Weighted Trudinger inequality associated with rough multilinear fractional type operators

Han Feng and Qingying Xue*

"Correspondence:
qyxue@bnu.edu.cn
Laboratory of Mathematics and
Complex Systems, School of Mathematical Sciences, Beijing Normal University, Ministry of Education, Beijing, 100875, People's Republic of China

Abstract

Let $I_{\Omega, \alpha}^{\Theta}$ be the multilinear fractional type operator defined by $\left.\right|_{\Omega, \alpha} ^{\Theta}(\vec{f})(x)=\int_{\mathbb{R}^{n}} \Omega(y) \prod_{j=1}^{m} f_{j}\left(x-\theta_{j} y\right)|y|^{(\alpha-n)} d y$. In this paper, we study the weighted estimates for the Trudinger inequality associated to $I_{\Omega, \alpha}^{\Theta}$ with rough homogeneous kernels, which improve some known results significantly. A similar Trudinger inequality holds for another type of fractional integral defined by
$\bar{I}_{\Omega, \alpha} \vec{f}(x)(x)=\int_{\left(\mathbb{R}^{n}\right)^{m}} \frac{\prod_{j=1}^{m}\left|f_{j}\left(y_{j}\right) \| \Omega_{j}\left(x-y_{j}\right)\right|}{\left.\mid\left(x-y_{1}, x-y_{2}, \ldots, x-y_{m}\right)\right)^{m n-\alpha}} d \vec{y}$, where $d \vec{y}=d y_{1} \cdots d y_{m}$.
Keywords: Riesz potential; multilinear fractional integral; A_{p} weights; $A_{p, q}$ weights; Trudinger inequality

1 Introduction

The Trudinger inequality (also sometimes called the Moser-Trudinger inequality) is named after N. Trudinger who first put forward this inequality in [22]. Later, J. Moser [14] gave a sharp form of this Trudinger inequality. It provides an inequality between a certain Sobolev space norm and an Orlicz space norm of a function. In [14], J. Moser gave the largest positive number β_{0}, such that if $u \in C^{1}\left(\mathbb{R}^{n}\right)$, normalized and supported in a domain D with finite measure in \mathbb{R}^{n}, such that $\int_{D}|\nabla u(x)|^{n} d x \leq 1$, then there is a constant c_{0} depending only on n such that for all $\beta \leq \beta_{0}=n w_{n-1}^{1 /(n-1)}$, where w_{n-1} is the area of the surface of the unit n-ball. The following inequality holds:

$$
\begin{equation*}
\int_{D} \exp \left(\beta|u(x)|^{n /(n-1)}\right) d x \leq c_{0}|D| \tag{1.1}
\end{equation*}
$$

In 1971, D. Adams [1] considered the similar inequality of J. Moser for higher order derivatives. The key, for him, was to write the function u as a potential I_{α} (see the definition below) and prove the analogue of (1.1) as follows:

$$
\begin{equation*}
\int_{D} \exp \left(\frac{n}{w_{n-1}}\left|\frac{I_{\alpha} f(x)}{\|f\|_{p}}\right|^{n /(n-\alpha)}\right) d x \leq c_{0}|D|, \quad \text { for } \alpha=n / p, f \in L^{p}(1<p<\infty) \tag{1.2}
\end{equation*}
$$

Variant forms of the Trudinger inequality as a generalization of the classical results, especially in the literature associated with multilinear Riesz potential or multilinear fractional integral, have been studied in recently years (see, for example, $[2,3,6,7,10,14,16-$ 18,

20, 21]). This kind of inequality plays an important role in Harmonic analysis and other fields, such as PDE.

We begin by introducing a class of multilinear maximal function and multilinear fractional integral operators. Suppose that $n \geq 2,0<\alpha<n, \Omega$ is homogeneous of degree zero, and $\Omega \in L^{s}\left(S^{n-1}\right)(s>1)$, where S^{n-1} denotes the unit sphere of \mathbb{R}^{n}. The multilinear maximal function and multilinear fractional integral is defined by

$$
\begin{equation*}
I_{\Omega, \alpha}^{\Theta}(\vec{f})(x)=\int_{\mathbb{R}^{n}} \Omega(y) \prod_{j=1}^{m} f_{j}\left(x-\theta_{j} y\right)|y|^{(\alpha-n)} d y \tag{1.3}
\end{equation*}
$$

and the fractional maximal operator $M_{\Omega, \alpha}$ defined by

$$
\begin{equation*}
M_{\Omega, \alpha}^{\Theta}(\vec{f})(x)=\sup _{r>0} \frac{1}{r^{n-\alpha}} \int_{|y|<r}|\Omega(y)| \prod_{j=1}^{m}\left|f_{j}\left(x-\theta_{j} y\right)\right| d y \tag{1.4}
\end{equation*}
$$

Multilinear fractional integral $I_{\Omega, \alpha}^{\Theta}$ can be looked at as a natural generalization of the classical fractional integral, which has a very profound background of partial differential equations and is a very important operator in Harmonic analysis. In fact, if we take $K=1$, $\theta_{j}=1$, and $\Omega=1$, then $I_{\Omega, \alpha}^{\Theta}$ is just the well-known classical fractional integral operator studied by Muckenhoupt and Wheeden in [15]. We denote it by I_{α}. If $\Omega \equiv 1$, we simply denote $I_{\Omega, \alpha}^{\Theta}=I_{\alpha}^{\Theta}$. In recent years, the study of the Trudinger inequality associated to multilinear type operators has received increasing attention. Among them, it is well known that Grafakos considered the boundedness of a family of related fractional integrals in [7]. After that, in [6], Y. Ding and S. Lu gave the following Trudinger inequality with rough kernels.

Theorem A ([6]) Let $0<\alpha<n, s=\frac{n}{\alpha}, \frac{1}{s}=\frac{1}{p_{1}}+\frac{1}{p_{2}}+\cdots+\frac{1}{p_{m}}, p_{j}>1, j=1,2, \ldots, m, m \geq 2$. Denote B as a ball with a radius R in \mathbb{R}^{n}. Iff $f_{j} \in L^{p_{j}}(B), \operatorname{supp}\left(f_{j}\right) \subset B$, and $\Omega \in L^{n /(n-\alpha)}\left(S^{n-1}\right)$, then for any $\gamma<1$, there is a constant C, independent of $n, \alpha, \theta_{j}, \gamma$, such that

$$
\int_{B} \exp \left(n \gamma\left(\frac{L I_{\Omega, \alpha}^{\Theta}(\vec{f})(x)}{\|\Omega\|_{L^{n /(n-\alpha)}} \prod_{j=1}^{m}\left\|f_{j}\right\|_{L^{p_{j}}}}\right)^{n /(n-\alpha)}\right) d x \leq C R^{n}
$$

where $L=\prod_{j=1}^{m}\left|\theta_{j}\right|^{n / p_{j}}, \Theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{m}\right), \vec{f}=\left(f_{1}, f_{2}, \ldots, f_{m}\right)$ and

$$
\|\Omega\|_{L^{n /(n-\alpha)}}=\left(\int_{S^{n-1}}|\Omega(x)|^{n /(n-\alpha)} d \sigma(x)\right)^{(n-\alpha) / n}
$$

The definition of multiple weights $A_{\vec{p}, q}$ was given in [5] and [13] independently, including some weighted estimates for a class of multilinear fractional type operators. These results together with [12] answered an open problem in [8], namely the existence of the multiple weights.
In 2010, W. Li, Q. Xue, and K. Yabuta [16] obtained the weighted estimates for the Trudinger inequality associated to I_{α}^{Θ} as follows.

