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Abstract
In this paper, we prove that, for every vector quasi-equilibrium problem, there exists
at least one essential component of the set of its solutions. As application, we show
that, for every system of vector quasi-equilibrium problems, there exists at least one
essential component of the set of its solutions in the uniform topological space of
objective functions and constraint mappings.

1 Introduction
Essential component has been an important aspect in the study of stability for nonlin-
ear problems. Fort [] first introduced the notion of essential fixed points of a continuous
mapping from a compact metric space into itself and proved that any mapping can be ap-
proximately closed by a mapping whose fixed points are all essential. Kinoshita [] then
introduced the notion of essential components of the set of fixed points of a single-valued
map. Jiang [] introduced the notion of essential components of the set of Nash equilib-
rium points for an n-person non-cooperative game and proved the existence of essential
components of the set of Nash equilibrium points. Kohlberg and Mertens [] studied the
stability of Nash equilibrium points and suggested that a satisfactory solution for a non-
cooperative game should be set-wise, and they proved that such a solution is just an es-
sential component of Nash equilibrium points. Recently, Yu, Xiang [], Yu, Luo [], Isac,
Yuan [], Yang, Yu [], Lin [], Chen, Gong [] introduced the notion of essential com-
ponents to solution sets of various problems such as Ky Fan point problems, equilibrium
problems, coincident point problems, vector optimization problem, and symmetric vec-
tor quasi-equilibrium problems. On the other hand, in order to describe the real world
and economic behavior better, very recently, much attention has been attracted to multi-
criteria equilibrium models. Ansari, Schaible and Yao [] studied the system of general-
ized vector equilibrium problems. Ansari, Chan and Yang [] studied the system of vec-
tor quasi-equilibrium problems (briefly, SVQEP). Fang, Huang and Kim [] studied the
system of vector equilibriumproblems. Peng, Lee, Yang [] studied the system of general-
ized vector quasi-equilibriumproblemswith set-valuedmaps (briefly, SGVOEPS). Lin []
studied the system of generalized vector quasi-equilibrium problems (briefly, SGVQEP)
in Banach spaces. Peng, Yang and Zhu [] studied the system of vector quasi-equilibrium.
Lin [] established essential components of the solution set for SGVQEP under perturba-
tions of the best-reply map. But up to now, no paper has established essential components
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of the solution set for SVQEP, SGVQEP or SGVQEPS under perturbations of objective
functions and constraint mappings. In this paper, we first give a new result of essential
components of the solution set for SVQEP under perturbations of objective functions and
constraint mappings.

2 Preliminaries and definitions
Let I = {, , . . . ,n} be a finite set which has at least two elements. For each i ∈ I , let Xi and
Yi be real Hausdorff topological vector spaces and Ki a nonempty subset of Xi. For each
i ∈ I , let Ci be a closed, convex and pointed cone of Yi with intCi �= ∅, where intCi denotes
the interior of Ci. Let K =

∏n
i=Ki. For each i ∈ I , let fi : K × Ki → Yi be a vector-valued

mapping and Si : K → Ki be a set-valued mapping. The SVQEP consists of finding x̄ ∈ K
such that for each i ∈ I ,

x̄i ∈ Si(x̄) and fi(x̄, yi) /∈ – intCi for all yi ∈ Si(x̄),

where x̄i denotes the ith component of x̄, and x̄ is said to be a solution of the SVQEP.
For each i ∈ I , fi is said to be an objective function of the SVQEP and for each i ∈ I , Si is
said to be a constraint mapping of the SVQEP. The SVQEP includes, as a special case, the
following multiobjective generalized game problem:
For each i ∈ I , let gi : K → Yi be a vector-valued mapping and Gi : Kî → Ki be a feasible

strategy mapping, where Kî =
∏

j∈I,j �=i Kj. For each x ∈ K , we can write x = (xi,xî). The mul-
tiobjective generalized game problem consists of finding x̄ ∈ K such that for each i ∈ I ,
x̄i ∈ Gi(x̄î) and

