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1 Introduction
In , the stability problem of functional equations originated from the question of
Ulam [, ] concerning the stability of group homomorphisms. The famous Ulam sta-
bility problem was partially solved by Hyers [] in Banach spaces. Later, Aoki [] and
Bourgin [] considered the stability problem with unbounded Cauchy differences. Ras-
sias [–] provided a generalization of Hyers’ theorem by proving the existence of unique
linear mappings near approximate additive mappings. On the other hand, Rassias [,
] considered the Cauchy difference controlled by a product of different powers of norm.
The above results have been generalized by Forti [] andGǎvruta [], who permitted the
Cauchy difference to become arbitrary unbounded. Gajda and Ger [] showed that one
can get analogous stability results for subadditive multifunctions. Gruber [] remarked
that Ulam’s problem is of particular interest in probability theory and in the case of func-
tional equations of different types. Recently, Baktash et al. [], Cho et al. [–], Gordji
et al. [–], Lee et al. [, ], Najati et al. [, ], Park et al. [], Saadati et al. []
and Savadkouhi et al. [] have studied and generalized several stability problems of a large
variety of functional equations.
The most famous functional equation is the Cauchy equation

f (x + y) = f (x) + f (y),

any solution of which is called additive. It is easy to see that the function f :R → R defined
by f (x) = cx, where c is an arbitrary constant, is a solution of the functional equation

f (x + y) + f (x – y) = f (x) + f (y). (.)
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Thus it is natural that each equation is said to be a quadratic functional equation. In par-
ticular, every solution of the quadratic equation (.) is said to be a quadratic function.
Lee et al. [] considered the following functional equation:

f (x + y) + f (x – y) = f (x + y) + f (x – y) + f (x) – f (y). (.)

The functional equation (.) clearly has f (x) = cx as a solution when f is a real valued
function of a real variable. So, it is said to be a quartic functional equation.
Before we present our results, we introduce here some basic facts concerning quasi-β-

normed space and preliminary results. Let β be a real number with  < β ≤ , and K be
eitherR orC. LetX be a linear space overC. A quasi-β-norm ‖ ·‖ is a real-valued function
on X satisfying the following:
() ‖x‖ ≥  for all x ∈ X and ‖x‖ =  if and only if x = ;
() ‖λx‖ = |λ|β · ‖x‖ for all λ ∈R and x ∈ X ;
() There is a constant K ≥  such that ‖x + y‖ ≤ K(‖x‖ + ‖y‖) for all x, y ∈ X .

Then (X,‖·‖) is called a quasi-β-normed space if ‖·‖ is a quasi-β-normonX. The smallest
possible K is called themodule of concavity of ‖ · ‖. A quasi-β-Banach space ia a complete
quasi-β-normed space.
A quasi-β-norm ‖ · ‖ is called a (β ,p)-norm ( < p ≤ ) if ‖x + y‖p ≤ ‖x‖p + ‖y‖p for all

x, y ∈ X. In this case, a quasi-β-Banach space is called a (β ,p)-Banach space.
In [], Tabor investigated a version of the Hyers-Rassias-Gajda theorem in quasi-

Banach spaces. For further details on quasi-β normed spaces and (β ,p)-Banach space,
we refer to the papers [–].
In this paper, we consider the following functional equations:

f
(√

x + y
)
= f (x) + f (y), (.)

f
(√

x + y
)
+ f

(√∣∣x – y
∣∣) = f (x) + f (y), (.)

and discuss the generalized Hyers-Ulam-Rassias stability problem in quasi-β-normed
spaces and then the stability by using subadditive and subquadratic functions for the func-
tional equations (.) and (.) in (β ,p)-Banach spaces.