Theorem B ([16]) Let $0<\alpha<n, s=\frac{n}{\alpha}, \frac{1}{s}=\frac{1}{p_{1}}+\frac{1}{p_{2}}+\cdots+\frac{1}{p_{m}}, p_{j}>1, \omega_{j}(x) \in A_{p_{j}}$, and $\omega_{j} \geq 1$, $j=1,2, \ldots, m, m \geq 2, v_{\vec{\omega}}=\prod_{j=1}^{m} \omega_{j}^{s / p_{j}}$. Denote B as a ball with the radius R in $\mathbb{R}^{n}, i f f_{j} \in L_{\omega_{j}}^{p_{j}}(B)$,
$\operatorname{supp}\left(f_{j}\right) \subset B, j=1,2, \ldots, m$, then for any $\gamma<1$, there is a constant C, independent of n, α, θ_{j}, γ, such that

$$
\int_{B} \exp \left(\frac{n}{\omega_{n-1}} \gamma\left(\frac{L I_{\alpha}^{\Theta}(\vec{f})(x)}{\prod_{j=1}^{m}\left\|f_{j}\right\|_{L_{\omega_{j}}^{p_{j}}}}\right)^{n /(n-\alpha)}\right) v_{\vec{\omega}} d x \leq C \prod_{j=1}^{m} \omega_{j}(B),
$$

where $L=\prod_{j=1}^{m}\left|\theta_{j}\right|^{n / p_{j}}, \Theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{m}\right), \vec{f}=\left(f_{1}, f_{2}, \ldots, f_{m}\right)$.

On the other hand, in 1999, Kenig and Stein [11] considered another more general type of multilinear fractional integral which was defined by

$$
I_{\alpha, A}(\vec{f})(x)=\int_{\left(\mathbb{R}^{n}\right)^{m}} \frac{1}{\left|\left(y_{1}, \ldots, y_{m}\right)\right|^{m n-\alpha}} \prod_{i=1}^{m} f_{i}\left(\ell_{i}\left(y_{1}, \ldots, y_{m}, x\right)\right) d y_{i},
$$

where ℓ_{i} is a linear combination of $y_{j} \mathrm{~s}$ and x depending on the matrix A. They showed that $I_{\alpha, A}$ was of strong type ($L^{p_{1}} \times \cdots \times L^{p_{m}}, L^{q}$) and weak type ($L^{p_{1}} \times \cdots \times L^{p_{m}}, L^{q, \infty}$). When $\ell_{i}\left(y_{1}, \ldots, y_{m}, x\right)=x-y_{i}$, we denote this multilinear fractional type operator by \bar{I}_{α}. In 2008, L. Tang [20] obtained the estimation of the exponential integrability of the above operator \bar{I}_{α}, which is quite similar to Theorem B.

Thus, it is natural to ask whether Theorem B is true or not for $I_{\Omega, \alpha}^{\Theta}$ with rough kernels. Moreover, one may ask if Theorem B still holds or not for the operator with rough kernels defined by

$$
\bar{I}_{\Omega, \alpha}(\vec{f})(x)=\int_{\left(\mathbb{R}^{n}\right)^{m}} \frac{\prod_{j=1}^{m}\left|f_{j}\left(y_{j}\right)\right|\left|\Omega_{j}\left(x-y_{j}\right)\right|}{\left|\left(x-y_{1}, x-y_{2}, \ldots, x-y_{m}\right)\right|^{m n-\alpha}} d \vec{y}
$$

Inspired by the works above, in this paper, we study the Trudinger inequality associated to multilinear fractional integral operators $I_{\Omega, \alpha}^{\Theta}$ and $\bar{I}_{\Omega, \alpha}$ with rough homogeneous kernels. Precisely, we obtain the following theorems, which give a positive answer to the above questions.

Theorem 1.1 Let $0<\alpha<n, s=\frac{n}{\alpha}, \frac{1}{s}=\frac{1}{p_{1}}+\frac{1}{p_{2}}+\cdots+\frac{1}{p_{m}}, p_{j}>1, j=1,2, \ldots, m, m \geq 2$. Denote B as a ball with radius R in $\mathbb{R}^{n} ;$ iff $f_{j} \in L_{\omega_{j}}^{p_{j}}(B), \operatorname{supp}\left(f_{j}\right) \subset B(j=1,2, \ldots, m), \Omega \in L^{n /(n-\alpha)}\left(S^{n-1}\right)$, and $v_{\vec{\omega}}=\prod_{j=1}^{m} \omega_{j}^{\frac{s}{p_{j}}}$, where $\omega_{j} \in A_{s}, \omega_{j} \geq 1$. Then for any $\gamma<1$, there is a constant C, independent of $n, \alpha, \theta_{j}, \gamma$, such that

$$
\int_{B} \exp \left(n \gamma\left(\frac{L I_{\Omega, \alpha}^{\Theta}(\vec{f})(x)}{\|\Omega\|_{L^{n /(n-\alpha)}} \prod_{j=1}^{m}\left\|f_{j}\right\|_{L_{\omega_{j}} p_{j}}}\right)^{n /(n-\alpha)}\right) v_{\vec{\omega}} d x \leq C \prod_{j=1}^{m} \omega_{j}(B),
$$

where $L=\prod_{j=1}^{m}\left|\theta_{j}\right|^{n / p_{j}}, \Theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{m}\right), \vec{f}=\left(f_{1}, f_{2}, \ldots, f_{K}\right)$.

Remark 1.1 If we take $\Omega=1$, then Theorem 1.1 coincides with Theorem B. If $w_{j} \equiv 1$ for $j=1, \ldots, K$, then Theorem 1.1 is just Theorem A that appeared in [6]. We give an example of $v_{\vec{\omega}}$ as follows: Let $\omega_{j}(x)=(1+|x|)^{\alpha_{j}}\left(\alpha_{j} \geq 0\right.$ for each $\left.j\right)$, then $v_{\omega}(x)$ satisfy the conditions of the above Theorem 1.1.

Remark 1.2 Assume $m=1, \omega_{j}=1$. If $\alpha=1$, Trudinger [20] proved exponential integrability of $I_{\alpha}(\vec{f})$, and Strichartz [19] for other α. In 1972, Hedberg [9] gave a simpler proof for all α. In 1970, Hempel-Morris-Trudinger [10] showed that if $\gamma>1$, for $\alpha=1$ the inequality in Theorem 1.1 cannot hold, and later Adams [1] obtained the same conclusion for all α; meanwhile, in the endpoint case $\gamma=1$, it is true. In 1985, Chang and Marshall [4] proved a similar sharp exponential inequality concerning the Dirichlet integral. Assume $m \geq 2$, $w_{j}=1$, then the result was obtained by Grafakos [7] as we have already mentioned above.

