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Abstract
In (J. Inequal. Appl. 2011:Article ID 55, Section 4, 2011), Jang and Park proved the
Hyers-Ulam stability of quadratic ∗-derivations on Banach ∗-algebras. One can easily
show that all the quadratic ∗-derivations δ in Section 4 must be trivial. So the results
are trivial. In this paper, we correct the statements and prove the corrected results.
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1 Introduction and preliminaries
Suppose that A is a complex Banach ∗-algebra. A C-linear mapping δ : D(δ) → A is said
to be a derivation on A if δ(ab) = δ(a)b + aδ(b) for all a,b ∈ A, where D(δ) is a domain of
δ and D(δ) is dense in A. If δ satisfies the additional condition δ(a*) = δ(a)* for all a ∈ A,
then δ is called a ∗-derivation on A. It is well known that if A is a C*-algebra and D(δ) is
A, then the derivation δ is bounded.
A C*-dynamical system is a triple (A,G,α) consisting of a C*-algebra A, a locally com-

pact group G, and a pointwise norm continuous homomorphism α of G into the group
Aut(A) of ∗-automorphisms ofA. Every bounded ∗-derivation δ arises as an infinitesimal
generator of a dynamical system for R. In fact, if δ is a bounded ∗-derivation of A on a
Hilbert space H, then there exists an element h in the enveloping von Neumann algebra
A′′ such that

δ(x) = adih(x)

for all x ∈A. The theory of bounded derivations of C*-algebras is important in the quan-
tum mechanics (see [–]).
A functional equation is called stable if any function satisfying the functional equation

‘approximately’ is near to a true solution of the functional equation.
In , Ulam [] proposed the following question concerning the stability of group

homomorphisms: Under what condition does there exist an additive mapping near an
approximately additive mapping? Hyers [] answered the problem of Ulam for the case
where G and G are Banach spaces. A generalized version of the theorem of Hyers for an
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approximately linear mapping was given by Rassias []. Since then, the stability problems
of various functional equations have been extensively investigated by a number of authors
(see [–]).
Jang and Park [, Section ] proved the Hyers-Ulam stability of quadratic ∗-derivations

on Banach ∗-algebras.

Theorem . ([, Theorem .]) Suppose that f :A → A is a mapping with f () =  for
which there exists a function ϕ :A → [,∞) such that

ϕ̃(a,b, c,d) :=
∞∑
k=


k

ϕ
(
ka, kb, kc, kd

)
<∞,

∥∥f (λa + λb + cd) + f (λa – λb + cd) – λf (a) – λf (b) – f (c)d – cf (d)
∥∥

≤ ϕ(a,b, c,d),
∥∥f (a*) – f (a)*

∥∥ ≤ ϕ(a,a,a,a)

(.)

for all a,b, c,d ∈A and all λ ∈ T := {μ ∈ C : |μ| = }. Also, if for each fixed a ∈A the map-
ping t → f (ta) fromR toA is continuous, then there exists a unique quadratic ∗-derivation
δ on A satisfying

∥∥f (a) – δ(a)
∥∥ ≤ 


ϕ̃(a,a, , )

for all a ∈A.

Letting λ = , b =  and d = I (identity) in (.) of Theorem ., we get

∥∥f (a + c) + f (a + c) – f (a) – f (c) – cf (I)
∥∥ ≤ ϕ(a, , c, I)

and


n

∥∥f (n(a + c)
)
+ f

(
n(a + c)

)
– f

(
na

)
– f

(
nc

)
–  · ncf (nI)∥∥

≤ 
n

ϕ
(
na, , nc, nI

)

for all a, c ∈A. Thus δ(a+ c) = δ(a) + δ(c) + cd′ for some d′ ∈A. Since δ is quadratic,
δ(a) + δ(–c) + (–c)d′ = δ(a) + δ(c) + cd′ and so δ(a+ c) = δ(a– c). Letting c = a in
the last equality, we get δ(a) = δ() = . So δ must be zero. Thus the results are trivial.
In this paper, we correct the wrong statements in [] and prove the corrected results.

2 Hyers-Ulam stability of quadratic ∗-derivations on Banach ∗-algebras
In this section, we correct the statements of [, Section ] and prove the Hyers-Ulam sta-
bility of the corrected results.

Definition . Let A be a ∗-normed algebra. A mapping δ : A → A is a quadratic
∗-derivation on A if δ satisfies the following properties:
() δ is a quadratic mapping,
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() δ is quadratic homogeneous, that is, δ(λa) = λδ(a) for all a ∈A and all λ ∈C,
() δ(ab) = δ(a)b + aδ(b) for all a,b ∈A,
() δ(a*) = δ(a)* for all a ∈A.

Example . LetA be a commutative ∗-normed algebra. For a given self-adjoint element
x ∈A, let δ :A→A be given by

δ(a) = i
(
xa – ax

)

for all x ∈A. Then it is easy to show that δ :A→A is a quadratic ∗-derivation on A.

Theorem . Suppose that f :A → A is a mapping with f () =  for which there exists a
function ϕ :A → [,∞) such that

ϕ̃(a,b) :=
∞∑
k=


k

ϕ
(
ka, kb

)
< ∞,

∥∥f (λa + λb) + f (λa – λb) – λf (a) – λf (b)
∥∥ ≤ ϕ(a,b), (.)

∥∥f (cd) – f (c)d – cf (d)
∥∥ ≤ ϕ(c,d), (.)