gi(yi, x̄î) – gi(x̄i, x̄î) /∈ – intCi for all yi ∈ Gi(x̄î),

where x̄ is said to be a weakly Pareto-Nash equilibrium point.
For each i ∈ I , setting

fi(x, yi) = gi(yi,xî) – gi(xi,xî) and Si(x) =Gi(xî),

the SVQEP coincides with the multiobjective generalized game problem, which has been
studied by Yu and Luo [] but for real functions and Lin [] but for Yi = Rki (≤ ki ≤ n) for
any i ∈ I .
For each i ∈ I , settingGi(xî) = Ki, themultiobjective generalized gameproblemcoincides

with the multiobjective game problem, which has been studied by Yu and Xiang [] and
Yang and Yu [].

Definition . Let X be a real Hausdorff topological space and Y a real Hausdorff topo-
logical vector space with a convex cone C. Let f : X → Y be a vector-valued function.

(i) f is said to be C-continuous at x ∈ X if, for any open neighborhood V of the zero
element θ in Y , there is an open neighborhood N(x) of x in X such that

f (x) ∈ f (x) +V +C for all x ∈N(x).

f is said to be C-continuous on X if it is C-continuous at every element of X .

http://www.journalofinequalitiesandapplications.com/content/2012/1/181
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(ii) f is said to be (–C)-continuous at x ∈ X if, for any open neighborhood V of θ in Y ,
there exists an open neighborhood N(x) of x in X such that

f (x) ∈ f (x) +V –C for all x ∈N(x).

f is said to be (–C)-continuous on X if it is (–C)-continuous at every point of X .

Definition . Let K be a nonempty convex subset of a vector space X, let Y be a vector
space with a convex pointed cone C. Let f : K → Y be a mapping. f is said to be C-convex
if, for any x, y ∈ K and t ∈ [, ],

tf (x) + ( – t)f (y) – f
(
tx + ( – t)y

) ∈ C.

Definition . Let X and Y be two Hausdorff topological spaces, let F : X → Y be a set-
valued mapping. F is said to be upper semicontinuous (in short, u.s.c.) at x ∈ X if, for any
neighborhood N(F(x)) of F(x), there exists a neighborhood N(x) of x such that

F(x)⊂N
(
F(x)

)
for all x ∈N(x).

F is said to be upper semicontinuous on X if F is u.s.c. at every point x ∈ X.
F is said to be lower semicontinuous (in short, l.s.c.) at x ∈ X if, for any y ∈ F(x) and

any neighborhood N(y) of y, there exists a neighborhood N(x) of x such that

F(x)∩N(y) �= ∅ for all x ∈N(x).

F is said to be lower semicontinuous on X if it is lower semicontinuous at every x ∈ X.
F is said to be continuous on X if it is both u.s.c. and l.s.c. on X.
F is said to be a closed mapping if GraphF = {(x, y) ∈ X × Y : y ∈ F(x)} is a closed set in

X × Y .
F is an usco mapping if F is u.s.c. on X and F(x) is compact for every x ∈ X.
Let (X,d) be a linear metric space. Denote by CK(X) all nonempty convex compact sub-

sets of X. Define the Hausdorff metric h on CK(X) as follows.
For any S,S ∈ CK(X), let

h(S,S) =max
{
h◦(S,S),h◦(S,S)

}
,

where

h◦(S,S) = sup
{
d(b,S) : b ∈ S

}
and

d(b,S) = inf
{
d(b, s) : s ∈ S

}
.

Theorem . [] Let Y be a real Hausdorff topological vector space, and C ⊂ Y be a
closed convex pointed cone with intC �= ∅. Let K be a nonempty compact convex subset
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of a real locally convex Hausdorff topological vector space X. Let the set-valued mapping
S : K → K be continuous with nonempty compact convex values. Ifψ : K×K → Y satisfies
the following conditions:

(i) ψ(·, ·) is (–C)-continuous;
(ii) for any fixed x ∈ K , ψ(x, ·) is C-convex;
(iii) for any x ∈ K , ψ(x,x) /∈ – intC.

