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1 Introduction
If an,bn ≥ , such that  <

∑∞
n= an < ∞ and  <

∑∞
n= bn < ∞, then we have the famous

Hilbert’s inequality as follows (cf. []):

∞∑
n=

∞∑
m=

ambn
m + n

< π

( ∞∑
n=

an
∞∑
n=

bn

) 


, ()

where the constant factor π is the best possible.
Under the same condition of (), Xin et al. [] gave the following inequality:

∞∑
n=

∞∑
m=

| ln(m/n)|
m + n

ambn < c

( ∞∑
n=

an
∞∑
n=

bn

) 


, ()

where the constant factor c = 
∑∞

n=
(–)n–
(n–) = .+ is the best possible. And Yang []

gave the integral analogues of ().
In , Hardy et al. [] established a few results on the half-discrete Hilbert-type in-

equalities with the non-homogeneous kernel (see Theorem ). But they did not prove
that the constant factors are the best possible. However, Yang [] gave a result by introduc-
ing an interval variable and proved that the constant factor is the best possible. Recently,
Yang et al. [–] gave some half-discrete Hilbert-type inequalities and their reverses with
the monotone kernels and best constant factors.
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Recently, Yang [] gave the following half-discreteHilbert-type inequality with the non-
monotone kernel and the best constant factor :

∞∑
n=

∫ ∞



| ln(x/n)|an
max{x,n} f (x)dx < 

( ∞∑
n=

an
∫ ∞


f (x)dx

) 


. ()

Obviously, for a half-discrete Hilbert-type inequality with the monotone kernel, it is easy
to build the relating inequality by estimating the series formand the integral formofweight
functions. However, for a half-discrete Hilbert-type inequality with the non-monotone
kernel, it is much more difficult to prove.
In this paper, by using the way of weight functions, we give a new half-discrete Hilbert-

type inequality with the non-monotone kernel as follows:

∞∑
n=

an
∫ ∞



| ln( xn )|f (x)
x + n

dx < 
∞∑
k=

(–)k

(k + )

( ∞∑
n=

an
∫ ∞


f (x)

) 


, ()

where the constant factor 
∑∞

k=
(–)k

(k+) is the best possible. The main objective of this
paper is to build the best extension of () with parameters and equivalent forms.

2 Some lemmas
Lemma. If x ∈ R, n ∈ Z (Z is the set of non-negative integers), [x] = n, ρ(y) = y–[y]– 


(y ∈ R) is the Bernoulli function of first order [], then we have (cf. [])

∫ x

n
ρ(y)dy = –

ε


(
ε ∈ [, ]

)
. ()

Lemma . If r > , 
r +


s = , f (x, y) :=

| ln( xy )|
x+y ( xy )


r (x, y ∈ (,∞)), N is the set of positive

integers, define the weight functions as follows:

ω(n) :=
∫ ∞



| ln( xn )|
x + n

(
n
x

) 
s
dx (n ∈N), ()

� (x) :=
∞∑
n=

| ln( xn )|
x + n

(
x
n

) 
r (

x ∈ [,∞)
)
. ()

Then we have

ω(n) < cr :=
∞∑
k=

(–)k
[


(k + 

r )
+


(k + 

s )

]
, � (x) < cr . ()

Proof Setting u = x
n in (), we have

ω(n) =
∫ ∞


n

| lnu|
u + 

u–

s du <

∫ ∞



| lnu|
u + 

u–

s du = cr .

Setting u = y
x , then it follows

∫ 


f (x, y)dy =

∫ 
x



(– lnu)
u + 

u–

r du > s

∫ 
x



(– lnu)

x + 

du–

r + =

x 
r

x + 
(
s lnx + s

)
. ()
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For  ≤ y < x, f (x, y) = – ln( yx )
x+y (

x
y )


r , we have

f ′
y (x, y) = x


r

[
–


(y + x)y+ 

r
+

ln( yx )

(y + x)y 
r
+

ln( yx )

r(y + x)y+ 
r

]

= –x

r

[


(y + x)y+ 
r
+

x ln( yx )

(y – x)(y + x)y 
r
+

x ln( yx )

r(y – x)(y + x)y+ 
r

]

+ x

r

[
ln( yx )

(y – x)(y + x)y 
r
+

ln( yx )

r(y – x)y+ 
r

]
.

For y ≥ x, f (x, y) = ln( yx )
x+y (

x
y )


r , we find

f ′
y (x, y) = x


r

[


(y + x)y+ 
r
–

ln( yx )

(y + x)y 
r
–

ln( yx )

r(y + x)y+ 
r

]

= x

r

[


(y + x)y+ 
r
+

x ln( yx )

(y – x)(y + x)y 
r
+

x ln( yx )

r(y – x)(y + x)y+ 
r

]

– x

r

[
ln( yx )

(y – x)(y + x)y 
r
+

ln( yx )

r(y – x)y+ 
r

]
.

