RESEARCH

Open Access

Natural metrics and composition operators in generalized hyperbolic function spaces

A El-Sayed Ahmed*

*Correspondence: ahsayed80@hotmail.com Faculty of Science, Mathematics Department, Sohag University, Sohag, 82524, Egypt Current address: Faculty of Science, Mathematics Department, Taif University, Box 888, El-Hawiah, Taif, Saudi Arabia

Abstract

In this paper, we define some generalized hyperbolic function classes. We also introduce natural metrics in the generalized hyperbolic (p, α) -Bloch and in the generalized hyperbolic $Q^*(p, s)$ classes. These classes are shown to be complete metric spaces with respect to the corresponding metrics. Moreover, boundedness and compactness the composition operators C_{ϕ} acting from the generalized hyperbolic (p, α) -Bloch class to the class $Q^*(p, s)$ are characterized by conditions depending on an analytic self-map $\phi : \mathbb{D} \to \mathbb{D}$. **MSC:** 47B38; 46E15

Keywords: hyperbolic classes; composition operators; (p, α) -Bloch space; $Q^*(p, s)$ classes

1 Introduction

Let $\mathbb{D} = \{z : |z| < 1\}$ be the open unit disc of the complex plane \mathbb{C} , $\partial \mathbb{D}$ its boundary. Let $\mathcal{H}(\mathbb{D})$ denote the space of all analytic functions in \mathbb{D} and let $\mathcal{B}(\mathbb{D})$ be the subset of $\mathcal{H}(\mathbb{D})$ consisting of those $f \in \mathcal{H}(\mathbb{D})$ for which |f(z)| < 1 for all $z \in \mathbb{D}$. Also, dA(z) be the normalized area measure on \mathbb{D} so that $A(\mathbb{D}) \equiv 1$. The usual α -Bloch spaces \mathcal{B}_{α} and $\mathcal{B}_{\alpha,0}$ are defined as the sets of those $f \in \mathcal{H}(\mathbb{D})$ for which

$$\|f\|_{\mathcal{B}_{lpha}} = \sup_{z\in\mathbb{D}} |f'(z)| (1-|z|^2)^{lpha} < \infty,$$

and

$$\lim_{|z| \to 1} |f'(z)| (1 - |z|^2)^{\alpha} = 0,$$

respectively. Now, we will give the following definition:

Definition 1.1 The (p, α) -Bloch spaces $\mathcal{B}_{p,\alpha}$ and $\mathcal{B}_{p,\alpha,0}$ are defined as the sets of those $f \in \mathcal{H}(\mathbb{D})$ for which

$$\|f\|_{\mathcal{B}_{p,\alpha}} = \frac{p}{2} \sup_{z \in \mathbb{D}} \left|f(z)\right|^{\frac{p}{2}-1} \left|f'(z)\right| \left(1-|z|^2\right)^{\alpha} < \infty,$$

and

$$\lim_{|z|\to 1} |f(z)|^{\frac{p}{2}-1} |f'(z)| (1-|z|^2)^{\alpha} = 0,$$

where $0 < p, \alpha < \infty$.

© 2012 El-Sayed Ahmed; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. **Remark 1.1** The definition of (p, α) -Bloch spaces is introduced in the present paper for the first time. One should note that, if we put p = 2 in Definition 1.1, we will obtain the spaces \mathcal{B}_{α} and $\mathcal{B}_{\alpha,0}$.

Remark 1.2 (p, α) -Bloch space is very useful in some calculations in this paper and it can be also used to study some other operators like integral operators (see [12]).

If (X, d) is a metric space, we denote the open and closed balls with center x and radius r > 0 by $B(x, r) := \{y \in X : d(y, x) < r\}$ and $\overline{B}(x, r) := \{y \in X : d(y, x) = r\}$, respectively. The well-known hyperbolic derivative is defined by $f^*(z) = \frac{|f'(z)|}{1-|f(z)|^2}$ of $f \in B(\mathbb{D})$ and the hyperbolic distance is given by $\rho(f(z), 0) := \frac{1}{2} \log(\frac{1+|f(z)|}{1-|f(z)|})$ between f(z) and zero.

A function $f \in B(\mathbb{D})$ is said to belong to the hyperbolic α -Bloch class \mathcal{B}^*_{α} if

$$\|f\|_{\mathcal{B}^*_{\alpha}} = \sup_{z \in \mathbb{D}} f^*(z) \left(1 - |z|^2\right)^{\alpha} < \infty.$$

The little hyperbolic Bloch-type class $\mathcal{B}^*_{\alpha,0}$ consists of all $f \in \mathcal{B}^*_{\alpha}$ such that

$$\lim_{|z| \to 1} f^*(z) (1 - |z|^2)^{\alpha} = 0.$$

The Schwarz-Pick lemma implies $\mathcal{B}_{\alpha}^* = B(\mathbb{D})$ for all $\alpha \ge 1$ with $||f||_{\mathcal{B}_{\alpha}^*} \le 1$, and therefore, the hyperbolic α -Bloch classes are of interest only when $0 < \alpha < 1$.

It is obvious that \mathcal{B}^*_{α} is not a linear space since the sum of two functions in $B(\mathbb{D})$ does not necessarily belong to $B(\mathbb{D})$.

Now, let $0 , we define the hyperbolic derivative by <math>f_p^*(z) = \frac{p}{2} \frac{|f(z)|^{\frac{p}{2}-1} |f'(z)|}{1-|f(z)|^p}$ of $f \in B(\mathbb{D})$. When p = 2, we obtain the usual hyperbolic derivative as defined above.

