r ’tzda’t)z
2 <A(x,,;)§l m (x )) <A(X’t)§1} I/f(x )‘ m (x )

§C< / !f(]sw)u,m)\zdya(x,m)) :
RxN

Since F(J*¢) € L2(R x N), we get I, < co. Therefore, /'y € LL(K) and Lemma 2 is
proved. d

Definition 3 Fors€R,1 < p < oo and 1 < g < 00, we define the Besov space Bjqu(l() as
B (K)={f € S'(K): |fI, < oo},

where

15, = 19 % fllap + (Z(zsknwk *fna,p)q) :

k=1

Remark 2 By Theorem 3.4.2 in [3], we know B;,q(K) is complete withs e R, 1 < p < 00

and1 < g < oo.

In the following, we prove that our definition coincides with Definition 4.1 in [1] for

$s>0,1<p<ocandl1=<g<oo.

Theorem1 Letl <p, g <00, s € R. Then we have
By, (K) = Ky ¢ (W} (K), W} (K)),

where s = (1—6)so +0s1, 0 <0 <1, 89,81 € Rand sy #s1.

Proof Letf € Ky q(W,°(K), W,'(K)) and put f = fy +fi, f; € W, (i =0,1). By Lemma 2,

”(/)k *f”ot,p < ”(/)k *f()”ot,p + ||<Pk *fl”ot,p
= CR I hl,, + 27 A L,)-

So

”¢k *f”ot,p < C2*50k1<(2(50,sl)k’f)‘
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This shows

1
00 a
(Z(zskngok *fna,p)q) < CIf o guc-

k=1

Similarly, we can prove

1 * fllap < CK(L,f) < Cllf llo,g:x-
Therefore,

1£115,, < Clif llo,gx-
This proves

B, (K) € Ky, (W, (K), W3H(K)).
By Lemma 2 again, we have

26707 (200K, g s f) < C2 1ok f Nl
and

JL g f) < CllY #fllaps
where

fEeKoq( W0 (K), W! (K)).

By Lemma 3.2.1 in [3], we know that J(¢,f) is increasing with respect to . Therefore,

e ( /0 * 76 f)),,%%

< ](1,@( *f) + (Z(Z(S_SO)k](z(SO_SI)kY(pk *f))q>

k=1

oo

< CllY #fllapp + C<Z(2sk||<pk *fna,p)’f)

k=1
= CI[fII;’q < 00.

By Theorem 3.3.1 in [3], we know that J(¢,f) is equivalent to K(¢,f). So

Wfllo.gx < Clifllo,qs < 00.
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Since

f=vxf+) ocxf

k=1

it is sufficient to prove

Yaf+ Y gixf € W(K) + WiH(K).
k=1

Assume s < $1, then
W;O (K) + W;l (K) = W;O (K).

By Lemma 2, we have

o]

Z§0k *f

k=1

Il = 19 F o +

‘W;G

o0
< c(nw #fllap + Y 2507925 g *fna,p)

k=1

< I, < oo
This gives the proof of Theorem 1. O

We have the following version of the Calderén reproducing formula on K, the proof is
standard (cf. [6]).

Lemma 3 Let ¢ € S(K) and satisfy
/ o(x, t) dmgy (x,t) = 0.
K
For f € §'(K) satisfying
fxp.— 0 inS'(K), asr — +00,

we have

4 dr
/ S xorxop(x, t)7 — flxt) inS'(K),

when € — 0 and A — +00.

Remark 3 When f € L5 (K) for 1 < p < +00, it is easy to prove that f satisfies the condition

of Lemma 3.
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Theorem 2 Let1 <p, g <ooands>0. Then
LE(K)N A (K) = B;,  (K),
where 1'\;, ,(K) is the generalized homogeneous Besov-Laguerre type space defined in [1].

Proof By the Theorem 3.13 in [1],
L2(K) N A;’q(l() c B (K).
Conversely, let f € B,  (K), then by Lemma 2,

lox *fllap < ClY *fllap, Kk <O.