2 Stability of radical functional equations
Using an idea of Gǎvruta [], we prove the generalized stability of (.) and (.) in the
spirit of Ulam, Hyers and Rassias.
In [], Khodaei et al. proved the following result:

Lemma . Let X be a real linear space and f : R → X be a function. Then we have the
following:
() If f satisfies the functional equation (.), then f is quadratic.
() If f satisfies the functional equation (.), then f is quartic.

Proof We will only prove (). Letting x = y =  in (.), we get f () = . Setting x = –x in
(.), we have

f
(√

x + y
)
+ f

(√∣∣x – y
∣∣) = f (–x) + f (y) (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/186


Kim et al. Journal of Inequalities and Applications 2012, 2012:186 Page 3 of 13
http://www.journalofinequalitiesandapplications.com/content/2012/1/186

for all x, y ∈ R. If we compare (.) with (.), we obtain that f (–x) = f (x) for all x ∈ R.
Letting y = x in (.) and then using f () =  and the evenness of f , we have f (

√
x) = f (x)

for all x ∈ R. Putting y =
√
x in (.) and using f (

√
x) = f (x), we get f (

√
x) = f (x) for

all x ∈ R. By induction, we lead to f (
√
nx) = nf (x) for all x ∈ R and n ∈ Z+. We obtain

f ( x√
n ) =


n f (x), and so f (

√
m
n x) =

m

n f (x) for all x ∈R andm,n ∈ Z+. So, we have

f (
√
rx) = rf (x) (.)

for all x ∈ R and all r ∈ Q+. Replacing x and y by x + y and x – y in (.) respectively, we
obtain

f
(√

x + y
)
+ f

(√|xy|) = f (x + y) + f (x – y) (.)

for all x, y ∈ R. Setting y =
√
x + y in (.) and using the evenness of f , we get

f
(√

x + y
)
– f

(√
x + y

)
= f (x) – f (y) (.)

for all x, y ∈ R. Putting x = x in (.) and using (.), we get

f
(√

x + y
)
+ f

(√|xy|) = f (x + y) + f (x – y) (.)

for all x, y ∈ R. Setting x =
√
x in (.) and using (.), we get

f
(√

x + y
)
– f

(√
x + y

)
= f (x) – f (y) (.)

for all x, y ∈ R. It follows from (.), (.), (.) and (.) that

f
(√

x + y
)
+ f

(√|xy|) = f (x + y) + f (x – y) + f (x) – f (y) (.)

for all x, y ∈R. So it follows from (.) and (.) that f satisfies (.). Therefore, f is quartic.
This completes the proof. �

Let X be a quasi-β-Banach space with the quasi-β-norm ‖ · ‖X and K be the modulus
of concavity of ‖ · ‖X . Let φ,ψ :R →R+ ∪ {} be functions. A function f :R→X is said
to be φ-approximatively radical quadratic if

∥∥f (√x + y
)
– f (x) – f (y)

∥∥
X ≤ φ(x, y) (.)

and a function f :R→X is said to be ψ-approximatively radical quartic if

∥∥f (√x + y
)
+ f

(√∣∣x – y
∣∣) – f (x) – f (y)

∥∥
X ≤ ψ(x, y) (.)

for all x, y ∈ R.
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Theorem . Let f : R → X be a φ-approximatively radical quadratic function with
f () = . If a function φ :R →R+ ∪ {} satisfies

φ̂(x) :=
∞∑
j=

(
K
β

)j(
φ
(


j
 x, 

j
 x

)
+ φ

(


j+
 x, 

))
< ∞

and limn→∞ 
βn φ( n

 x,  n
 y) =  for all x, y ∈ R, then the limit F (x) := limn→∞ 

n f (
n
 x)

exists for all x ∈R and a function F :R →X is unique quadratic satisfying the functional
equation (.) and the inequality

∥∥f (x) –F (x)
∥∥
X ≤ K

β
φ̂(x) (.)

for all x ∈ R.