A function $f \in B(\mathbb{D})$ is said to belong to the generalized hyperbolic (p, α) -Bloch class $\mathcal{B}^*_{p,\alpha}$ if

$$\|f\|_{\mathcal{B}^*_{p,\alpha}} = \sup_{z \in \mathbb{D}} f^*_p(z) (1 - |z|^2)^\alpha < \infty.$$

The little generalized (p, α) -hyperbolic Bloch-type class $\mathcal{B}_{p,\alpha,0}^*$ consists of all $f \in \mathcal{B}_{p,\alpha}^*$ such that

$$\lim_{|z| \to 1} f_p^*(z) (1 - |z|^2)^{\alpha} = 0.$$

Let the Green's function of \mathbb{D} be defined as $g(z, a) = \log \frac{1}{|\varphi_a(z)|}$, where $\varphi_a(z) = \frac{a-z}{1-az}$ is the Möbius transformation related to the point $a \in \mathbb{D}$. For $0 < p, s < \infty$, the hyperbolic class $Q^*(p, s)$ consists of those functions $f \in B(\mathbb{D})$ for which

$$\|f\|_{Q^{*}(p,s)}^{p} = \sup_{a\in\mathbb{D}}\int_{\mathbb{D}} (f_{p}^{*}(z))^{2}g^{s}(z,a) \, dA(z) < \infty$$

Moreover, we say that $f \in Q^*(p, s)$ belongs to the class $Q^*(p, s, 0)$ if

$$\lim_{|a|\to 1}\int_{\mathbb{D}}(f_p^*(z))^2g^s(z,a)\,dA(z)=0.$$

When p = 2, we obtain the usual hyperbolic Q class as studied in [10, 11, 14].

Remark 1.3 The Schwarz-Pick lemma implies that $\mathcal{B}_{p,\alpha}^* = B(\mathbb{D})$ for all $\alpha \ge 1$ with $\|f\|_{\mathcal{B}_{p,\alpha}^*} \le 1$ and therefore, the generalized hyperbolic (p,α) -classes are of interest only when $0 < \alpha < 1$. Also $Q^*(p,s) = B(\mathbb{D})$ for all s > 1, and hence, the generalized hyperbolic Q(p,s)-classes will be considered when $0 \le s \le 1$.

For any holomorphic self-mapping ϕ of \mathbb{D} , the symbol ϕ induces a linear composition operator $C_{\phi}(f) = f \circ \phi$ from $\mathcal{H}(\mathbb{D})$ or $B(\mathbb{D})$ into itself. The study of a composition operator C_{ϕ} acting on the spaces of analytic functions has engaged many analysts for many years (see, *e.g.*, [1–8, 11, 13, 16] and others).

Yamashita was probably the first to consider systematically hyperbolic function classes. He introduced and studied hyperbolic Hardy, BMOA and Dirichlet classes in [18–20] and others. More recently, Smith studied inner functions in the hyperbolic little Bloch-class [15], and the hyperbolic counterparts of the Q_p spaces were studied by Li in [10] and Li *et al.* in [11]. Further, hyperbolic Q_p classes and composition operators were studied by Pérez-González *et al.* in [14].

In this paper, we will study the generalized hyperbolic (p, α) -Bloch classes $\mathcal{B}_{p,\alpha}^*$ and the hyperbolic $Q^*(p, s)$ type classes. We will also give some results to characterize Lipschitz continuous and compact composition operators mapping from the generalized hyperbolic (p, α) -Bloch class $\mathcal{B}_{p,\alpha}^*$ to $Q^*(p, s)$ classes by conditions depending on the symbol ϕ only. Thus, the results are generalizations of the recent results of Pérez-González, Rättyä and Taskinen [14].

Recall that a linear operator $T: X \to Y$ is said to be bounded if there exists a constant C > 0 such that $||T(f)||_Y \le C ||f||_X$ for all maps $f \in X$. By elementary functional analysis, a linear operator between normed spaces is bounded if and only if it is continuous, and the boundedness is trivially also equivalent to the Lipschitz-continuity. Moreover, $T: X \to Y$ is said to be compact if it takes bounded sets in X to sets in Y which have compact closure. For Banach spaces X and Y contained in $B(\mathbb{D})$ or $\mathcal{H}(\mathbb{D})$, $T: X \to Y$ is compact if and only if for each bounded sequence $(x_n) \in X$, the sequence $(Tx_n) \in Y$ contains a subsequence converging to a function $f \in Y$.

Throughout this paper, C stands for absolute constants which may indicate different constants from one occurrence to the next.

The following lemma follows by standard arguments similar to those outlined in [17]. Hence we omit the proof.

Lemma 1.1 Assume ϕ is a holomorphic mapping from \mathbb{D} into itself. Let $0 < p, s < \infty$, and $0 < \alpha < \infty$. Then $C_{\phi} : \mathcal{B}^*_{p,\alpha} \to Q^*(p,s)$ is compact if and only if for any bounded sequence $(f_n)_{n \in \mathbb{N}} \in \mathcal{B}^*_{p,\alpha}$ which converges to zero uniformly on compact subsets of \mathbb{D} as $n \to \infty$, we have $\lim_{n\to\infty} \|C_{\phi}f_n\|_{Q^*(p,s)} = 0$.

Using the standard arguments similar to those outlined in Lemma 1 of [9], we have the following lemma:

Lemma 1.2 Let $0 < \alpha < \infty$, then there exist two functions $f, g \in \mathcal{B}^*_{p,\alpha}$ such that for some constant C,

$$\left(\left|f_{p}^{*}(z)\right|+\left|g_{p}^{*}(z)\right|\right)\left(1-|z|^{2}\right)^{lpha}\geq C>0,\quad for \ each\ z\in\mathbb{D}.$$

2 Natural metrics in $\mathcal{B}_{p,\alpha}^*$ and $Q^*(p, s)$ classes

In this section we introduce natural metrics on generalized hyperbolic α -Bloch classes $\mathcal{B}_{p,\alpha}^*$ and the classes $Q^*(p,s)$.

Let $0 < p, s < \infty$, and $0 < \alpha < 1$. First, we can find a natural metric in $\mathcal{B}_{p,\alpha}^*$ (see [14]) by defining

$$d(f,g;\mathcal{B}_{p,\alpha}^{*}) := d_{\mathcal{B}_{p,\alpha}^{*}}(f,g) + \|f-g\|_{\mathcal{B}_{p,\alpha}} + |f(0)-g(0)|^{\frac{p}{2}},$$
(1)

where

$$d_{\mathcal{B}_{p,\alpha}^*}(f,g) := \sup_{z \in \mathbb{D}} \left| \frac{f'(z)|f(z)|^{\frac{p}{2}-1}}{1-|f(z)|^p} - \frac{g'(z)|g(z)|^{\frac{p}{2}-1}}{1-|g(z)|^p} \right| \left(1-|z|^2\right)^{\alpha}.$$

For $f, g \in Q^*(p, s)$, define their distance by

$$d(f,g;Q^{*}(p,s)) := d_{Q^{*}}(f,g) + ||f-g||_{Q(p,s)} + |f(0)-g(0)|^{\frac{p}{2}}$$

where

$$d_{Q^*}(f,g) := \left(\frac{p}{2} \sup_{z \in \mathbb{D}} \int_{\mathbb{D}} \left| \frac{f'(z)|f(z)|^{\frac{p}{2}-1}}{1-|f(z)|^p} - \frac{g'(z)|g(z)|^{\frac{p}{2}-1}}{1-|g(z)|^p} \right|^2 g^s(z,a) \, dA(z) \right)^{\frac{1}{2}}.$$

Now, we give a characterization of the complete metric space $d(\cdot, \cdot; \mathcal{B}_{p,\alpha}^*)$.