Then, there exists an element x* ∈ K such that x* ∈ S(x*) and

ψ
(
x*, y

)
/∈ – intC for all y ∈ S

(
x*

)
.

3 Essential components of the solution set for the system of vector
quasi-equilibrium problems

Throughout this section, let I = {, , . . . ,n} be a finite set which has at least two elements.
For each i ∈ I , let Xi be a real normed linear space and Yi a Banach space with Yi ⊂ Yn;
let Ki be a nonempty compact convex subset of Xi, and let Ci be a closed convex pointed
cone of Yi with Ci = Cn ∩ Yi and intCi �= ∅. Let K =

∏n
i=Ki and X =

∏n
i=Xi.

Let � be the collection of all vector-valued functions such that ψ : K × K → Yn such
that: (i)ψ(x, y) is (–Cn)-continuous onK ×K ; (ii) for each fixed x ∈ K ,ψ(x, ·) isCn-convex;
(iii) for any x ∈ K ,ψ(x,x) = θ , where θ is the zero element of Yn; (iv) sup(x,y)∈K×K ‖ψ(x, y)‖ <
+∞.
Let M be the collection of all set-valued mappings S : K → K such that: (i) for each

x ∈ K , S(x) is convex and closed; (ii) S is continuous on K .
Let H = � ×M. For any u = (ψ ′,S′), u = (ψ ′′,S′′) ∈ H , define

ρ(u,u) = sup
(x,y)∈K×K

∥∥ψ ′(x, y) –ψ ′′(x, y)
∥∥ + sup

x∈K
h
(
S′(x) – S′′(x)

)
,

where ‖ · ‖ is the norm on Yn and h is the Hausdorff metric defined on CK(X). Clearly,
(H ,ρ) is a metric space.
For any u = (ψ ,S) ∈H , by Theorem ., there exists a solution x* ∈ K to the vector quasi-

equilibrium problem: x* ∈ S(x*) and

ψ
(
x*, y

)
/∈ – intCn for all y ∈ S

(
x*

)
.

For each u = (ψ ,S) ∈ H , define

F(u) =
{
x ∈ K : x ∈ S(x) and ψ(x, y) /∈ – intCn for all y ∈ S(x)

}
. ()

Thus F(u) �= ∅ for any u ∈ H and u → F(u) indeed defines a set-valued mapping from H
to K .
The following lemma can be found in [].

Lemma . Let X be a metric space and K (X) be the family of all nonempty compact sub-
sets of X. Let A,An ∈ K(X) (n = , , . . .) satisfy the condition that for each open set O con-
taining A, there exists an integer N such that whenever n > N, we have An ⊂ O. Then for
any sequence {xn} with xn ∈ An (n = , , . . .), there exists a subsequence which converges to
a point in A.

http://www.journalofinequalitiesandapplications.com/content/2012/1/181
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Lemma . F :H → K is an usco mapping.

Proof Since K is compact, by [], it suffices to prove that Graph(F) = {(u,x) ∈H ×K : x ∈
F(u)} is closed. Let {(un,xn)} ⊂Graph(F) with (un,xn) → (u, x̄) ∈ H×K , whereun = (ψn,Sn)
and u = (ψ ,S). Since xn ∈ F(un), we have

xn ∈ Sn(xn) and ψn(xn, y) /∈ – intCn for all y ∈ Sn(xn).

For any open neighborhood O of S(x̄) in K , since S(x̄) is compact, by [, p.], there is
ε >  such that

{
x ∈ K : d

(
x,S(x̄)

)
< ε

} ⊂O,

where d(x,S(x̄)) = infa∈S(x̄) ‖x – a‖. Since ρ((ψn,Sn), (ψ ,S)) → , xn → x̄, and S is u.s.c. at
x̄, there is N such that for any n >N , we have

sup
x∈K

h
(
Sn(x),S(x)

)
< ε/,

and

S(xn) ⊂
{
x ∈ K : d

(
x,S(x̄)

)
< ε/

}
.