Define two functions as follows:

g(y) =

⎧⎪⎨
⎪⎩
g(y) = x 

r [ 
(y+x)y+


r
+ x ln( yx )

(y–x)(y+x)y

r
+ x ln( yx )

r(y–x)(y+x)y+

r
], y < x;

g(y) = x 
r [ ln( yx )

(y–x)(y+x)y

r
+ ln( yx )

r(y–x)y+

r
], y≥ x,

h(y) =

⎧⎪⎨
⎪⎩
h(y) = x 

r [ ln( yx )

(y–x)(y+x)y

r
+ ln( yx )

r(y–x)y+

r
], y < x;

h(y) = x 
r [ 

(y+x)y+

r
+ x ln( yx )

(y–x)(y+x)y

r
+ x ln( yx )

r(y–x)(y+x)y+

r
], y≥ x.

Then we have –f ′
y (x, y) = g(y) – h(y). Setting a = 

x , b = – 
x , then a – b = 

x . Define two
functions as follows:

g̃(y) =

⎧⎨
⎩g(y) – a, y < x;

g(y), y≥ x,
h̃(y) =

⎧⎨
⎩h(y) – b, y < x;

h(y), y ≥ x.

Since g(x – ) – a = g(x), h(x – ) – b = h(x), then both g̃(y) and h̃(y) (y ∈ [,∞)) are
decreasing and continuous. Besides y = x, we have (–)ig̃(i)(y) ≥ , (–)ih̃(i)(y) ≥  (i = , ),
and g̃(∞) = h̃(∞) = . By the improved Euler-Maclaurin summation formula (cf. [], The-
orem ..) and (), for ε ∈ [, ], εi ∈ (, ) (i = , ), it follows

–
∫ ∞


ρ(y)f ′

y (x, y)dy

=
∫ ∞


ρ(y)g(y)dy –

∫ ∞


ρ(y)h(y)dy

=
∫ ∞


ρ(y)g̃(y)dy + a

∫ x


ρ(y)dy –

[∫ ∞


ρ(y)h̃(y)dy + b

∫ x


ρ(y)dy

]
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=
∫ ∞


ρ(y)g̃(y)dy –

∫ ∞


ρ(y)h̃(y)dy + (a – b)

[∫ [x]


ρ(y)dy +

∫ x

[x]
ρ(y)dy

]

= –
ε


g̃() +

ε


h̃() –

ε


(a – b) = –

ε


(
g() – a

)
+

ε


(
h() – b

)
–

ε


(a – b).

Since g() – a ≥ g(x–) – a = g(x) > , h() – b ≥ h(x–) – b = h(x) > , then we have

–
∫ ∞


ρ(y)f ′

y (x, y)dy > –


(
g() – a

)
–


(a – b)

= –
x 

r

(x + )
–

x+ 
r lnx

(x + )(x – )
–

x+ 
r lnx

r(x + )(x – )
–


x

. ()

By the improved Euler-Maclaurin summation formula [], we have

� (x) =
∞∑
k=

f (x,k) =
∫ ∞


f (x, y)dy +



f (x, ) +

∫ ∞


ρ(y)f ′

y (x, y)dy

=
∫ ∞


f (x, y)dy –

(∫ 


f (x, y)dy –



f (x, ) –

∫ ∞


ρ(y)f ′

y (x, y)dy
)
= cr – θ (x),

where

θ (x) :=
∫ 


f (x, y)dy –



f (x, ) –

∫ ∞


ρ(y)f ′

y (x, y)dy.

Since – 
 f (x, ) = – x


r lnx

(x+) , in view of (), (), (i) for ≤ x < , – lnx
x– ≥ –, we have

θ (x) >
x 

r

x + 
(
s lnx + s

)
–

x 
r lnx

(x + )
–

x 
r

(x + )

–
x+ 

r lnx
(x + )(x – )

–
x+ 

r lnx
r(x + )(x – )

–


x

≥ x 
r lnx

(x + )

(
s –




)
+

x 
r

x + 

[
s –



–

x
(x + )

–
x
r

–
x + 
x+ 

r

]

>
x 

r

(x + )

(
 –



–


–


–



)
= ;

(ii) for x≥ , – 
x– ≥ –

x , we have

θ (x) ≥ x 
r lnx

(x + )

[
s –



–


(x + )

–

r

]
+

x 
r

x + 

(
s –



–

x + 
x+ 

r

)

>
x 

r lnx
(x + )

(
s –



–


–


r

)
=
(s + r – )x 

r lnx
r(x + )

> .