Proposition 2.1 The class $\mathcal{B}_{p,\alpha}^*$ equipped with the metric $d(\cdot, \cdot; \mathcal{B}_{p,\alpha}^*)$ is a complete metric space. Moreover, $\mathcal{B}_{p,\alpha,0}^*$ is a closed (and therefore complete) subspace of $\mathcal{B}_{p,\alpha}^*$.

Proof Clearly $d(f,g; \mathcal{B}_{p,\alpha}^*) \ge 0$, $d(f,g, \mathcal{B}_{p,\alpha}^*) = d(g,f; \mathcal{B}_{p,\alpha}^*)$. Also,

$$d(f,h;\mathcal{B}_{p,\alpha}^*) \leq d(f,g;\mathcal{B}_{p,\alpha}^*) + d(g,h;\mathcal{B}_{p,\alpha}^*)$$

Moreover, $d(f, f; \mathcal{B}_{p,\alpha}^*) = 0$ for all $f, g, h \in \mathcal{B}_{p,\alpha}^*$.

It follows from the presence of the usual (p, α) -Bloch term that $d(f, g; \mathcal{B}_{p,\alpha}^*) = 0$ implies f = g. Hence, $(\mathcal{B}_{p,\alpha}^*, d)$ is a metric space. Let $(f_n)_{n=1}^{\infty}$ be a Cauchy sequence in the metric space $(\mathcal{B}_{p,\alpha}^*, d)$, that is, for any $\varepsilon > 0$, there is an $N = N(\varepsilon) \in \mathbb{N}$ such that

$$d(f_n, f_m; \mathcal{B}_{p,\alpha}^*) < \varepsilon$$

for all n, m > N. Since $(f_n) \subset B(\mathbb{D})$, the family (f_n) is uniformly bounded and hence normal in \mathbb{D} . Therefore, there exist $f \in B(\mathbb{D})$ and a subsequence $(f_{n_j})_{j=1}^{\infty}$ such that f_{n_j} converges to f uniformly on compact subsets, and by the Cauchy formula, the same also holds for the derivatives. Let m > N. Then the uniform convergence yields

$$\left| \frac{f'(z)|f(z)|^{\frac{p}{2}-1}}{1-|f(z)|^{p}} - \frac{f'_{m}(z)|f_{m}(z)|^{\frac{p}{2}-1}}{1-|f_{m}(z)|^{p}} \right| \left(1-|z|^{2}\right)^{\alpha} \\
= \lim_{n \to \infty} \left| \frac{f'_{n}(z)|f_{n}(z)|^{\frac{p}{2}-1}}{1-|f_{n}(z)|^{p}} - \frac{f'_{m}(z)|f_{m}(z)|^{\frac{p}{2}-1}}{1-|f_{m}(z)|^{p}} \right| \left(1-|z|^{2}\right)^{\alpha} \le \lim_{n \to \infty} d\left(f_{n}, f_{m}; \mathcal{B}_{p,\alpha}^{*}\right) \le \varepsilon$$
(2)

for all $z \in \mathbb{D}$, and it follows that

$$\|f\|_{\mathcal{B}_{p,\alpha}^*} \leq \|f_m\|_{\mathcal{B}_{p,\alpha}^*} + \varepsilon.$$

Thus, $f \in \mathcal{B}_{p,\alpha}^*$ as desired. Moreover, (2) and the completeness of the usual (p, α) -Bloch imply that $(f_n)_{n=1}^{\infty}$ converges to f with respect to the metric d. The second part of the assertion follows by (2).

Next, we give a characterization of the complete metric space $d(\cdot, \cdot; Q^*(p, s))$.

Proposition 2.2 The class $Q^{\circ}(p,s)$ equipped with the metric $d(\cdot, \cdot; Q^{\circ}(p,s))$ is a complete metric space. Moreover, $Q^{\circ}(p,s,0)$ is a closed (and therefore complete) subspace of $Q^{\circ}(p,s)$.

Proof For $f, g, h \in Q^*(p, s)$, then clearly

- $d(f,g;Q^*(p,s)) \ge 0$,
- $d(f,f;Q^*(p,s)) = 0$,
- $d(f,g;Q^*(p,s)) = 0$ implies f = g,
- $d(f,g;Q^{*}(p,s)) = d(g,f;Q^{*}(p,s)),$
- $d(f,h;Q^*(p,s)) \le d(f,g;Q^*(p,s)) + d(g,h;Q^*(p,s)).$

Hence, *d* is metric on $Q^*(p, s)$.