So whenever n >N , we have

Sn(xn) ⊂
{
x ∈ K : d

(
x,S(xn)

)
< ε/

} ⊂ {
x ∈ K : d

(
x,S(x̄)

)
< ε

} ⊂O.

Since xn belongs to Sn(xn), and S(x̄) and Sn(xn) are compact, by Lemma ., there exists a
subsequence {xnk } of {xn} such that xnk → x ∈ S(x̄). Since xnk → x̄, we have

x̄ = x ∈ S(x̄). ()

Since S is l.s.c. at x̄ ∈ K , for any z ∈ S(x̄), by [], there exists an ∈ S(xn) such that an → z.
Since ρ((ψn,Sn), (ψ ,S))→ , there exists a subsequence {Snk } of {Sn} such that

sup
x∈K

h
(
Snk (x),S(x)

)
< /k.

Thus, there exists a subsequence {xnk } of {xn} such that

h
(
Snk (xnk ),S(xnk )

)
< /k,

which implies that there exists a′
nk ∈ Snk (xnk ) such that

∥∥a′
nk – ank

∥∥ < /k,

where {ank } is a subsequence of {an}. Since ‖a′
nk – z‖ ≤ ‖a′

nk – ank‖ + ‖ank – z‖ < /k +
‖ank – z‖ and ank → z (k → +∞), we have that a′

nk → z (k → +∞). As a′
nk ∈ Snk (xnk ), we

http://www.journalofinequalitiesandapplications.com/content/2012/1/181
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have

ψnk
(
xnk ,a

′
nk

)
/∈ – intCn for all k. ()

Now we need to show that

ψ(x̄, z) /∈ – intCn. ()

If the conclusion is false, then ψ(x̄, z) ∈ – intCn, which implies that there is ε̄ >  such that

ψ(x̄, z) + ε̄B⊂ – intCn, ()

where B denotes the open unit ball in Yn. Since ψ is (–Cn)-continuous on K ×K , xnk → x̄
and a′

nk → z, for above ε̄ > , there is a positive integer k such that

ψ
(
xnk ,a

′
nk

) ∈ ψ(x̄, z) + (/)ε̄B –Cn for all k ≥ k. ()

On the other hand, since ρ((ψnk ,Snk ), (ψ ,S)) → , there is a positive integer k with k ≥
k, such that

ψnk (x, y) ∈ ψ(x, y) + (/)ε̄B for any (x, y) ∈ K ×K and all k ≥ k. ()

By (), () and (), we have

ψnk (xnk ,a
′
nk ) ∈ ψ(xnk ,a

′
nk ) + (/)ε̄B ⊂ ψ(x̄, z) + (/)ε̄B + (/)ε̄B –Cn

⊂ ψ(x̄, z) + ε̄B –Cn ⊂ – intCn –Cn ⊂ – intCn for all k ≥ k.

This contradicts (). Hence () holds. Then by the arbitrariness of z ∈ S(x̄), we obtain that

ψ(x̄, z) /∈ – intCn for all z ∈ S(x̄). ()

By () and (), we have that ((ψ ,S), x̄) ∈ Graph(F). Hence, Graph(F) is closed. F(u) is also
closed, for all u ∈ H . By the compactness of K , we know that F is a set-valued mapping
with compact values. Hence, F is an usco mapping. The proof is completed. �

For each u ∈ H , the component of a point x ∈ F(u) is the union of all the connected
subsets of F(u) containing x. Note that the components are connected closed subsets of
F(u), and thus are connected and compact, see []. It is easy to see that the components of
two distinct points of F(u) either coincide or are disjoint, so that all components constitute
a decomposition of F(u) into connected pairwise disjoint compact subsets, i.e.,