Hence, for x ≥ , we have θ (x) > , it follows � (x) < cr . The lemma is proved. �
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Lemma . As the assumption of Lemma ., if  < ε < p
r , R = ( r –

ε
p )

–, S = ( s +
ε
p )

–, then
we have

Ī :=
∞∑
n=

n

S –ε–

∫ ∞



| ln( xn )|
x + n

x

R– dx≥ cR

ε
–O(). ()

Proof It is obvious that R > , 
R + 

S = . Setting u = x
n , we have

Ī =
∞∑
n=

n–ε–
∫ ∞


n

| lnu|
u + 

u

R– du

=
∞∑
n=

n–ε–
[∫ ∞



| lnu|
u + 

u

R– du +

∫ 
n



lnu
u + 

u

R– du

]

> cR
∫ ∞


x–ε– dx + R

∞∑
n=

n–ε–
∫ 

n


lnudu


R

=
cR
ε
–

[
R

∞∑
n=

lnn

n+ε+ 
R
+ R

∞∑
n=



n+ε+ 
R

]

=
cR
ε
–O()

(
ε → +

)
.

The lemma is proved. �

Lemma . If p, r > , r +

s =


p +


q = , an ≥ , f (x) is a non-negative measurable function,

then we have

J :=
∞∑
n=

n
p
s –

[∫ ∞



| ln( xn )|f (x)
x + n

dx
]p

≤ cpr
∫ ∞


x

p
s –f p(x)dx, ()

J :=
∫ ∞


x

q
r –

[ ∞∑
n=

| ln( xn )|an
x + n

]q

dx ≤ cqr
∞∑
n=

n
q
r –aqn. ()

Proof By Hölder’s inequality [], in view of () and (), we have

[∫ ∞



| ln( xn )|f (x)
x + n

dx
]p

=
{∫ ∞



| ln( xn )|
x + n

[
x


sq

n

rp
f (x)

][
n


rp

x

sq

]
dx

}p

≤
∫ ∞



| ln( xn )|
x + n

(
x
n

) 
r
x

p
s –f p(x)dx

[∫ ∞



| ln( xn )|
x + n

(
n
x

) 
s
n

q
r – dx

]p–

=
∫ ∞



| ln( xn )|
x + n

(
x
n

) 
r
x

p
s –f p(x)dx

[
n

q
r –ω(n)

]p–

≤ n–
p
s +cp–r

∫ ∞



| ln( xn )|
x + n

(
x
n

) 
r
x

p
s –f p(x)dx,

J ≤ cp–r

∞∑
n=

∫ ∞



| ln( xn )|
x + n

(
x
n

) 
r
x

p
s –f p(x)dx
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= cp–r

∫ ∞



[ ∞∑
n=

| ln( xn )|
x + n

(
x
n

) 
r
]
x

p
s –f p(x)dx

= cp–r

∫ ∞


� (x)x

p
s –f p(x)dx ≤ cpr

∫ ∞


x

p
s –f p(x)dx.

Hence we have (). Still by Hölder’s inequality [], () and (), we have

[ ∞∑
n=

| ln( xn )|an
x + n

]q

=

{ ∞∑
n=

| ln( xn )|
x + n

[
x


sq

n

rp

][
n


rp

x

sq
an

]}q

≤
[
� (x)

∞∑
n=

x
p
s –

]q– ∞∑
n=

| ln( xn )|
x + n

(
x
n

) 
r
n

q
r –aqn

≤ x–
q
r +cq–r

∞∑
n=

| ln( xn )|
x + n

(
x
n

) 
r
n

q
r –aqn,

J ≤ cq–r

∫ ∞



[ ∞∑
n=

| ln( xn )|
x + n

(
x
n

) 
r
n

q
r –aqn

]
dx

= cq–r

∞∑
n=

[∫ ∞



| ln( xn )|
x + n

(
x
n

) 
r
dx

]
n

q
r –aqn

= cq–r

∞∑
n=

ω(n)n
q
r –aqn ≤ cqr

∞∑
n=

n
q
r –aqn.