Corollary 1.2 Let B, f_{j}, p_{j}, s, and $v_{\vec{\omega}}$ be the same as in Theorem 1.1, then $I_{\Omega, \alpha}^{\Theta}(\vec{f})$ is in $L^{q}\left(\nu_{\vec{\omega}}(B)\right)$ for every $q>0$, that is,

$$
\left\|I_{\Omega, \alpha}^{\Theta}(\vec{f})\right\|_{L^{q}\left(v_{\vec{\omega}}(B)\right)} \leq C\|\Omega\|_{L^{n /(n-\alpha)}\left(S^{n-1}\right)} \prod_{j=1}^{m}\left\|f_{j}\right\|_{L_{\omega_{j}}^{p_{j}}}
$$

for some constant C depending only on q on n on α and on the θ_{j} 's.

Theorem 1.3 Let $m \geq 2,0<\alpha<m n, 1 / p=1 / p_{1}+1 / p_{2}+\cdots+1 / p_{m}=\alpha / n$ with $1<p_{i}<\infty$ for $i=1,2, \ldots, m$. Let B be a ball with radius R in \mathbb{R}^{n} and let $f_{j} \in L^{p_{j}}(B)$ be supported in B, and if Ω_{j} is homogeneous of degree zero, and $\Omega_{j} \in L^{p_{j}^{\prime}}\left(S^{n-1}\right)$, where S^{n-1} denotes the sphere of \mathbb{R}^{n}, and $\nu_{\vec{\omega}}(\vec{y})=\prod_{j=1}^{m} \omega_{j}^{1 / p_{j}}\left(y_{j}\right)$, where $\vec{y}=\left(y_{1}, y_{2}, \ldots, y_{m}\right)$ and $\omega_{j} \in A_{s}, \omega_{j} \geq 1$. Then there exist constants k_{1}, k_{2} depending only on n, m, α, p, and the p_{j} such that

$$
\int_{B} \exp \left(k_{1}\left(\frac{\left|\bar{I}_{\Omega, \alpha}(\vec{f})(x)\right|}{\prod_{j=1}^{m}\left\|\Omega_{j}\right\|_{L^{\prime}{ }_{j}^{\prime}\left(S^{n-1}\right)}\left\|f_{j}\right\|_{L_{\omega_{j}}^{p_{j}}}}\right)^{n /(m n-\alpha)}\right) v_{\vec{\omega}}(x) d x \leq k_{2} \prod_{j=1}^{m} \omega_{j}(B) .
$$

Remark 1.3 If we take $\Omega=1, w_{j} \equiv 1$ for $j=1, \ldots, m$, then Theorem 1.3 is just as Theorem 1.3 appeared in [20]. But there is something that needs to be changed in the proof of Theorem 1.3 in [20]. In the case $r_{1}=r_{2}=\cdots=r_{m-1}=0$, one cannot obtain the conclusion that $F_{2} \leq C_{2}\left[\log \frac{2 \sqrt{m} R}{\delta}\right]^{(m n-\alpha) / n}$. Thus, our proof gives an alternative correction of Theorem 1.3 in [20].

Corollary 1.4 Let B, f_{j}, p_{j}, s, and $v_{\vec{\omega}}$ be the same as in Theorem 1.3. Then $\bar{I}_{\Omega, \alpha}(\vec{f})$ is in $L^{q}\left(\nu_{\vec{\omega}}(B)\right)$ for every $q>0$, that is,

$$
\left\|\bar{I}_{\Omega, \alpha}(\vec{f})\right\|_{L^{q}\left(v_{\bar{\omega}}(B)\right)} \leq C \prod_{j=1}^{m}\left\|\Omega_{j}\right\|_{L^{p_{j}^{\prime}}\left(S^{n-1}\right)}\left\|f_{j}\right\|_{L_{\omega_{j}}^{p_{j}}}
$$

for some constant C depending only on q on n on α.

Corollary 1.2 and Corollary 1.4 follow since exponential integrability of $\bar{I}_{\Omega, \alpha}(\vec{f})$ implies integrability to any power q.
On the other hand, we shall study the boundedness of the multilinear fractional maximal operator with a weighted norm. It follows the following theorem.

Theorem 1.5 If $1<p_{j}<\infty, \frac{1}{s}=\sum_{j=1}^{m} \frac{1}{p_{j}}, \frac{1}{r}=\frac{1}{s}-\frac{\alpha}{n}, \omega_{j}^{\frac{p_{j}}{s}} \in A\left(s, \frac{s r_{j}}{p_{j}}\right), 1 / r_{j}=1 / p_{j}(1-\alpha s / n)$, $j=1,2, \ldots, m, v_{\vec{\omega}}=\prod_{j=1}^{m} \omega_{j}$, then there is a constant C, independent f_{j}, such that

$$
\left(\int_{\mathbb{R}^{n}}\left(M_{1, \alpha}^{\Theta}(\vec{f})(x) \nu_{\vec{\omega}}(x)\right)^{r} d x\right)^{\frac{1}{r}} \leq C \prod_{j=1}^{m}\left(\int_{\mathbb{R}^{n}}\left|f_{j}(x) \omega_{j}(x)\right|^{p_{j}} d x\right)^{\frac{1}{p_{j}}}
$$

where $\vec{f}=\left(f_{1}, f_{2}, \ldots, f_{m}\right), f_{j} \in L_{\omega_{j}}^{p_{j}}\left(\mathbb{R}^{n}\right)$.

2 The proof of Theorem 1.1

In this section, we will prove Theorem 1.1.

Proof For any $\delta>0$,

$$
\left|I_{\Omega, \alpha}^{\Theta}(\vec{f})(x)\right| \leq C \delta^{\alpha} M_{\Omega}(\vec{f})(x)+\int_{|y| \geq \delta} \frac{|\Omega(y)|}{|y|^{n-\alpha}} \prod_{j=1}^{m} f_{j}\left(x-\theta_{j} y\right) d y
$$

Set $P=2 \min \left\{\frac{1}{\theta_{j}}: j=1,2, \ldots, K\right\}$. For any $R>0$, denote $B(R)$ as a ball with radius R in \mathbb{R}^{n}, then for any $x \in B(R)$, when $\left|x-\theta_{j} y\right|<R,\left|\theta_{j} y\right|<2 R$ for $j=1, \ldots, m$. Therefore, $|y|<R P$. So,

$$
\int_{|y| \geq \delta} \prod_{j=1}^{m} f_{j}\left(x-\theta_{j} y\right)|y|^{\alpha-n} d y=\int_{\delta \leq|y|<P R} \prod_{j=1}^{m} f_{j}\left(x-\theta_{j} y\right)|y|^{\alpha-n} d y
$$