Proof Replacing x and y by x+y√
 and x–y√

 in (.) respectively, we get

∥∥∥∥f (√x + y
)
– f

(
x + y√



)
– f

(
x – y√



)∥∥∥∥
X

≤ φ

(
x + y√


,
x – y√



)
(.)

for all x, y ∈ R. It follows from (.) and (.) that

∥∥∥∥f (x) + f (y) – f
(
x + y√



)
– f

(
x – y√



)∥∥∥∥
X

≤ K
(

φ(x, y) + φ

(
x + y√


,
x – y√



))
(.)

for all x, y ∈ R. Setting y = x in (.), it follows from f () =  that

∥∥f (x) – f (
√
x)

∥∥
X ≤ K

(
φ(x,x) + φ(

√
x, )

)
(.)

and so
∥∥∥∥f (x) – 


f (

√
x)

∥∥∥∥
X

≤ K
β

(
φ(x,x) + φ(

√
x, )

)
(.)

for all x ∈R. For any integers m, k withm > k ≥ ,

∥∥∥∥ 
k

f
(


k
 x

)
–


m

f
(


m
 x

)∥∥∥∥
X

≤ K
β

m–∑
j=k

(
K
β

)j(
φ
(


j
 x, 

j
 x

)
+ φ

(


j+
 x, 

))
(.)

for all x ∈R. Then a sequence { 
n f (

n
 x)} is a Cauchy sequence in a quasi-β-Banach space

X and so it converges. We can define a function F : R → X by F (x) := limn→∞ 
n f (

n
 x)

for all x ∈R. From (.), the following inequality holds:

∥∥F(√
x + y

)
–F (x) –F (y)

∥∥
X

= lim
n→∞


βn

∥∥f (√nx + ny
)
– f

(


n
 x

)
– f

(


n
 y

)∥∥
X

≤ lim
n→∞


βn φ

(


n
 x, 

n
 y

)
= 
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for all x, y ∈ R. Then F (
√
x + y) –F (x) –F (y) =  and, by Lemma ., F is a quadratic

function. Taking the limit m → ∞ in (.) with k = , we find that a function F satisfies
(.) near the approximate function f of the functional equation (.).
Next, we assume that there exists another quadratic function G :R →X which satisfies

the functional equation (.) and (.). Since G satisfies (.), it easy to show that G( n
 x) =

nG(x) for all x ∈R and n≥ . Then we have

∥∥F (x) – G(x)
∥∥ =

∥∥∥∥ 
n

F
(


n
 x

)
–


n

G
(


n
 x

)∥∥∥∥
≤ K

βn

(∥∥F(


n
 x

)
– f

(


n
 x

)∥∥ +
∥∥f ( n

 x
)
– G

(


n
 x

)∥∥)

≤ K–n

β–

∞∑
k=n

(
K
β

)k(
φ
(


k
 x, 

k
 x

)
+ φ

(


k+
 x, 

))

for all x ∈ R. Letting n → ∞, we establish F (x) = G(x) for all x ∈ R. This completes the
proof. �

Theorem . Let f :R→X be a φ-approximatively radical quadratic function. If a func-
tion φ :R →R+ ∪ {} satisfies

φ̂(x) :=
∞∑
j=

(
Kβ

)j(
φ
(
–

j
 x, –

j
 x

)
+ φ

(


–j
 x, 

))
< ∞

and limn→∞ βnφ(– n
 x, – n

 y) =  for all x, y ∈R, then the limit F (x) := limn→∞ nf (– n
 x)

exists for all x ∈R and a function F :R →X is unique quadratic satisfying the functional
equation (.) and the inequality

∥∥f (x) –F (x)
∥∥
X ≤ K

β
φ̂(x)

for all x ∈ R.