∥∥f (a*) – f (a)*
∥∥ ≤ ϕ(a,a) (.)

for all a,b, c,d ∈ A and all λ ∈ T. Also, if for each fixed a ∈ A the mapping t → f (ta) from
R to A is continuous, then there exists a unique quadratic ∗-derivation δ on A satisfying

∥∥f (a) – δ(a)
∥∥ ≤ 


ϕ̃(a,a) (.)

for all a ∈A.

Proof Putting a = b and λ =  in (.), we have

∥∥f (a) – f (a)
∥∥ ≤ ϕ(a,a)

for all a ∈A. One can use induction to show that

∥∥∥∥ f (
na)
n

–
f (ma)
m

∥∥∥∥ ≤ 


n–∑
k=m

ϕ(ka, ka)
k

(.)

for all n >m ≥  and all a ∈ A. It follows from (.) that the sequence { f (na)n } is Cauchy.
Since A is complete, this sequence is convergent. Define

δ(a) := lim
n→∞

f (na)
n

.

Since f () = , we have δ() = . Replacing a and b by na and nb, respectively, in (.),
we get

∥∥∥∥ f (
n(λa + λb))

n
+
f (n(λa – λb))

n
– λ f (na)

n
– λ f (nb)

n

∥∥∥∥ ≤ ϕ(na, nb)
n

.
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Taking the limit as n→ ∞, we obtain

δ(λa + λb) + δ(λa – λb) = λδ(a) + λδ(b) (.)

for all a,b ∈A and all λ ∈ T. Putting λ =  in (.), we obtain that δ is a quadratic mapping.
It is well known that the quadratic mapping δ satisfying (.) is unique (see [] or []).
Setting b := a in (.), we get

δ(λa) = λδ(a)

for all a ∈A and all λ ∈ T. Hence

δ(λa) = λδ(a)

for all a ∈A and all λ ∈ T. Under the assumption that f (ta) is continuous in t ∈R for each
fixed a ∈A, by the same reasoning as in the proof of [], we obtain that δ(λa) = λδ(a) for
all a ∈A and all λ ∈R. Hence

δ(λa) = δ

(
λ

|λ| |λ|a
)
=

λ

|λ| δ
(|λ|a) = λ

|λ| |λ|δ(a) = λδ(a)

for all a ∈A and all λ ∈ C (λ 	= ). This means that δ is quadratic homogeneous.
Replacing c and d by nc and nd, respectively, in (.), we get

∥∥∥∥ f (
nc · nd)
n

–
ncf (nd)

n
–
f (nc)nd

n

∥∥∥∥
=

∥∥∥∥ f (
ncd)
n

–
nc

n
f (nd)
n

–
f (nc)
n

nd

n

∥∥∥∥
≤ ϕ(nc, nd)

n
≤ ϕ(nc, nd)

n

for all c,d ∈A.
Thus we have

∥∥δ(cd) – cδ(d) – δ(c)d∥∥ ≤ lim
n→∞

ϕ(nc, nd)
n

= .

Replacing a and a* by na and na*, respectively, in (.), we get

∥∥∥∥ 
n

f
(
na*

)
–


n

f
(
na

)*∥∥∥∥ ≤ 
n

ϕ
(
na, na

)
.

Passing to the limit as n → ∞, we get the δ(a*) = δ(a)* for all a ∈ A. So δ is a quadratic
∗-derivation on A, as desired. �

Corollary . Let ε, p be positive real numbers with p < . Suppose that f :A → A is a
mapping such that

∥∥f (λa + λb) + f (λa – λb) – λf (a) – λf (b)
∥∥ ≤ ε

(‖a‖p + ‖b‖p), (.)
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∥∥f (cd) – cf (d) – f (c)d∥∥ ≤ ε
(‖c‖p + ‖d‖p), (.)

∥∥f (a*) – f (a)*
∥∥ ≤ ε‖a‖p (.)

for all a,b, c,d ∈ A and all λ ∈ T. Also, if for each fixed a ∈ A the mapping t → f (ta) is
continuous, then there exists a unique quadratic ∗-derivation δ on A satisfying

∥∥f (a) – δ(a)
∥∥ ≤ ε

 – p
‖a‖p

for all a ∈A.

Proof Putting ϕ(a,b) = ε(‖a‖p + ‖b‖p) in Theorem ., we get the desired result. �

Similarly, we can obtain the following. We will omit the proof.

Theorem . Suppose that f :A → A is a mapping with f () =  for which there exists a
function ϕ :A → [,∞) satisfying (.), (.), (.) and

∞∑
k=

kϕ
(
a
k

,
b
k

)
< ∞

for all a,b ∈A. Also, if for each fixed a ∈A the mapping t → f (ta) from R toA is continu-
ous, then there exists a unique quadratic ∗-derivation δ on A satisfying

∥∥f (a) – δ(a)
∥∥ ≤ 


ϕ̃(a,a)

for all a ∈A, where

ϕ̃(a,b) :=
∞∑
k=

kϕ
(
a
k

,
b
k

)
.

Corollary . Let ε, p be positive real numbers with p > . Suppose that f :A → A is a
mapping satisfying (.), (.) and (.). Also, if for each fixed a ∈A the mapping t → f (ta)
is continuous, then there exists a unique quadratic ∗-derivation δ on A satisfying

∥∥f (a) – δ(a)
∥∥≤ ε

p – 
‖a‖p

for all a ∈A.

Proof Putting ϕ(a,b) = ε(‖a‖p + ‖b‖p) in Theorem ., we get the desired result. �
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