According to the relationship between s and $p_{j}: \frac{1}{p_{1}}+\frac{1}{p_{2}}+\cdots+\frac{1}{p_{m}}+\frac{1}{n /(n-\alpha)}=1$, from the Hölder's inequality and $v_{\vec{\omega}} \geq 1$, it follows that

$$
\begin{aligned}
& \int_{\delta \leq|y|<P R} \Omega(y) \prod_{j=1}^{m} f_{j}\left(x-\theta_{j} y\right)|y|^{\alpha-n} d y \\
& \quad \leq\left(\int_{\delta \leq|y| \leq P R}\left(\prod_{j=1}^{m} f_{j}\left(x-\theta_{j} y\right)\right)^{s} d y\right)^{1 / s}\left(\int_{\delta \leq|y| \leq P R}\left(\frac{|\Omega(y)|}{|y|^{n-\alpha}}\right)^{s^{\prime}} d y\right)^{1 / s^{\prime}} \\
& \quad \leq\left(\int_{\delta \leq|y| \leq P R} \prod_{j=1}^{m} f_{j}\left(x-\theta_{j} y\right)^{s} v_{\vec{\omega}}\left(x-\theta_{j} y\right) d y\right)^{1 / s}\|\Omega\|_{L^{s^{\prime}}}\left(\ln \frac{P R}{\delta}\right)^{\frac{n-\alpha}{n}} \\
& \quad \leq \prod_{j=1}^{m}\left(\int_{\delta \leq|y| \leq P R}\left|f_{j}\left(x-\theta_{j} y\right)\right|^{p_{j}} \omega_{j}\left(x-\theta_{j} y\right) d y\right)^{\frac{1}{p_{j}}}\|\Omega\|_{L^{s^{\prime}}}\left(\frac{1}{n} \ln \left(\frac{P R}{\delta}\right)^{n}\right)^{\frac{n-\alpha}{n}} \\
& \quad \leq L^{-1} \prod_{j=1}^{m}\left\|f_{j}\right\|_{L_{\omega_{j}}^{p_{j}}}\|\Omega\|_{L^{s^{\prime}}}\left(\frac{1}{n} \ln \left(\frac{P R}{\delta}\right)^{n}\right)^{\frac{n-\alpha}{n}} \cdot
\end{aligned}
$$

Hence, we obtain that

$$
\left|I_{\Omega, \alpha}^{\Theta}(\vec{f})(x)\right| \leq C \delta^{\alpha} M_{\Omega} \vec{f}(x)+L^{-1} \prod_{j=1}^{m}\left\|f_{j}\right\|_{L_{\omega_{j}} p_{j}}\|\Omega\|_{L^{s^{\prime}}}\left(\frac{1}{n} \ln \left(\frac{P R}{\delta}\right)^{n}\right)^{\frac{n-\alpha}{n}}
$$

Set $\delta=\varepsilon\left(\left|I_{\Omega, \alpha}^{\Theta}(\vec{f})(x)\right| / C M_{\Omega}(\vec{f})(x)\right)^{1 / \alpha}$, then

$$
\exp \left\{n \gamma\left(\frac{L I_{\Omega, \alpha}^{\Theta}(\vec{f})(x)}{\|\Omega\|_{L^{s^{\prime}}} \prod_{j=1}^{m}\left\|f_{j}\right\|_{L_{\omega_{j}}^{p_{j}}}}\right)^{\frac{n}{n-\alpha}}\right\} \leq \ln C R^{n}\left(\frac{M_{\Omega}(\vec{f})(x)}{\left.I_{\Omega, \alpha}^{\Theta} \vec{f}\right)(x)}\right)^{n / \alpha}
$$

Now we put $B_{1}=\left\{x \in B: \frac{I_{\Omega, \alpha}^{\Theta}(\vec{f})(x)}{\|\Omega\|_{L^{n /(n-\alpha)}}^{m} \prod_{j=1}^{m}\left\|f_{j}\right\|_{L_{\omega_{j}} p_{j}}} \geq 1\right\}, B_{2}=B-B_{1}$, thus

$$
\begin{aligned}
& \int_{B_{1}} \exp \left(n \gamma\left(\frac{L I_{\Omega, \alpha}^{\Theta}(\vec{f})(x)}{\|\Omega\|_{L^{n /(n-\alpha)}} \prod_{j=1}^{m}\left\|f_{j}\right\|_{L_{\omega_{j}} p_{j}}}\right)^{n /(n-\alpha)}\right) v_{\vec{\omega}}(x) d x \\
& \quad \leq C R^{n} \int_{B_{1}}\left(\frac{M_{\Omega}(\vec{f})(x)}{I_{\Omega, \alpha}^{\Theta}(\vec{f})(x)}\right)^{n / \alpha} v_{\vec{\omega}}(x) d x \\
& \quad \leq C R^{n} \int_{B_{1}}\left(\frac{M_{\Omega}(\vec{f})(x)}{\|\Omega\|_{L^{n /(n-\alpha)}} \prod_{j=1}^{m}\left\|f_{j}\right\|_{L_{\omega_{j}} p_{j}}}\right)^{n / \alpha} v_{\vec{\omega}}(x) d x
\end{aligned}
$$

By the fact that

$$
\begin{aligned}
& M_{\Omega}(\vec{f})(x)=\sup _{r>0} \int_{|y|<r}|\Omega(y)|^{\sum_{j=1}^{m} \frac{s}{p_{j}}} \prod_{j=1}^{m} f_{j}\left(x-\theta_{j} y\right) d y \\
& \quad \leq \sup _{r>0} \prod_{j=1}^{m}\left(\frac{1}{r^{n}} \int_{|y|<r}|\Omega(y)| f_{j}^{\frac{p_{j}}{s}}\left(x-\theta_{j} y\right) d y\right)^{\frac{s}{p_{j}}} \\
& \quad \leq \prod_{j=1}^{m}\left(M_{\Omega}\left(f^{\frac{p_{j}}{s}}\right)(x)\right)^{\frac{s}{p_{j}}} .
\end{aligned}
$$

Therefore, we get

$$
\begin{aligned}
& \int_{B_{1}} \exp \left(n \gamma\left(\frac{L I_{\Omega, \alpha}^{\Theta}(\vec{f})(x)}{\|\Omega\|_{L^{n /(n-\alpha)}} \prod_{j=1}^{m}\left\|f_{j}\right\|_{L_{\omega_{j}}^{p_{j}}}}\right)^{n /(n-\alpha)}\right) v_{\vec{\omega}}(x) d x \\
& \quad \leq \frac{C R^{n}}{\|\Omega\|_{L^{n /(n-\alpha)}} \prod_{j=1}^{m}\left\|f_{j}\right\|_{L_{\omega_{j}}^{p_{j}}}^{s}} \int_{B_{1}} \prod_{j=1}^{m}\left(M_{\Omega}\left(f_{j}^{\frac{p_{j}}{s}}(x)\right)\right)^{\frac{s^{2}}{p_{j}}} \nu_{\vec{\omega}}(x) d x \\
& \quad \leq \frac{C R^{n}}{\|\Omega\|_{L^{n /(n-\alpha)}} \prod_{j=1}^{m}\left\|f_{j}\right\|_{L_{\omega_{j}}^{p-j}}^{s}} \prod_{j=1}^{m}\left(\int_{B_{1}}\left(M_{\Omega}\left(f_{j}^{\frac{p_{j}}{s}}(x)\right)\right)^{s} \omega_{j}(x) d x\right)^{\frac{1}{s} \frac{s^{2}}{p_{j}}} \\
& \quad \leq \frac{C R^{n}}{\|\Omega\|_{L^{n /(n-\alpha)}} \prod_{j=1}^{m}\left\|f_{j}\right\|_{L_{\omega_{j}}^{p_{j}}}^{s}} \prod_{j=1}^{m}\left\|f_{j}^{\frac{p_{j}}{s}}\right\|_{L_{\omega_{j}}^{s}}^{\frac{s^{2}}{p_{j}}} \\
& \quad \leq C R^{n} .
\end{aligned}
$$

Here, in the above third inequality, we have used the well-known weighted result of HardyLittlewood maximal function.