Thus, for s > 0,

1

(Z(zsknwk *fna,p)q) "< ClY Sl

k<0

When s > 0, it is easy to prove f € L4(K) for f € B, ,(K). By Remark 3 and Lemma 3, we
have f € [\;,q(l(). Therefore,

LE(K)N A (K) = B, (K).
This completes the proof of Theorem 2. g

By Theorem 1 and Theorem 2, we know our definition coincides with the Definition 4.1
in[1] for1 <p,g<ooands>0.

By the properties of the Bessel potential space and the real interpolation, we can get
the following properties about the Besov space, which are similar to those of the classical

Besov space.

Proposition 6
(1) If s1 < 85, then By (K) C Byy(K), s1,80 € R 1 < p, g < 00.
(2) If1 <q1 <q < 00, then B;,ql(K) CB,,, (K), wherese R, 1 < p < o0.
(3) B;'l C W; CB;loo,seR, l1<p<oo.
(4) (B;’q(l())/ = B;{q, (K,seR1<p<oo 1l<g<oo
(5) J¢ :B;,q(l() — B;f; (K) is a linear bounded one-to-one operator.
(6) By (K) CByqy(K),1<p<pi<00,1<q=q1 <0055 R s 202 =5 — 222,
4 Triebel-Lizorkin space on K
In this section, we will define a Triebel-Lizorkin space on K by the complex interpolation
of the Bessel potential space and the Besov space. Then, we study some basic properties

about the Triebel-Lizorkin space on K.
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Definition 4 Let 1< p, g < 0o and s € R. Then the Triebel-Lizorkin space on K is defined
by

F (K) = {f € S'(K): ||f g5, < o0},

where

fllEs,, = H <Z|2’f>w/ )

ap

In order to give an equivalent norm for F, q(K), we need the following Lemma (cf. [8]).

Lemma 4 Let h(A,m) be a (["‘T*l] + 1) times differentiable function on R? and satisfy

‘(A1 + 2<A2 + %))lh(x,m) < Cj((4m + 2 +2)[2])”7

forj=0,12,..., [%] +1, and T be an operator defined by T?(A, m) = h(A, m)]?()\, m). Then
T is bounded on L% (K), where 1 < p < oo.

The proof of the following lemma can be found in [5].

Lemma5 Letsc Rand {r,(t)} be the Rademacher functions (cf. [10]). Then for every p,
with 1< p < oo andt € [0,1], we have constants Ay, Ay such that IIJ-"I(méf)Ha,p <Ailfllaps

i=12,
o0 % )
(A, m) = X():Z’Sr (t)(l +4<m + T)Ml) 9 (27, m)
j
and

-1

my (A, m) (Z(p 22’A m )

Proof Since ¢ € S(R x N), it is easy to prove

0 j oa+1 E .
A1 +2 A2+a mi(A,m) < Cj| 4| m + Al) . j=12,....

Then, Lemma 5 follows from Lemma 4. O

By Lemma 5, we can prove

Theorem 3 Ifse R and1 < p < oo, we have

IVFllw; ~ , feW(K).

<Z|2jsf*¢’i|2>

Jj=0

ap

Page 15 0of 19
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Proof For f € W,(K), there exists g € L5 (K) such that f = J*g. Therefore,

H (Z ri(0)2°f % <ﬂ/) = H (Z ()2 g ‘Pz‘)
j=0 a,p j=0

ap
g* (Z Tj t)zjs]s‘P/)
j=0 a,p
By Lemma 5,
o0
H (Z’"j(t)zlsf*(ﬂj) < Aulgllap = Arllf llwg.-
j=0 ap
Then
1 oo
/ <Z 7’/(t)217*<,01) dt < Aqlf llws.
0 i
j=0 ap
Following from the inequality (44) in [10],
1
o0 2
H (Z|2fy*<p,|2> ri(O)25f % ;| dt
j=0 ap j=0 ap
1| 4
<C / Y rO)2f x gy .
S = ap
Thus
1
[ee] 2
'S 2
H(ZIZ’f*<p;|> < Cllf llwg-
j=0 ap