For the completeness proof, let $(f_n)_{n=1}^{\infty}$ be a Cauchy sequence in the metric space $(Q^*(p,s),d)$, that is, for any $\varepsilon > 0$ there is an $N = N(\varepsilon) \in \mathbb{N}$ such that $d(f_n, f_m; Q^*(p,s)) < \varepsilon$, for all n, m > N. Since $f_n \in B(\mathbb{D})$ such that f_n converges to f uniformly on compact subsets of \mathbb{D} . Let m > N and 0 < r < 1. Then Fatou's lemma yields

$$\begin{split} &\int_{D(0,r)} \left| \frac{|f(z)|^{\frac{p}{2}-1}f'(z)}{1-|f(z)|^{p}} - \frac{|f_{m}(z)|^{\frac{p}{2}-1}f'_{m}(z)}{1-|f_{m}(z)|^{p}} \right|^{2} g^{s}(z,a) \, dA(z) \\ &= \int_{D(0,r)} \lim_{n \to \infty} \left| \frac{|f_{n}(z)|^{\frac{p}{2}-1}f'_{n}(z)}{1-|f_{n}(z)|^{p}} - \frac{|f_{m}(z)|^{\frac{p}{2}-1}f'_{m}(z)}{1-|f_{m}(z)|^{p}} \right|^{2} g^{s}(z,a) \, dA(z) \\ &\leq \lim_{n \to \infty} \int_{\mathbb{D}} \left| \frac{|f_{n}(z)|^{\frac{p}{2}-1}f'_{n}(z)}{1-|f_{n}(z)|^{p}} - \frac{|f_{m}(z)|^{\frac{p}{2}-1}f'_{m}(z)}{1-|f_{m}(z)|^{p}} \right|^{2} g^{s}(z,a) \, dA(z) \leq \varepsilon^{2}, \end{split}$$

and by letting $r \rightarrow 1^-$, it follows that

$$\int_{\mathbb{D}} (f_p^*(z))^2 g^s(z,a) \, dA(z) \le 2\varepsilon^2 + 2 \int_{\mathbb{D}} \left| \frac{|f_m(z)|^{\frac{p}{2} - 1} f_m'(z)|}{1 - |f_m(z)|^p} \right|^2 g^s(z,a) \, dA(z). \tag{3}$$

This yields

$$||f||_{Q^*(p,s)}^p \le 2\varepsilon^2 + 2||f_m||_{Q^*(p,s)}^2$$

and thus $f \in Q^*(p, s)$. We also find that $f_n \to f$ with respect to the metric of $Q^*(p, s)$. The second part of the assertion follows by (3).

3 Lipschitz continuous and compactness of C_{ϕ}

Theorem 3.1 Let $0 , <math>0 \le s \le 1$, and $0 < \alpha \le 1$. Assume that ϕ is a holomorphic mapping from \mathbb{D} into itself. Then the following statements are equivalent:

(i)
$$C_{\phi}: \mathcal{B}^{*}_{p,\alpha} \to Q^{*}(p,s)$$
 is bounded;
(ii) $C_{\phi}: \mathcal{B}^{*}_{p,\alpha} \to Q^{*}(p,s)$ is Lipschitz continuous;
(iii) $\sup_{a \in \mathbb{D}} \int_{\mathbb{D}} \frac{|\phi'(z)|^{2}}{(1-|\phi(z)|^{p})^{2\alpha}} g^{s}(z,a) dA(z) < \infty.$

Proof First, assume that (i) holds, then there exists a constant C such that

$$\|C_{\phi}f\|_{Q^*(p,s)} \leq C \|f\|_{\mathcal{B}^*_{p,\alpha}}, \quad \text{for all } f \in \mathcal{B}^*_{p,\alpha}.$$

For given $f \in \mathcal{B}_{p,\alpha}^*$, the function $f_t(z) = f(tz)$, where 0 < t < 1, belongs to $\mathcal{B}_{p,\alpha}^*$ with the property $\|f_t\|_{\mathcal{B}_{p,\alpha}^*} \le \|f\|_{\mathcal{B}_{p,\alpha}^*}$. Let f, g be the functions from Lemma 1.2 such that

$$\frac{1}{(1-|z|^2)^\alpha} \le \left|f_p^*(z)\right| + \left|g_p^*(z)\right|,$$

for all $z \in \mathbb{D}$, so that

$$\frac{|\phi'(z)|}{(1-|\phi(z)|)^{\alpha}} \leq \left(f\circ\phi\right)^{*}(z) + \left(g\circ\phi\right)^{*}(z).$$

Thus,

$$\begin{split} &\int_{\mathbb{D}} \frac{|t\phi'(z)|^2}{(1-|t\phi(z)|^2)^{2\alpha}} g^s(z,a) \, dA(z) \\ &\leq C \int_{\mathbb{D}} \left(\left((f \circ t\phi)_p^*(z) \right)^2 + \left((g \circ t\phi)_p^*(z) \right)^2 \right) g^s(z,a) \, dA(z) \\ &\leq C \|C_{\phi}\|^2 \Big(\|f\|_{\mathcal{B}^*_{p,\alpha}}^2 + \|g\|_{\mathcal{B}^*_{p,\alpha}}^2 \Big). \end{split}$$

This estimate together with the Fatou's lemma implies (iii).

Conversely, assuming that (iii) holds and that $f\in \mathcal{B}^*_{p,\alpha},$ we see that

$$\begin{split} \sup_{a\in\mathbb{D}} &\int_{\mathbb{D}} \left(\left(f\circ\phi\right)_{p}^{*}(z)\right)^{2} g^{s}(z,a) \, dA(z) \\ &= \sup_{a\in\mathbb{D}} \int_{\mathbb{D}} \left(f_{p}^{*}(\phi(z))\right)^{2} \left|\phi'(z)\right|^{2} g^{s}(z,a) \, dA(z) \\ &\leq \|f\|_{\mathcal{B}^{*}_{p,\alpha}}^{2} \sup_{a\in\mathbb{D}} \int_{\mathbb{D}} \frac{|\phi'(z)|^{2}}{(1-|\phi(z)|^{p})^{2\alpha}} g^{s}(z,a) \, dA(z). \end{split}$$

Hence, it follows that (i) holds.