F(u) =
⋃
α∈�

Fα(u),

where � is an index set for each α ∈ �, Fα(u) is a nonempty connected compact subset of
F(u) and, for any α,β ∈ � (α �= β), Fα(u)∩ Fβ (u) = ∅.

http://www.journalofinequalitiesandapplications.com/content/2012/1/181
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Definition . Let u ∈ H and m be a nonempty closed subset of F(u). m is said to be an
essential set of F(u) if, for each open set O ⊃m, there exists δ >  such that for any u′ ∈ H
with ρ(u,u′) < δ, F(u′)∩O �= ∅. If a component Fα(u) of F(u) is an essential set, then Fα(u)
is said to be an essential component of F(u). An essential set m of F(u) is said to be a
minimal essential set of F(u) if m is a minimal element of the family of essential sets in
F(u) ordered by set inclusion.

Lemma . [] Let A, B and C be nonempty convex compact subsets of a normed linear
space X. Then h(A,λB+μC) ≤ λh(A,B)+μh(A,C), where h is the Hausdorffmetric defined
on CK(X), λ ≥ , μ ≥ , and λ +μ = .

The following theorem is the exist theorem of an essential component of the set of so-
lutions for the vector quasi-equilibrium problem.

Theorem .
(a) For any u ∈H , there exists at least one minimal essential set of F(u), and every

minimal essential set of F(u) is connected;
(b) For any u ∈H , there exists at least one essential connected component of F(u).

Proof
(a) Since F is upper semicontinuous, following the idea of Lemma . in [], we can

easily obtain that there exists one minimal essential set of F(u) for each u ∈ H . Now, for
each minimal essential set of F(u), as Yang and Yu did in [], we prove that each minimal
essential set of F(u) is connected. Letm(u) be one minimal essential set of F(u). Ifm(u) is
not connected, then there exist two nonempty closed sets c(u) and c(u) of F(u) and two
open sets V and V in K such that

m(u) = c(u)∪ c(u), c(u) ⊂ V, c(u) ⊂ V, V ∩V = ∅.

Since m(u) is a minimal essential set of F(u), neither c(u) nor c(u) is essential. Thus,
there exist two open sets O ⊃ c(u) and O ⊃ c(u) such that, for any δ > , there exist
u,u ∈ H with

ρ(u,u) < δ, ρ(u,u) < δ, but F(u)∩O = ∅, F(u)∩O = ∅. ()

SetW = V ∩O, andW = V ∩O. Then bothW andW are open sets and c(u) ⊂W,
and c(u) ⊂ W. Since c(u) and c(u) are a closed subset of the compact set F(u), c(u)
and c(u) are a compact set, there exist two open sets U and U such that

c(u) ⊂U ⊂U ⊂ W, c(u) ⊂U ⊂U ⊂ W, and W ∩W = ∅.

Since m(u) is essential and m(u) ⊂ U ∪ U, there exists δ′ >  such that for any u′ with
ρ(u,u′) < δ′, we have

F
(
u′) ∩ (U ∪U) �= ∅. ()

http://www.journalofinequalitiesandapplications.com/content/2012/1/181
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Since U ⊂O and U ⊂O, for above δ′/ > , by (), there exist u,u ∈H such that

ρ(u,u) < δ′/, ρ(u,u) < δ′/, F(u)∩U = ∅, F(u)∩U = ∅. ()

Since u,u ∈ H , we have u = (ψ,S) and u = (ψ,S). Now we define S′ : K → K and
ψ ′ : K ×K → Yn by

S′(x) = λ(x)S(x) +μ(x)S(x) for all x ∈ K

and

ψ ′(x, y) = λ(x)ψ(x, y) +μ(x)ψ(x, y) for all (x, y) ∈ K ×K ,

respectively, where

λ(x) =
d(x,U)

d(x,U) + d(x,U)
, μ(x) =

d(x,U)
d(x,U) + d(x,U)

for all x ∈ K .