From $\omega_{j} \geq 1(j=1,2, \ldots, m)$, we get

$$
R^{n}=c \int_{B} d x \leq c \int_{B} \omega_{j}(x) d x=c \omega_{j}(B) .
$$

Hence,

$$
\int_{B_{1}} \exp \left(n \gamma\left(\frac{L I_{\Omega, \alpha}^{\Theta}(\vec{f})(x)}{\|\Omega\|_{L^{n /(n-\alpha)}} \prod_{j=1}^{m}\left\|f_{j}\right\|_{L_{\omega_{j}} p_{j}}}\right)^{n /(n-\alpha)}\right) \nu_{\vec{\omega}}(x) d x \leq C^{\prime} \prod_{j=1}^{m} \omega_{j}(B) .
$$

On the other hand,

$$
\begin{aligned}
& \int_{B_{2}} \exp \left(n \gamma\left(\frac{L I_{\Omega, \alpha}^{\Theta}(\vec{f})(x)}{\|\Omega\|_{L^{n /(n-\alpha)}} \prod_{j=1}^{m}\left\|f_{j}\right\|_{L_{\omega_{j}} p_{j}}}\right)^{n /(n-\alpha)}\right) v_{\vec{\omega}}(x) d x \\
& \quad \leq \exp (n \gamma)\left(\frac{L}{\|\Omega\|_{L^{s^{\prime}}}}\right)^{\frac{n}{n-\alpha}} \int_{B_{2}} v_{\vec{\omega}}(x) d x \\
& \quad \leq C \prod_{j=1}^{m} \omega_{j}(B)
\end{aligned}
$$

From the above all, we obtain that

$$
\int_{B} \exp \left(n \gamma\left(\frac{L I_{\Omega, \alpha}^{\Theta}(\vec{f})(x)}{\|\Omega\|_{L^{n /(n-\alpha)}} \prod_{j=1}^{m}\left\|f_{j}\right\|_{L_{\omega_{j}} p_{j}}}\right)^{n /(n-\alpha)}\right) \nu_{\vec{\omega}}(x) d x \leq C \prod_{j=1}^{m} \omega_{j}(B) .
$$

3 The proof of Theorem 1.5

In this section, we will prove Theorem 1.5.

Proof By the well-known Hölder's inequality, we get

$$
\begin{aligned}
M_{1, \alpha}(\vec{f})(x) & =\sup _{r>0} \frac{1}{|r|^{n-\alpha}} \int_{|y|<r} \prod_{j=1}^{m} f_{j}(x-y) d y \\
& \leq \sup _{r>0} \frac{1}{|r|^{n-\alpha}} \prod_{j=1}^{m}\left(\int_{|y|<r} f_{j}^{\frac{p_{j}}{s}}(x-y) d y\right)^{\frac{s}{p_{j}}} \\
& \leq \prod_{j=1}^{m}\left(\sup _{r>0} \frac{1}{|r|^{n-\alpha}} \int_{|y|<r} f_{j}^{\frac{p_{j}}{s}}(x-y) d y\right)^{\frac{s}{p_{j}}} \\
& =\prod_{j=1}^{m}\left(M_{1, \alpha}\left(f^{p_{j} / s}\right)(x)\right)^{\frac{s}{p_{j}}} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\left(\int_{\mathbb{R}^{n}}\left(M_{1, \alpha}(\vec{f})(x) v_{\vec{\omega}}(x)\right)^{r} d x\right)^{1 / r} & \leq\left[\int_{\mathbb{R}^{n}}\left(\prod_{j=1}^{m}\left[M_{1, \alpha}\left(f^{p_{j} / s}\right)(x) \omega_{j}^{p_{j} / s}(s)\right]^{\frac{s}{p_{j}}}\right)^{r} d x\right]^{1 / r} \\
& \leq \prod_{j=1}^{m}\left[\int_{\mathbb{R}^{n}}\left(M_{1, \alpha}\left(f_{j}^{p_{j} / s}\right)(x) \omega^{p_{j} / s}(x)\right)^{s r_{j} / p_{j}} d x\right]^{\frac{p_{j}}{s r_{j}} \frac{s}{p_{j}}}
\end{aligned}
$$

In addition, from the condition $\omega_{j}^{p_{j} / s}(x) \in A\left(s, \frac{s r_{j}}{p_{j}}\right)$, it follows that

$$
\left[\int_{\mathbb{R}^{n}}\left(M_{1, \alpha}\left(f_{j}^{p_{j} / s}\right)(x) \omega^{p_{j} / s}(x)\right)^{s r_{j} / p_{j}} d x\right]^{\frac{p_{j}}{s s_{j}} \frac{s}{p_{j}}} \leq C_{j}\left[\int_{\mathbb{R}^{n}}\left(f_{j}^{p_{j} / s}(x) \omega_{j}^{p_{j} / s}(x)\right)^{s} d x\right]^{1 / p_{j}}
$$

According to the above, we obtain that

$$
\left(\int_{R^{n}}\left(M_{1, \alpha}(\vec{f})(x) \nu_{\vec{\omega}}(x)\right)^{r} d x\right)^{1 / r}=C \prod_{j=1}^{m}\left(\int_{\mathbb{R}^{n}}\left(f_{j}(x) \omega_{j}(x)\right)^{p_{j}} d x\right)^{1 / p_{j}} .
$$

It is easy to see that

$$
M_{1, \alpha}^{\Theta}(\vec{f})(x)=\sup _{r>0} \frac{1}{r^{n-\alpha}} \int_{|y|<r} \prod_{j=1}^{m}\left|f_{j}\left(x-\theta_{j} y\right)\right| d y,
$$

where $\Theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{m}\right), \theta_{j} \in \mathbb{R}$ holds, also.

4 The proof of Theorem 1.3

In this section, we will prove Theorem 1.3.

Proof For any $\delta>0$ and $x \in B$,

$$
\begin{aligned}
& \left|\bar{I}_{\Omega, \alpha}\left(f_{1}, f_{2}, \ldots, f_{m}\right)(x)\right| \\
& \leq \int_{\left|\left(x-y_{1}, x-y_{2}, \ldots, x-y_{m}\right)\right|<\delta} \frac{\prod_{j=1}^{m}\left|\Omega_{j}\left(y_{j}\right) f_{j}\left(y_{j}\right)\right|}{\left|\left(x-y_{1}, x-y_{2}, \ldots, x-y_{m}\right)\right|^{m n-\alpha}} d \vec{y} \\
& \quad+\int_{\left|\left(x-y_{1}, x-y_{2}, \ldots, x-y_{m}\right)\right| \geq \delta} \frac{\prod_{j=1}^{m}\left|\Omega_{j}\left(y_{j}\right) f_{j}\left(y_{j}\right)\right|}{\left|\left(x-y_{1}, x-y_{2}, \ldots, x-y_{m}\right)\right|^{m n-\alpha}} d \vec{y} \\
& :=F_{1}+F_{2} .
\end{aligned}
$$