(ii) \iff (iii). Assume first that $C_{\phi} : \mathcal{B}_{p,\alpha}^* \to Q^*(p,s)$ is Lipschitz continuous, that is, there exists a positive constant *C* such that

$$d(f \circ \phi, g \circ \phi; Q^*(p, s)) \le Cd(f, g; \mathcal{B}^*_{p, \alpha}), \quad \text{for all } f, g \in \mathcal{B}^*_{p, \alpha}.$$

Taking g = 0, this implies

$$\|f \circ \phi\|_{Q^*(p,s)} \le C\Big(\|f\|_{\mathcal{B}^*_{p,\alpha}} + \|f\|_{\mathcal{B}_{p,\alpha}} + |f(0)|^{\frac{p}{2}}\Big), \quad \text{for all } f \in \mathcal{B}^*_{p,\alpha}.$$
(4)

The assertion (iii) for $\alpha = 1$ follows by choosing f(z) = z in (4). If $0 < \alpha < 1$, then

$$\begin{aligned} \frac{2}{p} |f(z)|^{\frac{p}{2}} &= \left| \int_{0}^{z} |f(t)|^{\frac{p}{2}} f'(t) \, dt + (f(0))^{\frac{p}{2}} \right| \\ &\leq \|f\|_{\mathcal{B}_{p,\alpha}} \int_{0}^{|z|} \frac{dx}{(1-x^{2})^{\alpha}} + |f(0)|^{\frac{p}{2}} \\ &\leq \frac{\|f\|_{\mathcal{B}_{\alpha}}}{(1-\alpha)} + |f(0)|^{\frac{p}{2}}, \end{aligned}$$

this yields

$$\frac{2}{p} \left| f(\phi(0)) - g(\phi(0)) \right|^{\frac{p}{2}} \leq \frac{\|f - g\|_{\mathcal{B}_{p,\alpha}}}{(1 - \alpha)} + \left| f(0) - g(0) \right|^{\frac{p}{2}}.$$

Moreover, Lemma 1.2 implies the existence of $f,g\in \mathcal{B}_{p,\alpha}^{*}$ such that

$$\left| f_{p}^{*}(z) + g_{p}^{*}(z) \right| \left(1 - |z|^{2} \right)^{\alpha} \ge C > 0, \quad \text{for all } z \in \mathbb{D}.$$
(5)

Combining (4) and (5), we obtain

$$\begin{split} \|f\|_{\mathcal{B}^{*}_{p,\alpha}} + \|g\|_{\mathcal{B}^{*}_{p,\alpha}} + \|f\|_{\mathcal{B}_{p,\alpha}} + \|g\|_{\mathcal{B}_{p,\alpha}} + |f(0)|^{\frac{p}{2}} + |g(0)|^{\frac{p}{2}} \\ &\geq C \int_{\mathbb{D}} \frac{|\phi'(z)|^{2}}{(1 - |\phi(z)|^{p})^{2\alpha}} g^{s}(z,a) \, dA(z) \end{split}$$

for which the assertion (iii) follows.

Assume now that (iii) is satisfied, we have

$$\begin{split} d(f \circ \phi, g \circ \phi; Q^{*}(p, s)) &= d_{Q^{*}_{(p,s)}}(f \circ \phi, g \circ \phi) + \|f \circ \phi - g \circ \phi\|_{Q(p,s)} \\ &+ |f(\phi(0)) - g(\phi(0))|^{\frac{p}{2}} \\ &\leq d_{\mathcal{B}^{*}_{p,\alpha}}(f, g) \bigg(\sup_{a \in \mathbb{D}} \int_{\mathbb{D}} \frac{|\phi'(z)|^{2}}{(1 - |\phi(z)|^{p})^{2\alpha}} g^{s}(z, a) \, dA(z) \bigg)^{\frac{1}{2}} \\ &+ \|f - g\|_{\mathcal{B}_{p,\alpha}} \bigg(\sup_{a \in \mathbb{D}} \int_{\mathbb{D}} \frac{|\phi'(z)|^{2}}{(1 - |\phi(z)|^{p})^{2\alpha}} g^{s}(z, a) \, dA(z) \bigg)^{\frac{1}{2}} \\ &+ \frac{\|f - g\|_{\mathcal{B}_{p,\alpha}}}{(1 - \alpha)} + |f(0) - g(0)|^{\frac{p}{2}} \\ &\leq Cd(f, g; \mathcal{B}^{*}_{p,\alpha}). \end{split}$$

Thus $C_{\phi}: \mathcal{B}^*_{p,\alpha} \to Q^*(p,s)$ is Lipschitz continuous and the proof is completed.

Remark 3.1 We know that a composition operator $C_{\phi} : \mathcal{B}_{p,\alpha}^* \to Q^*(p,s)$ is said to be bounded if there is a positive constant *C* such that $\|C_{\phi}f\|_{Q^*(p,s)} \leq C\|f\|_{\mathcal{B}_{p,\alpha}^*}$ for all $f \in \mathcal{B}_{p,\alpha}^*$. Theorem 3.1 shows that $C_{\phi} : \mathcal{B}_{p,\alpha}^* \to Q^*(p,s)$ is bounded if and only if it is Lipschitzcontinuous, that is, if there exists a positive constant *C* such that

$$d(f \circ \phi, g \circ \phi; Q^{*}(p, s)) \leq Cd(f, g; \mathcal{B}^{*}_{p, \alpha}), \quad \text{for all } f, g \in \mathcal{B}^{*}_{p, \alpha}.$$

By elementary functional analysis, a linear operator between normed spaces is bounded if and only if it is continuous, and the boundedness is trivially also equivalent to the Lipschitz-continuity. So, our result for composition operators in hyperbolic spaces is the correct and natural generalization of the linear operator theory.

Recall that a composition operator $C_{\phi} : \mathcal{B}_{p,\alpha}^* \to Q^*(p,s)$ is compact if it maps any ball in $\mathcal{B}_{p,\alpha}^*$ onto a precompact set in $Q^*(p,s)$.

The following observation is sometimes useful.

Proposition 3.1 Let $0 , <math>0 \le s \le 1$ and $0 < \alpha \le 1$. Assume that ϕ is a holomorphic mapping from \mathbb{D} into itself. If $C_{\phi} : \mathcal{B}^*_{p,\alpha} \to Q^*(p,s)$ is compact, it maps closed balls onto compact sets.

Proof If $B \subset \mathcal{B}_{p,\alpha}^{*}$ is a closed ball and $g \in Q^{*}(p, s)$ belongs to the closure of $C_{\phi}(B)$, we can find a sequence $(f_{n})_{n=1}^{\infty} \subset B$ such that $f_{n} \circ \phi$ converges to $g \in Q^{*}(p, s)$ as $n \to \infty$. But $(f_{n})_{n=1}^{\infty}$ is a normal family, hence it has a subsequence $(f_{n_{j}})_{j=1}^{\infty}$ converging uniformly on the compact subsets of \mathbb{D} to an analytic function f. As in earlier arguments of Proposition 2.1 in [14], we get a positive estimate which shows that f must belong to the closed ball B. On the other hand, also the sequence $(f_{n_{j}} \circ \phi)_{j=1}^{\infty}$ converges uniformly on compact subsets to an analytic function, which is $g \in Q^{*}(p, s)$. We get $g = f \circ \phi$, *i.e.*, g belongs to $C_{\phi}(B)$. Thus, this set is closed and also compact.