For the reverse, let f = /g, k = ]:’1(2;:0 @(27%, m)2g), by Lemma 5 again,

gy = HF'I[(i 270, m ) <Z§0 27%,m )g(,\,m)]

j=0

Ft (i 2792, m g(r, m))

<A = Az [Ikllap-

a,p

Since

1Kl = sup / Ko, )12, £) i (3,2,
K

lltlle,g=<1

where }7 + é =1, we can choose pu € L% (K) such that litlle,q =1 and

1
/ K Dl O (5,0) = 5 Kl
K

o,p

7)

(8)

Page 16 of 19
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Let w(x, t) = S u(x,t) € W/q‘s(K). Then

—

F sy, m) = () o) (7=12) oy 1) = 200, ) (o )
Therefore,
g = 18y = C | Ko ats ), 3,0
K

=C |  kG,m)i(r, m)dyy(n,m)
RxN

C/RXN (x, m)(Zgo '\, m) (A,m)) dyy (X, m)

- . s -2j
—C/RXNFZO 2f(h, m)e 2771, m))

X (2 ’Sﬁ/(k,m)<p(2_2/k, m))} dyy (A, m)

=C /K D @5 % ), 0) (27 (W 0)) (x, 1)) | dima (x, 1)
j=0

%0 3
(Z 27w <p,|2>

Jj=0

(Z 2°If ‘/’j|2)

j=0

a,p a,q

By (8),

o }
H (Z 27w x <ij2>

j=0

= Gliwlwgs = Calltllag = Co-

a,q

Thus

Ifllwg < C

(Z 28f ¢/|2)

Jj=0

a,p

Then Theorem 3 follows from (8) and (9).
The following lemma has been proved in [12].

Lemma 6 LetlfPo,P1<oo,0<«9<16md%:%+i.

(1) If{Ao, A1} is an interpolation couple, then

[Lpo (AO)erl (Al)]9 = Lp([AO;Al]H)'

(2) IfA;, j=1,2,... are Banach spaces and

y(A)) = Ya:a={a;}},a; € Aj llall,a) = (ZII&I,II”)

j=0

1
p
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wherel < p < 00 and {A;, B}, j = 1,2,... are interpolation couples, then we have
[l (A)): 1y (B))], = (1A, Byl)-
Now we can prove the main result of this section.

Theorem 4 Letl<p, g<ooandsecR. Then

B, (K) = [W;3 (1), By, , (19)],,

_ 1_16_,06 1_10_6
where sg,81 € R, 1 < pg, p1 < 00, 0<9<1,S—(1—9)S0+9S1,6l}’1d1—7 =t =3 tor
Proof By Theorem 1 and Theorem 3, it is sufficient to prove

1 1 1
0 5 2 [e'e} 1 00 q
, . » . p
j=0 a,po j=0 ap 46 j=0 ap

Let A; = 2%0C, B; = 21C, where C is the set of complex numbers. Then, by Lemma 6, we
can get our theorem (cf. [12]). O

By the properties of the Sobolev space and the Besov space, we can get the following

properties of the Triebel-Lizorkin space on K.

Proposition 7

(1) Let1<p<oo,1l<qo<q <00, s€R Then
F;,qo(K) - Fijql(K).

(2) Letl<p<oo,1<qg<q1 <00, €>0. Then Fyo (K) C F o (K).

(3) Letl<p<oo,1<g<oo,s€R Then

(K) € F},(K) € B,y ) (-

S
pmin{p,q} ,max{p,q}

(4) W;(K) = F;,Z(K), l<p<oo seR

s I _ p-s 1,1 _
(5) (Fp'q(l()) = Fp,)q,(l(), where 1< p, g <00, s € Rand 5ty = 1,

1 =1
)4 q :

+

_ =
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