It is obvious that λ and μ are continuous functions on K with λ(x) ≥ , μ(x) ≥ , and
λ(x) +μ(x) =  for any x ∈ K .
We can see that: (i) ψ ′(x, y) is (–Cn)-continuous on K × K ; (ii) for each fixed

x ∈ K , ψ ′(x, y) is Cn-convex in y; (iii) ψ ′(x,x) = θ /∈ – intCn for all x ∈ K ;
(iv) sup(x,y)∈K×K ‖ψ ′(x, y)‖ < +∞; (v) for each x ∈ K , S′(x) is convex and compact; (vi) S′

is continuous on K . Hence v := (ψ ′,S′) ∈H . By Lemma ., we have

h
(
S(x),S′(x)

) ≤ λ(x)h
(
S(x),S(x)

)
+μ(x)h

(
S(x),S(x)

)
≤ h

(
S(x),S(x)

)
+ h

(
S(x),S(x)

)
for all x ∈ K ,

and

∥∥ψ(x, y) –ψ ′(x, y)
∥∥ =

∥∥ψ(x, y) – λ(x)ψ(x, y) –μ(x)ψ(x, y)
∥∥

≤ λ(x)
∥∥ψ(x, y) –ψ(x, y)

∥∥ +μ(x)
∥∥ψ(x, y) –ψ(x, y)

∥∥
≤ ∥∥ψ(x, y) –ψ(x, y)

∥∥
+

∥∥ψ(x, y) –ψ(x, y)
∥∥ for all (x, y) ∈ K ×K .

Thus, by (), we have

ρ(u, v) = sup
(x,y)∈K×K

∥∥ψ(x, y) –ψ ′(x, y)
∥∥ + sup

x∈K
h
(
S(x),S′(x)

)
≤ sup

(x,y)∈K×K

∥∥ψ(x, y) –ψ(x, y)
∥∥ + sup

(x,y)∈K×K

∥∥ψ(x, y) –ψ(x, y)
∥∥

+ sup
x∈K

h
(
S(x),S(x)

)
+ sup

x∈K
h
(
S(x),S(x)

)
≤ ρ(u,u) + ρ(u,u) < δ′/ + δ′/ = δ′.

http://www.journalofinequalitiesandapplications.com/content/2012/1/181
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Using (), we have

F(v)∩ (U ∪U) �= ∅. ()

If x ∈ U, then λ(x) = , μ(x) = , S′(x) = S(x) and ψ ′(x, y) = ψ(x, y) for all y ∈ K . If x ∈
F(v), then x ∈ S′(x) and ψ ′(x, y) /∈ – intCn for all y ∈ S′(x). Since S′(x) = S(x) and ψ ′(x, y) =
ψ(x, y) for all y ∈ K , we have x ∈ F(u). This contradicts (). Thus, we have F(v)∩U = ∅.
Similarly, we can show that F(v)∩U = ∅. This contradicts (). Hence,m(u) is connected,
so the conclusion (a) holds.
(b) For any u ∈ H , by (a), there exists at least one essential connected set m of F(u).

There exists a component Fα(u) of F(u) such that m ⊂ Fα(u). It is obvious that Fα(u) is
essential. �

Now, for each i ∈ I , let fi : K × Ki → Yi be a vector-valued mapping and Si : K → Ki a
set-valued mapping. Let

D = {(f, . . . , fi, . . . , fn): for each i ∈ I = {, , . . . ,n}, fi(·, ·) is (–Ci)-continuous on
K × Ki; for each i ∈ I and each fixed x ∈ K , fi(x, ·) is Ci-convex; for each i ∈ I
and each x ∈ K , fi(x,xi) = θ , where xi is the ith component of x and θ is the zero
element of Yi; for each i ∈ I, sup(x,yi)∈K×Ki ‖fi(x, yi)‖ < +∞, where ‖ · ‖ is the norm
on Yn}.