Compactness of composition operators can be characterized in full analogy with the linear case.

Theorem 3.2 Let $0 , <math>0 \le s \le 1$, and $0 < \alpha \le 1$. Assume that ϕ is a holomorphic mapping from \mathbb{D} into itself. Then the following statements are equivalent:

(i) $C_{\phi}: \mathcal{B}_{p,\alpha}^* \to Q^*(p,s)$ is compact. (ii)

$$\lim_{r\to 1^{-}} \sup_{a\in\mathbb{D}} \int_{|\phi|\geq r_{j}} \frac{|\phi'(z)|^{2}}{(1-|\phi(z)|^{p})^{2\alpha}} g^{s}(z,a) \, dA(z) = 0.$$

Proof We first assume that (ii) holds. Let $B := \overline{B}(g, \delta) \subset \mathcal{B}^*_{p,\alpha}$, where $g \in \mathcal{B}^*_{p,\alpha}$ and $\delta > 0$, be a closed ball, and let $(f_n)_{n=1}^{\infty} \subset B$ be any sequence. We show that its image has a convergent subsequence in $Q^*(p, s)$, which proves the compactness of C_{ϕ} by definition.

Again, $(f_n)_{n=1}^{\infty} \subset B(\mathbb{D})$ is a normal family, hence there is a subsequence $(f_{n_j})_{j=1}^{\infty}$ which converges uniformly on the compact subsets of \mathbb{D} to an analytic function f. By the Cauchy formula for the derivative of an analytic function, also the sequence $(f'_{n_j})_{j=1}^{\infty}$ converges uniformly to f'. It follows that also the sequences $(f_{n_j} \circ \phi)_{j=1}^{\infty}$ and $(f'_{n_j} \circ \phi)_{j=1}^{\infty}$ converge uniformly on the compact subsets of \mathbb{D} to $f \circ \phi$ and $f' \circ \phi$, respectively. Moreover, $f \in B \subset \mathcal{B}^*_{p,\alpha}$ since for any fixed R, 0 < R < 1, the uniform convergence yields

$$\begin{split} \sup_{|z| \le R} & \left| \frac{f'(z)|f(z)|^{\frac{p}{2}-1}}{1 - |f(z)|^p} - \frac{g'(z)|g(z)|^{\frac{p}{2}-1}}{1 - |g(z)|^p} \right| \left(1 - |z|^2\right)^{\alpha} \\ &+ \sup_{|z| \le R} \left| f(z) - g(z) \right|^{\frac{p}{2}-1} \left| f'(z) - g'(z) \right| \left(1 - |z|^2\right)^{\alpha} + \left| f(0) - g(0) \right|^{\frac{p}{2}-1} \end{split}$$

$$= \lim_{j \to \infty} \sup_{|z| \le R} \left| \frac{f'_{n_j}(z) |f_{n_j}(z)|^{\frac{p}{2}-1}}{1 - |f_{n_j}(z)|^p} - \frac{g'(z) |g(z)|^{\frac{p}{2}-1}}{1 - |g(z)|^p} \right| (1 - |z|^2)^{\alpha} \\ + \sup_{|z| \le R} \left| f_{n_j}(z) - g(z) \right|^{\frac{p}{2}-1} \left| f'_{n_j}(z) - g'(z) \right| (1 - |z|^2)^{\alpha} + \left| f(0) - g(0) \right|^{\frac{p}{2}-1} \le \delta.$$

Hence, $d(f,g;\mathcal{B}_{p,\alpha}^*) \leq \delta$.

Let $\varepsilon > 0$. Since (ii) is satisfied, we may fix r, 0 < r < 1, such that

$$\sup_{a\in\mathbb{D}}\int_{|\phi(z)|\geq r}\frac{|\phi(z)|^{p-2}|\phi'(z)|^2}{(1-|\phi(z)|^p)^{2\alpha}}g^s(z,a)\,dA(z)\leq\varepsilon.$$

By the uniform convergence, we may fix $N_1 \in \mathbb{N}$ such that

$$\left|f_{n_j} \circ \phi(0) - f \circ \phi(0)\right| \le \varepsilon, \quad \text{for all } j \ge N_1. \tag{6}$$

The condition (ii) is known to imply the compactness of $C_{\phi} : \mathcal{B}_{p,\alpha} \to Q(p,s)$, hence possibly to passing once more to a subsequence and adjusting the notations, we may assume that

$$\|f_{n_j} \circ \phi - f \circ \phi\|_{Q(p,s)} \le \varepsilon, \quad \text{for all } j \ge N_2, \text{ for some } N_2 \in \mathbb{N}.$$
(7)

Now let

$$I_1(a,r) = \sup_{a\in\mathbb{D}} \int_{|\phi(z)|\geq r} \left[(f_{n_j}\circ\phi)_p^*(z) - (f\circ\phi)_p^*(z) \right]^2 g^s(z,a) \, dA(z),$$

and

$$I_2(a,r) = \sup_{a\in\mathbb{D}} \int_{|\phi(z)|\leq r} \left[(f_{n_j}\circ\phi)_p^*(z) - (f\circ\phi)_p^*(z) \right]^2 g^s(z,a) \, dA(z).$$

Since $(f_{n_j})_{j=1}^{\infty} \subset B$ and $f \in B$, it follows that

$$\begin{split} I_1(a,r) &= \sup_{a \in \mathbb{D}} \int_{|\phi(z)| \ge r} \left[(f_{n_j} \circ \phi)_p^*(z) - (f \circ \phi)_p^*(z) \right]^2 g^s(z,a) \, dA(z) \\ &\leq \frac{p}{2} \sup_{a \in \mathbb{D}} \int_{|\phi(z)| \ge r} \mathcal{L}(f_{n_j},f,\phi) g^s(z,a) \, dA(z) \\ &\leq d_{\mathcal{B}^*_\alpha}(f_{n_j},f) \sup_{a \in \mathbb{D}} \int_{|\phi(z)| \ge r} \frac{|\phi'(z)|^2}{(1-|\phi(z)|^p)^{2\alpha}} g^s(z,a) \, dA(z), \end{split}$$

where

$$\mathcal{L}(f_{n_j},f,\phi) = \left| \frac{|(f_{n_j} \circ \phi)(z)|^{\frac{p}{2}-1}(f_{n_j} \circ \phi)'(z)}{1-|(f_{n_j} \circ \phi)(z)|^p} - \frac{|(f \circ \phi)(z)|^{\frac{p}{2}-1}(f \circ \phi)'(z)}{1-|(f \circ \phi)(z)|^p} \right|^2.$$