For F_{1}, let $\alpha=\sum_{j=1}^{m} \alpha_{j}$ with $\alpha_{j}=n / p_{j}$ for $j=1,2, \ldots, m$. Then

$$
\begin{aligned}
F_{1} & \leq \int_{\left|\left(x-y_{1}, x-y_{2}, \ldots, x-y_{m}\right)\right|<\delta} \frac{\left|\Omega_{j}\left(y_{j}\right) f_{j}\left(y_{j}\right)\right|}{\prod_{j=1}^{m}\left|x-y_{j}\right|^{n-\alpha_{j}}} d \vec{y} \\
& \leq \prod_{j=1}^{m} \int_{\left|x-y_{j}\right|<\delta} \frac{\left|\Omega_{j}\left(y_{j}\right) f_{j}\left(y_{j}\right)\right|}{\left|x-y_{j}\right|^{n-\alpha_{j}}} d y_{j} \\
& \leq C \prod_{j=1}^{m} \delta^{\alpha_{j}} M_{\Omega_{j}}\left(f_{j}\right)(x) \\
& :=C_{1} \delta^{\alpha} \prod_{j=1}^{m} M_{\Omega_{j}}\left(f_{j}\right)(x),
\end{aligned}
$$

where M_{Ω} denotes as $M_{\Omega}(f)(x)=\sup _{r>0} \frac{1}{r^{n}} \int_{|x-y|<r}|\Omega(y) f(y)| d y$.
For F_{2}, if $\left(y_{1}, y_{2}, \ldots, y_{m}\right)$ satisfies $\left|\left(x-y_{1}, x-y_{2}, \ldots, x-y_{m}\right)\right| \geq \delta$, then for some $j \in 1,2, \ldots, m$, $\left|x-y_{j}\right| \leq \frac{\delta}{\sqrt{m}}$. Without losing the generalization, we set $j=m$.

Thus,

$$
F_{2} \leq \int_{\delta / \sqrt{m} \leq\left|x-y_{m}\right| \leq 2 R} \int_{\left(\mathbb{R}^{n}\right)^{m-1}} \frac{\prod_{j=1}^{m}\left|\Omega_{j}\left(y_{j}\right) f_{j}\left(y_{j}\right)\right|}{\left|\left(x-y_{1}, x-y_{2}, \ldots, x-y_{m}\right)\right|^{m n-\alpha}} d \vec{y} .
$$

Define that $f_{j}^{0}=f_{j} \chi_{B(x, \delta / \sqrt{m})}$ and $f_{j}^{\infty}=f-f_{j}^{0}$ for $j=1,2, \ldots, m$. By the condition of $v_{\vec{\omega}}$, we have

$$
\begin{aligned}
F_{2} & \leq \sum_{\vec{r} \in\{0, \infty\}^{m}} \int_{\delta / \sqrt{m} \leq\left|x-y_{m}\right| \leq 2 R} \int_{\left(\mathbb{R}^{n}\right)^{m-1}} \frac{\prod_{j=1}^{m-1}\left|\Omega_{j}\left(y_{j}\right) f_{j}^{r_{j}}\left(y_{j}\right)\right|\left|\Omega_{m}\left(y_{m}\right) f_{m}\left(y_{m}\right)\right|}{\left|\left(x-y_{1}, x-y_{2}, \ldots, x-y_{m}\right)\right|^{m n-\alpha}} d \vec{y} \\
& \leq \sum_{\vec{r} \in\{0, \infty\}^{m}} \int_{\delta / \sqrt{m} \leq\left|x-y_{m}\right| \leq 2 R} \int_{\left(\mathbb{R}^{n}\right)^{m-1}} \frac{\prod_{j=1}^{m-1}\left|\Omega_{j}\left(y_{j}\right) f_{j}^{r_{j}}\left(y_{j}\right)\right|\left|\Omega_{m}\left(y_{m}\right) f_{m}\left(y_{m}\right)\right|}{\left|\left(x-y_{1}, x-y_{2}, \ldots, x-y_{m}\right)\right|^{m n-\alpha}} v_{\vec{\omega}}(\vec{y}) d \vec{y},
\end{aligned}
$$

where $\vec{r}=\left(r_{1}, r_{2}, \ldots, r_{m}\right)$. In the case that $r_{1}=r_{2}=\cdots=r_{m-1}=0$, by the fact that

$$
\begin{aligned}
\left|\left(x-y_{1}, x-y_{2}, \ldots, x-y_{m}\right)\right|^{m n-\alpha} & \geq\left|x-y_{m}\right|^{m n-\alpha} \\
& =\left|x-y_{m}\right|^{n-\alpha_{m}}\left|x-y_{m}\right|^{\sum_{j=1}^{m-1} n / p_{j}^{\prime}} \\
& \geq\left|x-y_{m}\right|^{n-\alpha_{m}}\left(\frac{\delta}{\sqrt{m}}\right)^{\sum_{j=1}^{m-1} n / p_{j}^{\prime}},
\end{aligned}
$$

we have

$$
\begin{aligned}
& \int_{\delta / \sqrt{m} \leq\left|x-y_{m}\right| \leq 2 R} \int_{\left(\mathbb{R}^{n}\right)^{m-1}} \frac{\prod_{j=1}^{m-1}\left|\Omega_{j}\left(y_{j}\right) f_{j}^{0}\left(y_{j}\right)\right|\left|\Omega\left(y_{m}\right) f_{m}\left(y_{m}\right)\right|}{\left|\left(x-y_{1}, x-y_{2}, \ldots, x-y_{m}\right)\right|^{m n-\alpha}} v_{\vec{\omega}}(\vec{y}) d \vec{y} \\
& \quad \leq \prod_{j=1}^{m-1} \delta^{-\frac{n}{p_{j}^{\prime}}} \int_{\frac{\delta}{\sqrt{m}} \leq\left|x-y_{m}\right| \leq 2 R} \frac{\left|\Omega_{m}\left(y_{m}\right) f_{m}\left(y_{m}\right)\right|}{\left|x-y_{m}\right|^{n-\alpha_{m}}} \omega_{m}^{1 / p_{m}}\left(y_{m}\right) d y_{m} \\
& \quad \times \prod_{j=1}^{m-1} \int_{\left|x-y_{j}\right|<\delta / \sqrt{m}}\left|\Omega_{j}\left(y_{j}\right) f_{j}\left(y_{j}\right)\right| \omega_{j}^{1 / p_{j}}\left(y_{j}\right) d y_{j} \\
& \leq C \prod_{j=1}^{m}\left\|\Omega_{j}\right\|_{L^{p_{j}^{\prime}}\left(S^{n-1}\right)}\left\|f_{j}\right\|_{L_{\omega_{j}}}\left(\log \frac{2 R \sqrt{m}}{\delta}\right)^{1 / p_{m}^{\prime}} \\
& \quad \leq C \prod_{j=1}^{m}\left\|\Omega_{j}\right\|_{L^{p_{j}^{\prime}}}\left\|f_{\left.j S^{n-1}\right)}\right\|_{L_{\omega_{j}}^{p_{j}}}\left(\log \frac{2 R \sqrt{m}}{\delta}\right)^{(m n-\alpha) / n} .
\end{aligned}
$$