Let

Q = {(S, . . . ,Si, . . . ,Sn): for each i ∈ I = {, , . . . ,n} and each x ∈ K , Si(x) is a
nonempty compact convex subset of Ki; for each i ∈ I, Si is continuous on K}.

Let P =D×Q. For any

p =
(
(f, . . . , fn), (S, . . . ,Sn)

)
, p =

(
(f, . . . , fn), (S, . . . ,Sn)

) ∈ P,

define

ρ(p,p) =
n∑
i=

sup
(x,yi)∈K×Ki

∥∥fi(x, yi) – fi(x, yi)
∥∥ + sup

x∈K
h

( n∏
i=

Si(x),
n∏
i=

Si(x)

)
,

where h is the Hausdorff metric defined on CK(X). Clearly, (P,ρ) is a metric space.
Let K =

∏n
i=Ki. It is clear that K is a nonempty compact convex subset of X =

∏n
i=Xi.

For any (f, . . . , fn) ∈ D, and (S, . . . ,Sn) ∈Q, define the mapping ψ : K ×K → Yn by

ψ(x, y) =
n∑
i=

fi(x, yi), x = (x, . . . ,xn), y = (y, . . . , yi, . . . , yn) ∈ K ,

and the mapping S : K → K by

S(x) =
n∏
i=

Si(x), x ∈ K .

http://www.journalofinequalitiesandapplications.com/content/2012/1/181
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Since (f, . . . , fn) ∈ D and (S, . . . ,Sn) ∈ Q, we can see that S : K → K is continuous with
nonempty convex and compact valued, (i) ψ(·, ·) is (–Cn)-continuous on K × K ; (ii) for
each fixed x ∈ K , ψ(x, ·) is (–Cn)-convex; and (iii) ψ(x,x) = θ /∈ – intCn for all x ∈ K . It is
clear that (ψ ,S) ∈H . Since Yi ⊂ Yn for each i ∈ I = {, , . . . ,n}, by Theorem ., there exists
an element x* ∈ K such that x* ∈ S(x*) and

ψ
(
x*, y

)
/∈ – intCn for all y ∈ S

(
x*

)
.

That is

f
(
x*, y

)
+ · · · + fi

(
x*, yi

)
+ · · · + fn

(
x*, yn

)
/∈ – intCn for all y ∈ S

(
x*

)
, . . . , yn ∈ Sn

(
x*

)
.

For each i ∈ I , by the arbitrariness of yj ∈ Sj(x*), j ∈ {, . . . ,n}, j �= i, take yj = x*j , and by
assumption fj(x*,x*j ) = θ , j = , . . . ,n, and j �= i, we obtain that x*i ∈ Si(x*) and

fi
(
x*, yi

)
/∈ – intCn for all yi ∈ Si

(
x*

)
.

Since fi(x*, yi) ∈ Yi and Ci = Cn ∩ Yi, it follows that

fi
(
x*, yi

)
/∈ – intCi for all yi ∈ Si

(
x*

)
.

Thus, there exists x* = (x*, . . . ,x*n) ∈ K such that for each i ∈ I , x*i ∈ Si(x*) and

fi
(
x*, yi

)
/∈ – intCi for all yi ∈ Si

(
x*

)
. ()

For each p ∈ P, denote by E(p) all solutions to the SVQEP. By (), there exists x* ∈ E(p),
thus E(p) �= ∅. Similar to Definition ., we can define the minimal essential set and essen-
tial component of E(p).

Lemma . For each p = ((f, . . . , fn), (S, . . . ,Sn)) ∈ P, define the mapping T : P →H by

T(p) = (ψ ,S),

where

ψ(x, y) =
n∑
i=

fi(x, yi), x = (x, . . . ,xn), y = (y, . . . , yi, . . . , yn) ∈ K

and

S(x) =
n∏
i=

Si(x), x ∈ K .

Then T is continuous.