Hence,

$$I_1(a,r) \le C\varepsilon. \tag{8}$$

On the other hand, by the uniform convergence on compact subsets of \mathbb{D} , we can find an $N_3 \in \mathbb{N}$ such that for all $j \ge N_3$,

$$\mathcal{L}_{1}(f_{n_{j}},f,\phi) = \left| \frac{|(f_{n_{j}} \circ \phi)(z)|^{\frac{p}{2}-1} f_{n_{j}}'(\phi(z))}{1 - |f_{n_{j}}(\phi(z))|^{p}} - \frac{|(f \circ \phi)(z)|^{\frac{p}{2}-1} f'(\phi(z))|}{1 - |f(\phi(z))|^{p}} \right| \leq \varepsilon$$

for all $z \in \mathbb{D}$ with $|\phi(z)| \leq r$. Hence, for such *j*, we obtain

$$\begin{split} I_2(a,r) &= \sup_{a \in \mathbb{D}} \int_{|\phi(z)| \le r} \left(\left(f_{n_j} \circ \phi \right)_p^*(z) - \left(f \circ \phi \right)_p^*(z) \right)^2 g^s(z,a) \, dA(z) \\ &\leq \sup_{a \in \mathbb{D}} \int_{|\phi(z)| \le r} \mathcal{L}_1(f_{n_j},f,\phi) \left| \phi'(z) \right|^2 g^s(z,a) \, dA(z) \\ &\leq \varepsilon \left(\sup_{a \in \mathbb{D}} \int_{|\phi(z)| \le r} \frac{|\phi'(z)|^2}{(1-|\phi(z)|^p)^{2\alpha}} g^s(z,a) \, dA(z) \right)^{\frac{1}{2}} \le C\varepsilon, \end{split}$$

hence,

$$I_2(a,r) \le C\varepsilon,\tag{9}$$

where *C* is the bound obtained from (iii) of Theorem 3.1. Combining (6), (7), (8) and (9), we deduce that $f_{n_i} \rightarrow f$ in $Q^*(p, s)$.

As for the converse direction, let $f_n(z) := \frac{1}{2}n^{\alpha-1}z^n$ for all $n \in \mathbb{N}$, $n \ge 2$.

$$\|f\|_{\mathcal{B}^{*}_{p,\alpha}} = \frac{p}{2} \sup_{a\in\mathbb{D}} \frac{n^{\frac{\alpha p}{2}} |z|^{\frac{\alpha p}{2}-1} (1-|z|^{2})^{\alpha}}{1-2^{-p} n^{p(\alpha-1)} |z|^{np}} \\ \leq \left(2^{p-1}+1\right) \sup_{a\in\mathbb{D}} n^{\frac{\alpha p}{2}} |z|^{\frac{\alpha p}{2}-1} (1-|z|^{2})^{\alpha}.$$
(10)

The function $r^{\frac{np}{2}-1}(1-r)^{\alpha}$ attains its maximum at the point $r = 1 - \frac{\alpha}{\alpha + \frac{\alpha p}{2} - 1}$. For simplicity, we see that (10) has the upper bound

$$(2^{p-1}+1)n^{\alpha}\left(1-\frac{\alpha}{\alpha+n-1}\right)^{n-1}\left(\frac{\alpha}{\alpha+n-1}\right)^{\alpha} \leq (2^{p-1}+1).$$

Then the sequence $(f_n)_{n=1}^{\infty}$ belongs to the ball $\overline{B}(0, (2^{p-1}+1)) \subset \mathcal{B}_{p,\alpha}^*$.

Suppose that C_{ϕ} maps the closed ball $\overline{B}(0, (2^{p-1} + 1)) \subset \mathcal{B}^*_{p,\alpha}$ into a compact subset of $Q^*(p,s)$; hence, there exists an unbounded increasing subsequence $(n_j)_{j=1}^{\infty}$ such that the image subsequence $(C_{\phi}f_{n_j})_{j=1}^{\infty}$ converges with respect to the norm. Since both $(f_n)_{n=1}^{\infty}$ and $(C_{\phi}f_{n_j})_{j=1}^{\infty}$ converge to the zero function uniformly on compact subsets of \mathbb{D} , the limit of the latter sequence must be zero. Hence,

$$\left\|n_{j}^{\alpha-1}\phi^{n_{j}}\right\|_{Q^{*}(p,s)}\to 0, \quad \text{as } j\to\infty.$$
(11)

Now let $r_j = 1 - \frac{1}{n_j}$. For all numbers *a*, $r_j \le a < 1$, we have the estimate

$$\frac{n_j^{\alpha} a^{n_j - 1}}{1 - a^{n_j}} \ge \frac{1}{e(1 - a)^{\alpha}} \quad \text{(see [14])}.$$

Using (12), we deduce

$$\|n_{j}^{\alpha-1}\phi^{n_{j}}\|_{Q^{*}(p,s)}^{2} \geq \frac{p}{2} \sup_{a\in\mathbb{D}} \int_{|\phi|\geq r_{j}} \left|\frac{n_{j}^{\alpha}(\phi(z))^{n_{j}-1}|\phi^{n_{j}}(z)|^{\frac{p}{2}-1}\phi'(z)}{1-|\phi^{n_{j}}(z)|^{p}}\right|^{2} g^{s}(z,a) \, dA(z)$$

$$\geq \frac{Cp}{8e^{2}} \sup_{a\in\mathbb{D}} \int_{|\phi|\geq r_{j}} \frac{|\phi'(z)|^{2}}{(1-|\phi(z)|^{p})^{2\alpha}} g^{s}(z,a) \, dA(z).$$

$$(13)$$

From (11) and (13), the condition (ii) follows. This completes the proof. \Box

For $0 and <math>0 \le s < \infty$, we define the weighted Dirichlet-class $\mathcal{D}(p, s)$ consists of those functions $f \in \mathcal{H}(\mathbb{D})$ for which

$$\int_{\mathbb{D}} \left| f(z) \right|^{p-2} \left| f'(z) \right|^2 \left(1 - \left| z \right|^2 \right)^s dA(z) < \infty.$$