Proof If x is replaced by – 
 x in the inequality (.), then the proof follows from the proof

of Theorem .. �

Corollary . Let r, s ∈ R+ ∪ {} and ε ≥ . If a function f :R →X satisfies the following
inequality:

∥∥f (√x + y
)
– f (x) – f (y)

∥∥
X ≤

⎧⎨
⎩ε;

ε|x|r|y|s

for all x, y ∈ R, then there exists a unique quadratic function F : R → X satisfying the
functional equation (.) and the following inequality:

∥∥f (x) –F (x)
∥∥
X ≤

⎧⎨
⎩

εK
β–K , K < β ;

εK |x|r+s
β–K

√
r+s

, r + s < β –  logK

for all x ∈ R.
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Corollary . Let r, s ∈ R+ ∪ {} and ε ≥ . If a function f :R → X satisfies the following
inequality:

∥∥f (√x + y
)
– f (x) – f (y)

∥∥
X ≤ ε

(|x|r + |y|s)
for all x, y ∈ R, then there exists a unique quadratic function F : R → X satisfying the
functional equation (.) and the following inequality:

∥∥f (x) –F (x)
∥∥
X ≤ εK

(
( +

√
r)|x|r

β –K
√
r

+
|x|s

β –K
√
s

)
, r, s < β –  logK

for all x ∈ R.

Now, we give an example to illustrate that the functional equation (.) is not stable for
r =  = s in a quasi--Banach space with K = .

Example . Let φ :R →R be defined by

φ(x) :=

⎧⎨
⎩x for |x| < ;

 for |x| ≥ .

Consider the function f :R →R by the formula

f (x) :=
∞∑
m=


m

φ
(
mx

)

for all x ∈R. It is clear that f is bounded by 
 on R. We prove that

∣∣f (√x + y
)
– f (x) – f (y)

∣∣ ≤ 
(|x| + |y|) (.)

for all x, y ∈ R. To see this, if |x| + |y| =  or |x| + |y| ≥ 
 , then we have (.). Now

suppose that  < |x| + |y| < 
 . Then there exists a positive integer k such that


k+

< |x| + |y| < 
k

, (.)

so that m|x|, m|y|, m√
x + y ∈ (–, ) for all m = , , . . . ,k – . It follows from the defi-

nition of f and (.) that

∣∣f (√x + y
)
– f (x) – f (y)

∣∣
≤

∞∑
j=k


j

∣∣φ(
j

√
x + y

)
– φ

(
jx

)
– φ

(
jy

)∣∣

≤ 
∞∑
j=k


j

=

k+

≤ 
(|x| + |y|)

for all x, y ∈ R with |x| + |y| < 
 . Thus, the condition (.) holds true.
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Next, we claim that the quadratic equation (.) is not stable for r =  = s. Assume that
there exist a quadratic function F : R → R and a positive constant μ such that |f (x) –
F (x)| ≤ μ|x| for all x ∈ R. Then there exists a constant c ∈ R such that F (x) = cx for all
x ∈R. So we have

∣∣f (x)∣∣ ≤ (
μ + |c|)|x| (.)

for all x ∈ R. But, we can choose a λ ∈ Z+ with λ > μ + |c|. If x ∈ (, –λ), then jx ∈ (, )
for all j = , , . . . ,λ – . For this x, we obtain

∣∣f (x)∣∣ =
∣∣∣∣∣

∞∑
j=

φ(jx)
j

∣∣∣∣∣ ≥
λ–∑
j=

φ(jx)
j

= λx >
(
μ + |c|)|x|,

which contradicts (.). Therefore, the quadratic equation (.) is not stable for r =  = s
in Corollary ..

Theorem . Let f :R →X be a ψ-approximatively radical quartic function with f () =
. If the function ψ :R →R+ ∪ {} satisfies

ψ̂(x) :=
∞∑
j=

(
K
β

)j(
ψ

(


j
 x, 

j
 x

)
+


ψ

(


j+
 x, 

))
<∞

and limn→∞ 
βn ψ( n

 x,  n
 y) =  for all x, y ∈ R, then the limit H(x) := limn→∞ 

n f (
n
 x)

for all x ∈ R exists and a function H : R → X is unique quartic satisfying the functional
equation (.) and the inequality

∥∥f (x) –H(x)
∥∥
X ≤ K

β–
ψ̂(x) (.)

for all x ∈ R.