Proof It is easy to check that for each p = ((f, . . . , fn), (S, . . . ,Sn)) ∈ P, T(p) = (ψ ,S) ∈H .

http://www.journalofinequalitiesandapplications.com/content/2012/1/181
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For any p = ((f, . . . , fn), (S, . . . ,Sn)), p = ((f, . . . , fn), (S, . . . ,Sn)) ∈ P, if
ρ(p,p) < ε, then by the definition of ρ, we have

ρ
(
T(p),T(p)

)
= sup

(x,y)∈K×K

∥∥∥∥∥
n∑
i=

fi(x, yi) –
n∑
i=

fi(x, yi)

∥∥∥∥∥
+ sup

x∈K
h

( n∏
i=

Si(x),
n∏
i=

Si(x)

)
≤ sup

(x,y)∈K×K

∥∥f(x, y) – f(x, y)
∥∥

+ · · · + sup
(x,y)∈K×K

∥∥fn(x, yn) – fn(x, yn)
∥∥ + sup

x∈K
h

( n∏
i=

Si(x),
n∏
i=

Si(x)

)

=
n∑
i=

sup
(x,yi)∈K×Ki

∥∥fi(x, yi) – fi(x, yi)
∥∥ + sup

x∈K
h

( n∏
i=

Si(x),
n∏
i=

Si(x)

)

≤ ρ(p,p) < ε.

This completes the proof of the lemma. �

The following lemma can be found in [].

Lemma . Let U, Y and Z be three metric spaces, F : U → Y be an usco mapping and
G : Z → Y be a set-valued mapping. Suppose that there exists a continuous mapping T :
Z → U such that G(z) ⊃ F(T(z)) for each z ∈ Z. Furthermore, suppose that there exists at
least one essential component of F(ϕ) for each ϕ ∈U. Then there exists at least one essential
component of G(z) for each z ∈ Z.

As application of Theorem ., now we will show that, for every system of vector quasi-
equilibrium problems, there exists at least one essential component of the set of its solu-
tions in the uniform topological space of objective functions and constraint mappings.

Theorem . For each p ∈ P, there exists at least one essential component of E(p).

Proof For any p = ((f, . . . , fn), (S, . . . ,Sn)) ∈ P, define T : P →H by T(p) = (ψ ,S), where

ψ(x, y) =
n∑
i=

fi(x, yi), x = (x, . . . ,xn), y = (y, . . . , yi, . . . , yn) ∈ K

and

S(x) =
n∏
i=

Si(x), x ∈ K .

By Lemma ., T is continuous. Nowwe need to prove that for each p ∈ P, E(p)⊃ F(T(p)),
where F is defined by (). If x* = (x*, . . . ,x*i , . . . ,x*n) ∈ F(T(p)), then x* ∈ K , x* ∈ S(x*) and

ψ
(
x*, y

)
/∈ – intCn for all y ∈ S

(
x*

)
.

http://www.journalofinequalitiesandapplications.com/content/2012/1/181
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That is

f
(
x*, y

)
+ · · · + fi

(
x*, yi

)
+ · · · + fn

(
x*, yn

)
/∈ – intCn for all y ∈ S

(
x*

)
, . . . , yn ∈ Sn

(
x*

)
.

For each i ∈ I , by the arbitrariness of yj ∈ Sj(x*), j ∈ {, . . . ,n}, j �= i, take yj = x*j , and by
assumption fj(x*,x*j ) = θ , j = , . . . ,n, and j �= i, we obtain that x*i ∈ Si(x*) and

fi
(
x*, yi

)
/∈ – intCn for all yi ∈ Si

(
x*

)
.

Since fi(x*, yi) ∈ Yi and Ci = Cn ∩ Yi, it follows that

fi
(
x*, yi

)
/∈ – intCi for all yi ∈ Si

(
x*

)
.

Hence x* ∈ E(p) and hence E(p) ⊃ F(T(p)). Thus, by Lemma ., Theorem . and
Lemma ., there exists at least one essential component of E(p). �
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