Then we have (). The lemma is proved. �

3 Main results and applications
Theorem . If p, r > , 

p +

q =


r +


s = , an, f (x) ≥  such that  <

∫ ∞
 x

p
s –f p(x)dx < ∞,∑∞

n= n
q
r –aqn < ∞, then we have the following equivalent inequalities:

I :=
∞∑
n=

an
∫ ∞



| ln( xn )|f (x)
x + n

dx =
∫ ∞


f (x)

∞∑
n=

| ln( xn )|an
x + n

dx

< cr
{∫ ∞


x

p
s –f p(x)dx

} 
p
{ ∞∑

n=

n
q
r –aqn

} 
q

, ()

J =
∞∑
n=

n
p
s –

[∫ ∞



| ln( xn )|f (x)
x + n

dx
]p

< cpr
∫ ∞


x

p
s –f p(x)dx, ()

J =
∫ ∞


x

q
r –

[ ∞∑
n=

| ln( xn )|an
x + n

]q

dx < cqr
∞∑
n=

n
q
r –aqn, ()

where the constant factors cr =
∑∞

k=(–)k[


(k+ 
r )

+ 
(k+ 

s )
], cpr , cqr are the best possible.

Proof By the Lebesgue term-by-term integration theorem [], there are two kinds of rep-
resentation in (). By the conditions of Theorem., () takes the formof a strict inequal-
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ity, and we have (). By Hölder’s inequality [], we have

I =
∞∑
n=

[
n


s –


p

∫ ∞



| ln( xn )|f (x)
x + n

dx
][
n–


s +


p an

] ≤ J

p


{ ∞∑
n=

n
q
r –aqn

} 
q

. ()

By (), we have (). On the other hand, suppose that () is valid. Setting an :=
n

p
s –[

∫ ∞


| ln( xn )|f (x)
x+n dx]p–, n ∈N, then it follows J =

∑∞
n= n

q
r –aqn. By (), we have J < ∞. If

J = , then () is obvious value; if  < J < ∞, then by (), we obtain

∞∑
n=

n
q
r –aqn = J = I < cr

{∫ ∞


x

p
s –f p(x)dx

} 
p
{ ∞∑

n=

n
q
r –aqn

} 
q

,

J

p
 =

{ ∞∑
n=

n
q
r –aqn

} 
p

< cr
{∫ ∞


x

p
s –f p(x)dx

} 
p
.

()

Hence we have (), which is equivalent to ().
By Hölder’s inequality [], we have

I =
∫ ∞



[
x


r –


q f (x)

][
x–


r +


q

∞∑
n=

| ln( xn )|an
x + n

]
dx ≤

{∫ ∞


x

p
s –f p(x)dx

} 
p
J

q
 . ()

By (), we have (). On the other hand, suppose that () is valid. Setting f (x) :=
x

q
r –[

∑∞
n=

| ln( xn )|an
x+n ]q–, x ∈ [,∞), then it follows J =

∫ ∞
 x

p
s –f p(x)dx. By (), we have

J < ∞. If J = , then () is obvious value; if  < J < ∞, then by (), we obtain

∫ ∞


x

p
s –f p(x)dx = J = I < cr

{∫ ∞


x

p
s –f p(x)dx

} 
p
{ ∞∑

n=

n
q
r –aqn

} 
q

,

J

q
 =

{∫ ∞


x

p
s –f p(x)dx

} 
q
< cr

{ ∞∑
n=

n
q
r –aqn

} 
q

.

()

Hencewe have (), which is equivalent to (). Therefore (), () and () are equivalent.
If the constant factor cr in () is not best possible, then there exists a positive number

K , with  < K < cr , such that () is still valid if we replace cr by K . For  < ε < ε, setting
f̄ (x) = n


r –

ε
p–, ān = n


s –

ε
q– (n ∈N ), we have

Ī =
∞∑
n=

ān
∫ ∞



| ln( xn )|f̄ (x)
x + n

dx < K
{∫ ∞


x

p
s – f̄ p(x)dx

} 
p
{ ∞∑

n=

n
q
r –āqn

} 
q

= K
(∫ ∞


x––ε dx

) 
p
(
 +

∞∑
n=

n––ε

) 
q

< K
(

ε

) 
p
(
 +

∫ ∞


x––ε dx

) 
q
=
K
ε
(ε + )


q . ()

By () and (), we have cR – εO() < K(ε + )

q and for ε → +, by Fatou lemma [], we

have cr ≤ limε→+(cR – εO()) ≤ K . This is a contradiction. Hence we can conclude that

http://www.journalofinequalitiesandapplications.com/content/2012/1/184
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the constant cr in () is the best possible. If the constant factors in () and () are not the
best possible, then we can imply a contradiction that the constant factor in () is not the
best possible by () and (). The theorem is proved. �

Remark For p = q = r = s = , () reduces to (). Inequality () is a new basic half-discrete
Hilbert-type inequality with the non-monotone kernel.
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