Proof Replacing x and y by
√
x and

√
y in (.) respectively, we have

∥∥f (√x + y
)
+ f

(√∣∣x – y
∣∣) – f (

√
x) – f (

√
y)

∥∥
X ≤ ψ(

√
x,

√
y) (.)

for all x, y ∈ R. Again, replacing x and y by x + y and x – y in (.) respectively, we get

∥∥f (√x + y
)
+ f

(√|xy|) – f (x + y) – f (x – y)
∥∥
X ≤ ψ(x + y,x – y) (.)

for all x, y ∈ R. It follows from (.) and (.) that

∥∥f (√x) + f (
√
y) + f

(√|xy|) – f
(√∣∣x – y

∣∣) – f (x + y) – f (x – y)
∥∥
X

≤ K
(
ψ(

√
x,

√
y) +ψ(x + y,x – y)

)
(.)

for all x, y ∈ R. Setting y =  in (.) and f () = , we have

∥∥f (√x) – f
(√

x
)
– f (x)

∥∥
X ≤ K

(
ψ(x,x) +ψ(

√
x, )

)
(.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/186


Kim et al. Journal of Inequalities and Applications 2012, 2012:186 Page 8 of 13
http://www.journalofinequalitiesandapplications.com/content/2012/1/186

for all x ∈R. Setting y = x in (.), we have

∥∥f (√x
)
– f (x)

∥∥
X ≤ ψ(x,x) (.)

for all x ∈R. It follows from (.) and (.) that

∥∥f (√x) – f (x)
∥∥
X ≤ K(ψ(x,x) +ψ(

√
x, )

)
(.)

for all x ∈R. Since f () = , it follows from (.) and (.) that

∥∥∥∥f (x) – 

f (

√
x)

∥∥∥∥
X

≤ K

β–

(
ψ(x,x) +



ψ(

√
x, )

)
(.)

for all x ∈R. Hence we have∥∥∥∥ 
k

f
(


k
 x

)
–


m

f
(


m
 x

)∥∥∥∥
X

≤ K

β–

m–∑
j=k

(
K
β

)j(
ψ

(


j
 x, 

j
 x

)
+


ψ

(


j+
 x, 

))
(.)

for all x ∈ R and m > k ≥ . Then a sequence { 
n f (

n
 x)} is a Cauchy sequence in X ,

and so it converges to a point in X . We can define a function H : R → X by H(x) :=
limn→∞ 

n f (
n
 x) for all x ∈R. From (.), the following inequality holds:

∥∥H(√
x + y

)
+H

(√∣∣x – y
∣∣) – H(x) – H(y)

∥∥
X ≤ lim

n→∞


βn ψ
(


n
 x, 

n
 y

)
= 

for all x, y ∈ R. Then, we have H(
√
x + y) +H(

√|x – y|) – H(x) – H(y) = , and by
Lemma ., H is quartic. Taking the limit m → ∞ in (.) with k = , we obtain that
a function H satisfies (.) near the approximate function f of the functional equation
(.). The remaining assertion is similar to the corresponding part of Theorem .. This
completes the proof. �

Corollary . If there exist r, s, t ∈ R+ ∪{} and ε ≥ ; if a function f :R →X satisfies the
inequality

∥∥f (√x + y
)
+ f

(√∣∣x – y
∣∣) – f (x) – f (y)

∥∥
X ≤

⎧⎪⎪⎨
⎪⎪⎩

ε;

ε|x|r|y|s;
ε(|x|r + |y|s)

for all x, y ∈ R, then there exists a unique quartic function H :R → X which satisfies (.)
and the inequality