Consider the case where exactly l of the r_{j} are ∞ for some $1 \leq l \leq m$. Without losing the generalization, we only give the argument for $r_{j}=\infty, j=1,2, \ldots, l$, then

$$
\begin{aligned}
& \int_{\delta / \sqrt{m} \leq\left|x-y_{m}\right| \leq 2 R} \int_{\left(\mathbb{R}^{n}\right)^{m-1}} \frac{\prod_{j=1}^{m} \Omega_{j}\left(y_{j}\right) \prod_{j=1}^{l}\left|f_{j}^{\infty}\left(y_{j}\right) \prod_{k l+1}^{m-1} f_{k}^{0}\left(y_{k}\right) f_{m}\left(y_{m}\right)\right|}{\left|\left(x-y_{1}, x-y_{2}, \ldots, x-y_{m}\right)\right|^{m n-\alpha}} v_{\bar{\omega}} d \vec{y} \\
& \leq \prod_{k=l+1}^{m-1} \int_{\left|x-y_{k}\right| \mid \delta \delta / \sqrt{m}}\left|\Omega_{k}\left(y_{k}\right) f_{k}\left(y_{k}\right)\right| \omega_{k}^{1 / p_{m}}\left(y_{k}\right) d y_{k} \\
& \quad \times \prod_{j=1}^{l} \int_{\delta / \sqrt{m} \leq\left|x-y_{j}\right| \leq 2 R} \frac{\left|\Omega_{j}\left(y_{j}\right) f_{j}\left(y_{j}\right)\right|}{\left|x-y_{j}\right|^{n-\alpha_{j}}} \omega_{j}^{1 / p_{j}}\left(y_{j}\right) d y_{j}
\end{aligned}
$$

$$
\begin{aligned}
& \times \int_{\delta / \sqrt{m} \leq\left|x-y_{m}\right| \leq 2 R} \frac{\left|\Omega_{m}\left(y_{m}\right) f_{m}\left(y_{m}\right)\right|}{\left|x-y_{m}\right|^{(m-l) n-\sum_{k=l+1}^{m} \alpha_{k}}} \omega_{m}^{1 / p_{m}}\left(y_{m}\right) d y_{m} \\
\leq & C\left[\log \frac{2 \sqrt{m} R}{\delta}\right]^{\sum_{k=1}^{l} \frac{1}{p_{m}^{\prime}}} \prod_{j=1}^{m}\left\|\Omega_{j}\right\|_{L^{p_{j}^{\prime}}\left(S^{n-1}\right)}\left\|f_{j}\right\|_{L_{\omega_{j}}} \\
\leq & C \prod_{j=1}^{m}\left\|\Omega_{j}\right\|_{L^{p_{j}^{\prime}}}{ }_{\left(S^{n-1}\right)}\left\|f_{j}\right\|_{L_{\omega_{j}}^{p_{j}}}\left[\log \frac{2 \sqrt{m} R}{\delta}\right]^{(m n-\alpha) / n} .
\end{aligned}
$$

Combining the above cases, we obtain

$$
\left.F_{2} \leq C_{2} \prod_{j=1}^{m}\left\|\Omega_{j}\right\|_{L^{p_{j}^{\prime}}} \| S^{n-1}\right) \quad\left\|f_{j}\right\|_{L_{\omega_{j}}^{p_{j}}}\left[\log \frac{2 \sqrt{m} R}{\delta}\right]^{(m n-\alpha) / n}
$$

Thus, by the estimates for F_{1}, F_{2}, we have

$$
\begin{aligned}
\bar{I}_{\Omega, \alpha}\left(f_{1}, f_{2}, \ldots, f_{m}\right)(x) \leq & C_{1} \delta^{\alpha} \prod_{j=1}^{m} M_{\Omega_{j}}\left(f_{j}\right)(x) \\
& +C_{2} \prod_{j=1}^{m}\left\|\Omega_{j}\right\|_{L^{p_{j}^{\prime}}\left(S^{n-1}\right)}\left\|f_{j}\right\|_{L_{\omega_{j}} p_{j}}\left[\log \frac{2 \sqrt{m} R}{\delta}\right]^{(m n-\alpha) / n} .
\end{aligned}
$$

In particular, we chose $\delta=2 \sqrt{m} R$ for all $x \in B$, then

$$
\bar{I}_{\Omega, \alpha}\left(f_{1}, f_{2}, \ldots, f_{m}\right)(x) \leq C_{1} \delta^{\alpha} \prod_{j=1}^{m} M_{\Omega_{j}}\left(f_{j}\right)(x)
$$

Now, we set

$$
\delta=\delta(x)=\varepsilon\left[\left|\bar{I}_{\Omega, \alpha}\left(f_{1}, f_{2}, \ldots, f_{m}\right)(x)\right| / C_{1} \prod_{j=1}^{m} M_{\Omega_{j}}\left(f_{j}\right)(x)\right]^{1 / \alpha}
$$

where $\varepsilon<1$.
Then

$$
\begin{aligned}
& \left|\bar{I}_{\Omega, \alpha}\left(f_{1}, f_{2}, \ldots, f_{m}\right)(x)\right| \\
& \leq \varepsilon^{\alpha}\left|\bar{I}_{\Omega, \alpha}\left(f_{1}, f_{2}, \ldots, f_{m}\right)(x)\right| \\
& \quad+C_{2} \prod_{j=1}^{m}\left\|\Omega_{j}\right\|_{L^{L_{j}^{\prime}}\left(S^{n-1}\right)}\left\|f_{j}\right\|_{L_{\omega_{j}}^{p_{j}}}\left[\frac{1}{n} \log \left(\frac{(2 \sqrt{m} R)^{n}\left[C_{1} \prod_{j=1}^{m} M_{\Omega_{j}}\left(f_{j}\right)(x)\right]^{n / \alpha}}{\varepsilon^{n}\left|\bar{I}_{\Omega, \alpha}\left(f_{1}, f_{2}, \ldots, f_{m}\right)(x)\right|^{n / \alpha}}\right)\right]^{(m n-\alpha) / n} .
\end{aligned}
$$

Hence,

$$
\exp \left(k_{1}\left(\frac{\left|\bar{I}_{\Omega, \alpha}\left(f_{1}, f_{2}, \ldots, f_{m}\right)(x)\right|}{\prod_{j=1}^{m}\left\|\Omega_{j}\right\|_{L^{p_{j}^{\prime}}\left(S^{n-1}\right)}\left\|f_{j}\right\|_{L_{\omega_{j}}^{p_{j}}}}\right)^{n /(m n-\alpha)}\right) \leq \frac{C\left[\prod_{j=1}^{m} M_{\Omega_{j}}\left(f_{j}\right)(x)\right]^{n / \alpha}}{\left|\bar{I}_{\Omega, \alpha}\left(f_{1}, f_{2}, \ldots, f_{m}\right)(x)\right|^{n / \alpha}}
$$