For $0 and <math>0 \le s < \infty$, the generalized hyperbolic weighted Dirichlet-class $\mathcal{D}^{*}(p, s)$ consists of those functions $f \in B(\mathbb{D})$ for which

$$\int_{\mathbb{D}} \left(f_p^*(z)\right)^2 \left(1-|z|^2\right)^s dA(z) < \infty.$$

The proof of Proposition 2.2 implies the following corollary:

Corollary 3.1 For $f,g \in \mathcal{D}^*(p,s)$. Then, $\mathcal{D}^*(p,s)$ is a complete metric space with respect to the metric defined by

....

$$d(f,g;\mathcal{D}^{*}(p,s)) := d_{\mathcal{D}^{*}(p,s)}(f,g) + \|f-g\|_{\mathcal{D}(p,s)} + |f(0)-g(0)|^{\frac{p}{2}},$$

where

$$d_{\mathcal{D}^{*}(p,s)}(f,g) := \left(\frac{p}{2} \sup_{z \in \mathbb{D}} \int_{\mathbb{D}} \left| \frac{f'(z)|f(z)|^{\frac{p}{2}-1}}{1-|f(z)|^{p}} - \frac{g'(z)|g(z)|^{\frac{p}{2}-1}}{1-|g(z)|^{p}} \right|^{2} \left(1-|z|^{2}\right)^{s} dA(z) \right)^{\frac{1}{2}}.$$

Moreover, the proofs of Theorems 3.1 and 3.2 yield the following result:

Theorem 3.3 Let $0 , <math>-1 < s \le 1$, and $0 < \alpha \le 1$. Assume that ϕ is a holomorphic mapping from \mathbb{D} into itself. Then the following statements are equivalent:

(i) C_φ : B^{*}_{p,α} → D^{*}(p,s) is Lipschitz continuous;
(ii) C_φ : B^{*}_{p,α} → D^{*}(p,s) is compact;
(iii)

$$\int_{\mathbb{D}} \frac{|\phi'(z)|^2}{(1-|\phi(z)|^p)^{2\alpha}} (1-|z|^2)^s \, dA(z) < \infty.$$

Received: 29 March 2012 Accepted: 31 May 2012 Published: 31 August 2012

References

- El-Sayed Ahmed, A, Bakhit, MA: Composition operators on some holomorphic Banach function spaces. Math. Scand. 104(2), 275-295 (2009)
- El-Sayed Ahmed, A, Bakhit, MA: Composition operators acting between some weighted Möbius invariant spaces. Ann. Funct. Anal. 2(2), 138-152 (2011)
- 3. Aulaskari, R, Zhao, R: Composition operators and closures of some Möbius invariant spaces in the Bloch space. Math. Scand. **107**(1), 139-149 (2010)
- Cowen, C, MacCluer, BD: Composition Operators on Spaces of Analytic Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1995)
- 5. Demazeux, R: Essential norms of weighted composition operators between Hardy spaces H^p and H^q for $1 \le p, q \le \infty$. Stud. Math. **206**(3), 191-209 (2011)
- El-Fallah, O, Kellay, K, Shabankhah, M, Youssfi, M: Level sets and composition operators on the Dirichlet space. J. Funct. Anal. 260(6), 1721-1733 (2011)
- Kellay, K, Lefére, P: Compact composition operators on weighted Hilbert spaces of analytic functions. J. Math. Anal. Appl. 386(2), 718-727 (2012)
- Kotilainen, M: Studies on composition operators and function spaces. Report Series. Dissertation, Department of Mathematics, University of Joensuu 11 (2007)
- 9. Lappan, P, Xiao, J: Q_{π}^{μ} -bounded composition maps on normal classes. Note Mat. **20**(1), 65-72 (2000/2001)
- 10. Li, X: On hyperbolic *Q* classes. Dissertation, University of Joensuu, Joensuu. Ann. Acad. Sci. Fenn. Math. Diss. **145** (2005)
- 11. Li, X, Pérez-González, F, Rättyä, J: Composition operators in hyperbolic *Q*-classes. Ann. Acad. Sci. Fenn. Math. **31**, 391-404 (2006)
- 12. Li, S, Stević, S: Products of integral-type operators and composition operators between Bloch-type spaces. J. Math. Anal. Appl. **349**(2), 596-610 (2009)
- 13. Manhas, J, Zhao, R: New estimates of essential norms of weighted composition operators between Bloch type spaces. J. Math. Anal. Appl. 389(1), 32-47 (2012)
- Pérez-González, F, Rättyä, J, Taskinen, J: Lipschitz continuous and compact composition operators in hyperbolic classes. Mediterr. J. Math. 8, 123-135 (2011)
- 15. Smith, W: Inner functions in the hyperbolic little Bloch class. Mich. Math. J. 45(1), 103-114 (1998)
- 16. Singh, RK, Manhas, JS: Composition Operators on Function Spaces. North-Holland Mathematics Studies (1993)
- 17. Tjani, M: Compact composition operators on Besov spaces. Trans. Am. Math. Soc. 355, 4683-4698 (2003)
- Yamashita, S: Hyperbolic Hardy classes and hyperbolically Dirichlet-finite functions. Hokkaido Math. J. 10, 709-722 (1981)
- 19. Yamashita, S: Functions with H^p hyperbolic derivative. Math. Scand. 53(2), 238-244 (1983)
- 20. Yamashita, S: Holomorphic functions of hyperbolic bounded mean oscillation. Boll. Unione Mat. Ital. 5(3), 983-1000 (1986)

doi:10.1186/1029-242X-2012-185

Cite this article as: El-Sayed Ahmed: Natural metrics and composition operators in generalized hyperbolic function spaces. *Journal of Inequalities and Applications* 2012 2012:185.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ▶ Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at > springeropen.com