∥∥f (x) –H(x)
∥∥
X ≤

⎧⎪⎪⎨
⎪⎪⎩

εK

β–βK , K < β ;
εK|x|r+s
β–

√
r+s

, r + s < β –  logK ;
εK

β– ( +
√
r–|x|r

β–K
√
r

+ |x|s
β–K

√
s
), r, s < β –  logK

for all x ∈ R.
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We recall that a subadditive function is a function φ : A → B having a domain A and a
codomain (B,≤) that are both closed under addition with the following property:

φ(x + y) ≤ φ(x) + φ(y)

for all x, y ∈ A. Also, a subquadratic function is a function ψ : A → B with ψ() =  and
the following property:

ψ(x + y) +ψ(x – y) ≤ ψ(x) + ψ(y)

for all x, y ∈ A.
Let � ∈ {–, } be fixed. If there exists a constant L with  < L <  such that a function

φ : A→ B satisfies

�φ(x + y) ≤ �L�
(
φ(x) + φ(y)

)
for all x, y ∈ A, then we say that φ is contractively subadditive if � =  and φ is expansively
superadditive if � = –. It follows by the last inequality that φ satisfies the following prop-
erties:

φ
(
�x

) ≤ �Lφ(x), φ
(
�kx

) ≤ (
�L

)k
φ(x)

for all x ∈ A and k ≥ .
Similarly, if there exists a constant L with  < L <  such that a function ψ : A → B with

ψ() =  satisfies

�ψ(x + y) + �ψ(x – y) ≤ �L�
(
ψ(x) +ψ(y)

)
for all x, y ∈ A, thenwe say thatψ is contractively subquadratic if � =  andψ is expansively
superquadratic if � = –. It follows from the last inequality that ψ satisfies the following
properties:

ψ
(
�x

) ≤ �Lψ(x), ψ
(
�kx

) ≤ (
�L

)k
ψ(x)

for all x ∈ A and k ≥ .
From now on, we establish the modified Hyers-Ulam-Rassias stability of the equations

(.) and (.) in a (β ,p)-Banach space Y .

Theorem . Let f : R → Y be a φ-approximatively radical quadratic function with
f () = . Assume that the function φ is contractively subadditive with a constant L sat-
isfying –βL < . Then there exists a unique quadratic function F :R→ Y which satisfies
(.) and the inequality

∥∥f (x) –F (x)
∥∥
Y ≤ �̂(x)

p
√
βp – (L)p

(.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/186
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for all x ∈ R, where

�̂(x) := K(β
(
φ(x,x) + φ(

√
x, )

)
+ φ(

√
x,

√
x) + φ(x, )

)
.

Proof Using (.) in the proof of Theorem ., we get

∥∥∥∥f (x) – 

f (x)

∥∥∥∥
Y

≤ 
β

�̂(x) (.)

for all x ∈R. Thus it follows from (.) that

∥∥∥∥ 
k

f
(
kx

)
–


m

f
(
mx

)∥∥∥∥p

Y
≤ 

βp

m–∑
j=k

(

β

)jp

(L)jp�̂(x)p

≤ �̂(x)p

βp

m–∑
j=k

(
–βL

)jp (.)

for all x ∈ R and integers m > k ≥ . Then a sequence { 
n f (

nx)} is a Cauchy sequence
in a (β ,p)-Banach space Yp, and so we can define a function F : R → Y by F (x) :=
limn→∞ 

n f (
nx) for all x ∈R. Then, we get

∥∥F(√
x + y

)
–F (x) –F (y)

∥∥p
Y

≤ lim
n→∞


βnp φ

(
nx, ny

)p ≤ φ(x, y)p lim
n→∞

(
–βL

)np = 

for all x, y ∈ R, and so, by Lemma ., F is a quadratic function. Taking m → ∞ in (.)
with k = , we have

∥∥f (x) –F (x)
∥∥
Y ≤ �̂(x)

p
√
βp – (L)p

.