Let $B_{1}=\left\{x \in B: \frac{\left|\bar{I}_{\Omega, \alpha}\left(f_{1} f_{2}, \ldots, f_{m}\right)(x)\right|}{\prod_{j=1}^{m}\left\|\Omega_{j}\right\|_{L^{p_{j}^{\prime}}}^{\prime} S_{\left(S^{n-1}\right)}\left\|f_{j}\right\|_{L^{p_{j}}}} \geq 1\right\}$ and $B_{2}=B-B_{1}$, then

$$
\begin{aligned}
& \int_{B_{1}} \exp \left(k _ { 1 } \left(\frac{\left|\bar{I}_{\Omega_{, \alpha} \alpha}\left(f_{1}, f_{2}, \ldots, f_{m}\right)(x)\right|}{\left.\left.\prod_{j=1}^{m}\left\|\Omega_{j}\right\|_{L^{p_{j}^{\prime}}{ }_{\left(S^{n-1}\right)}\left\|f_{j}\right\|_{L_{\omega_{j}}^{p_{j}}}}\right)^{n /(m n-\alpha)}\right) v_{\vec{\omega}} d x} \begin{array}{l}
\quad \leq C R^{n} \int_{B_{1}}\left(\frac{\prod_{j=1}^{m} M_{\Omega_{j}}\left(f_{j}\right)(x)}{\prod_{j=1}^{m}\left\|\Omega_{j}\right\|_{L^{p_{j}^{\prime}}\left(S^{n-1}\right)}\left\|f_{j}\right\|_{L_{\omega_{j}} p_{j}}}\right)^{n / \alpha} v_{\vec{\omega}} d x \\
\quad \leq C R^{n}\left(\prod_{j=1}^{m} \frac{\left\|M_{\Omega_{j}}\left(f_{j}\right)\right\|_{L_{\omega_{j}}^{p_{j}}}}{\left\|\Omega_{j}\right\|_{L^{p_{j}^{\prime}}}{ }_{\left(S^{n-1}\right)}\left\|f_{j}\right\|_{L_{\omega_{j}}^{p_{j}}}}\right)^{n / \alpha} \\
\quad \leq C R^{n} \\
\quad \leq C \prod_{j}^{m} \omega_{j}(B) .
\end{array} .\right.\right.
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \int_{B_{2}} \exp \left(k_{1}\left(\frac{\left|\bar{I}_{\Omega_{, \alpha}}\left(f_{1}, f_{2}, \ldots, f_{m}\right)(x)\right|}{\prod_{j=1}^{m}\left\|\Omega_{j}\right\|_{L^{p_{j}^{\prime}}\left(S^{n-1}\right)}\left\|f_{j}\right\|_{L^{p_{j}}}}\right)^{n /(m n-\alpha)}\right) v_{\bar{\omega}}(x) d x \\
& \quad \leq \exp \left(k_{1}\right) \prod_{j=1}^{m} \int_{B_{2}} \omega_{j}(x) d x \\
& \quad \leq C \prod_{j=1}^{m} \omega_{j}(B) .
\end{aligned}
$$

Combining the above results, we obtain

$$
\int_{B} \exp \left(k_{1}\left(\frac{\left|\bar{I}_{\Omega, \alpha}\left(f_{1}, f_{2}, \ldots, f_{m}\right)(x)\right|}{\prod_{j=1}^{m}\left\|\Omega_{j}\right\|_{L^{p_{j}^{\prime}}\left(S^{n-1}\right)}\left\|f_{j}\right\|_{L^{p_{j}}}}\right)^{n /(m n-\alpha)}\right) v_{\vec{\omega}}(x) d x \leq k_{2} \prod_{j=1}^{m} \omega_{j}(B),
$$

where k_{1}, k_{2} are constants depending only on n, m, α, p, and the p_{j}.

Competing interests

The authors declare that they have no competing interests

Authors' contributions

All authors read and approved the final manuscript.

Authors' information

H. Feng's current address: Department of Mathematical and Statistical Sciences, University of Alberta, Canada.

Acknowledgement

The second author was supported partly by NSFC (Grant No. 10701010), NSFC (Key program Grant No. 10931001), Beijing Natural Science Foundation (Grant: 1102023), Program for Changjiang Scholars and Innovative Research Team in University.

References

1. Adams, D: A sharp inequality of J. Moser for higher order derivatives. Ann. Math. 128, 385-398 (1988)
2. Cerny, R, Gurka, P, Hencl, S: Concentration compactness principle for generalized Trudinger inequalities. Z. Anal Anwend. 30(3), 355-375 (2011)
3. Carleson, L, Chang, S: On the existence of an extremal function for an inequality of J. Moser. Bull. Sci. Math. (2) 110(2), 113-127 (1986)
4. Chang, S, Marshall, D: On a sharp inequality concerning the Dirichlet integral. Am. J. Math. 107, 1015-1033 (1985)
5. Chen, X, Xue, Q: Weighted estimates for a class of multilinear fractional type operators. J. Math. Anal. Appl. 362(2), 355-373 (2010)
6. Ding, $Y, L u, S$: The $L^{p_{1}} \times L^{p_{2}} \times \cdots \times L^{p_{m}}$ boundedness for some rough operators. J. Math. Anal. Appl. 203, 166-186 (1996)
7. Grafakos, L: On multilinear fractional integrals. Stud. Math. 102(1), 49-56 (1992)
8. Grafakos, L, Torres, RH: On multilinear singular integrals of Calderón-Zygmund type. In: Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations (El Escorual). Publ. Mat. Vol. Extra, 57-91 (2002)
9. Hedberg, LI: On certain convolution inequalities. Proc. Am. Math. Soc. 36, 505-510 (1972)
10. Hempel, J, Morris, G, Trudinger, N: On the sharpness of a limiting case of the Sobolev embedding theorem. Bull. Aust. Math. Soc. 3, 369-373 (1970)
11. Kenig, C, Stein, E: Multilinear estimates and fractional integration. Math. Res. Lett. 6, 1-15 (1999)
12. Lerner, AK, Ombrosi, S, Pérez, C, Torres, RH, Trujillo-González, R: New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory. Adv. Math. 220(4), 1222-1264 (2009)
13. Moen, K: Weighted inequalities for multilinear fractional integral operators. Collect. Math. 60, 213-238 (2009)
14. Moser, J: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077-1092 (1971)
15. Muckenhoupt, B, Wheeden, R: Weighted norm inequalities for fractional integrals. Trans. Am. Math. Soc. 192, 261-274 (1974)
16. Li, W, Xue, Q, Yabuta, K: Multilinear Calderón-Zygmund operators on weighted Hardy spaces. Stud. Math. 199(1), 1-16 (2010)
17. Lu, G, Yang, Y: Sharp constant and extremal function for the improved Moser-Trudinger inequality involving L^{p} norm in two dimension. Discrete Contin. Dyn. Syst., Ser. A 25, 963-979 (2009)
18. Ruf, B: A sharp Trudinger-Moser type inequality for unbounded domains in \mathbb{R}^{2}. J. Funct. Anal. 219(2), 340-367 (2005)
19. Strichartz, RS: A note on Trudinger's extension of Sobolev's inequalities. Indiana Univ. Math. J. 21, 841-842 (1972)
20. Tang, L: Endpoint estimates for multilinear fractional integrals. J. Aust. Math. Soc. 84, 419-429 (2008)
21. Tian, G, Zhu, X: A nonlinear inequality of Moser-Trudinger type. Calc. Var. Partial Differ. Equ. 10(4), 349-354 (2000)
22. Trudinger, N: On imbedding into Orlicz spaces and some applications. J. Math. Mech. 17, 473-483 (1967)
[^0]
Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

[^0]: doi:10.1186/1029-242X-2012-179
 Cite this article as: Feng and Xue: Weighted Trudinger inequality associated with rough multilinear fractional type operators. Journal of Inequalities and Applications 2012 2012:179.