Next, we assume that there exists a quadratic function G : R → Y which satisfies the
functional equation (.) and (.). Then we have

∥∥∥∥G(x) – 
n

f
(
nx

)∥∥∥∥p

Y
≤ 

βnp

∥∥G(
nx

)
– f

(
nx

)∥∥p
Y ≤ �̂(x)p

βp – (L)p
(
–βL

)np

for all x ∈R. Letting n→ ∞, we have the uniqueness ofF (x). This completes the proof.�

Theorem . Let f : R → Y be a φ-approximatively radical quadratic function with
f () = . Assume that the function φ is expansively superadditive with a constant L satis-
fying β–L < . Then there exists a unique quadratic function F : R → Y which satisfies
(.) and the inequality

∥∥f (x) –F (x)
∥∥
Y ≤ �̂(x)

p
√
(L–)p – βp

for all x ∈ R.
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Proof From (.) in the proof of Theorem ., we get

∥∥kf (–kx) – k+f
(
–k–x

)∥∥
Y ≤ βk�̂

(
–k–x

)
for all x ∈R. For integers k,m withm > k ≥ , we get

∥∥kf (–kx) – mf
(
–mx

)∥∥p
Y ≤ �̂(x)p

βp

m∑
j=k+

(
β–L

)jp.
The remaining part follows as the proof of Theorem .. This completes the proof. �

Theorem . Let f : R → Y be a ψ-approximatively radical quadratic function with
f () = . Assume that the function ψ is contractively subquadratic with a constant L sat-
isfying –βL < . Then there exists a unique quartic function H : R → Y which satisfies
(.) and the inequality

∥∥f (x) –H(x)
∥∥
Y ≤ 	̂(x)

β p
√
βp – (L)p

, (.)

where

	̂(x) = K
(
β

(
ψ(x,x) +



ψ(

√
x, )

)
+ψ(

√
x,

√
x) +



ψ(x, )

)

for all x ∈ R.

Proof Using (.) in the proof of Theorem ., we get

∥∥∥∥f (x) – 


f (x)
∥∥∥∥
Y

≤ 	̂(x)
β

(.)

for all x ∈R. Then it follows from (.) that

∥∥∥∥ 
k

f
(
kx

)
–


m

f
(
mx

)∥∥∥∥p

Y

≤ 
βp

m–∑
j=k


jβp

	̂
(
jx

)p ≤ 	̂(x)p

βp

m–∑
j=k

(
–βL

)jp (.)

for all x ∈ R andm > k ≥ . Then { 
n f (

nx)} is a Cauchy sequence in Y , and it converges
to a point in Y . We can define a functionH :R →X by

H(x) := lim
n→∞


n

f
(
nx

)
for all x ∈R. From (.), the following inequality holds:

∥∥H(√
x + y

)
+H

(√∣∣x – y
∣∣) – H(x) – H(y)

∥∥p
Y

≤ ψ(x, y)p lim
n→∞

(
–βL

)np = 

http://www.journalofinequalitiesandapplications.com/content/2012/1/186


Kim et al. Journal of Inequalities and Applications 2012, 2012:186 Page 12 of 13
http://www.journalofinequalitiesandapplications.com/content/2012/1/186

for all x, y ∈ R. Thus the function H is quartic. Taking the limit m → ∞ in (.) with
k = , H satisfies (.) near the approximate function f of the functional equation (.).
The remaining proof is similar to that of Theorem .. This completes the proof. �

Theorem . Let f : R → Y be a ψ-approximatively radical quadratic function with
f () = . Assume that the function ψ is expansively superquadratic with a constant L sat-
isfying β–L < . Then there exists a unique quartic function H : R → Y which satisfies
(.) and the inequality

∥∥f (x) –H(x)
∥∥
Y ≤ 	̂(x)

β p
√
(L–)p – βp

for all x ∈ R.
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