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Abstract
Let I��,α be the multilinear fractional type operator defined by

I��,α (
�f )(x) = ∫

Rn �(y)
∏m

j=1 fj(x – θjy)|y|(α–n) dy. In this paper, we study the weighted

estimates for the Trudinger inequality associated to I��,α with rough homogeneous
kernels, which improve some known results significantly. A similar Trudinger
inequality holds for another type of fractional integral defined by

Ī�,α (�f )(x) =
∫
(Rn)m

∏m
j=1 |fj (yj )||�j(x–yj )|

|(x–y1,x–y2,...,x–ym)|mn–α d�y, where d�y = dy1 · · ·dym.
Keywords: Riesz potential; multilinear fractional integral; Ap weights; Ap,q weights;
Trudinger inequality

1 Introduction
The Trudinger inequality (also sometimes called the Moser-Trudinger inequality) is
named after N. Trudinger who first put forward this inequality in []. Later, J. Moser
[] gave a sharp form of this Trudinger inequality. It provides an inequality between a
certain Sobolev space norm and an Orlicz space norm of a function. In [], J. Moser gave
the largest positive number β, such that if u ∈ C(Rn), normalized and supported in a
domain D with finite measure in R

n, such that
∫
D |∇u(x)|n dx≤ , then there is a constant

c depending only on n such that for all β ≤ β = nw/(n–)
n– , where wn– is the area of the

surface of the unit n-ball. The following inequality holds:
∫
D
exp

(
β
∣∣u(x)∣∣n/(n–))dx ≤ c|D|. (.)

In , D. Adams [] considered the similar inequality of J. Moser for higher order deriva-
tives. The key, for him, was to write the function u as a potential Iα (see the definition
below) and prove the analogue of (.) as follows:

∫
D
exp

(
n

wn–

∣∣∣∣ Iαf (x)‖f ‖p
∣∣∣∣
n/(n–α))

dx ≤ c|D|, for α = n/p, f ∈ Lp ( < p < ∞). (.)

Variant forms of the Trudinger inequality as a generalization of the classical results,
especially in the literature associated with multilinear Riesz potential or multilinear frac-
tional integral, have been studied in recently years (see, for example, [, , , , , , –
,
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, ]). This kind of inequality plays an important role in Harmonic analysis and other
fields, such as PDE.
We begin by introducing a class of multilinear maximal function and multilinear frac-

tional integral operators. Suppose that n≥ ,  < α < n, � is homogeneous of degree zero,
and� ∈ Ls(Sn–) (s > ), where Sn– denotes the unit sphere ofRn. Themultilinearmaximal
function and multilinear fractional integral is defined by

I��,α(�f )(x) =
∫
Rn

�(y)
m∏
j=

fj(x – θjy)|y|(α–n) dy (.)

and the fractional maximal operatorM�,α defined by

M�
�,α(�f )(x) = sup

r>


rn–α

∫
|y|<r

∣∣�(y)
∣∣ m∏
j=

∣∣fj(x – θjy)
∣∣dy. (.)

Multilinear fractional integral I��,α can be looked at as a natural generalization of the
classical fractional integral, which has a very profound background of partial differential
equations and is a very important operator in Harmonic analysis. In fact, if we take K = ,
θj = , and � = , then I��,α is just the well-known classical fractional integral operator
studied by Muckenhoupt and Wheeden in []. We denote it by Iα . If � ≡ , we simply
denote I��,α = I�α . In recent years, the study of the Trudinger inequality associated to mul-
tilinear type operators has received increasing attention. Among them, it is well known
that Grafakos considered the boundedness of a family of related fractional integrals in [].
After that, in [], Y. Ding and S. Lu gave the following Trudinger inequality with rough
kernels.

Theorem A ([]) Let  < α < n, s = n
α
, 
s =


p

+ 
p

+ · · · + 
pm , pj > , j = , , . . . ,m, m ≥ .

Denote B as a ball with a radius R in R
n. If fj ∈ Lpj (B), supp(fj) ⊂ B, and � ∈ Ln/(n–α)(Sn–),

then for any γ < , there is a constant C, independent of n, α, θj , γ , such that

∫
B
exp

(
nγ

( LI��,α(�f )(x)
‖�‖Ln/(n–α)

∏m
j= ‖fj‖Lpj

)n/(n–α))
dx ≤ CRn,

where L =
∏m

j= |θj|n/pj , � = (θ, θ, . . . , θm), �f = (f, f, . . . , fm) and

‖�‖Ln/(n–α) =
(∫

Sn–

∣∣�(x)
∣∣n/(n–α) dσ (x)

)(n–α)/n

.

The definition ofmultipleweightsA�p,q was given in [] and [] independently, including
some weighted estimates for a class of multilinear fractional type operators. These results
together with [] answered an open problem in [], namely the existence of the multiple
weights.
In , W. Li, Q. Xue, and K. Yabuta [] obtained the weighted estimates for the

Trudinger inequality associated to I�α as follows.

TheoremB ([]) Let  < α < n, s = n
α
, s =


p
+ 

p
+ · · ·+ 

pm , pj > , ωj(x) ∈ Apj , and ωj ≥ ,

j = , , . . . ,m,m ≥ , ν �ω =
∏m

j= ω
s/pj
j . Denote B as a ball with the radius R inRn, if fj ∈ Lpjωj (B),
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supp(fj) ⊂ B, j = , , . . . ,m, then for any γ < , there is a constant C, independent of n, α, θj ,
γ , such that

∫
B
exp

(
n

ωn–
γ

(
LI�α (�f )(x)∏m
j= ‖fj‖Lpjωj

)n/(n–α))
ν �ω dx≤ C

m∏
j=

ωj(B),

where L =
∏m

j= |θj|n/pj , � = (θ, θ, . . . , θm), �f = (f, f, . . . , fm).

On the other hand, in , Kenig and Stein [] considered another more general type
of multilinear fractional integral which was defined by

Iα,A(�f )(x) =
∫
(Rn)m


|(y, . . . , ym)|mn–α

m∏
i=

fi
(
�i(y, . . . , ym,x)

)
dyi,

where �i is a linear combination of yjs and x depending on thematrix A. They showed that
Iα,A was of strong type (Lp × · · · × Lpm ,Lq) and weak type (Lp × · · · × Lpm ,Lq,∞). When
�i(y, . . . , ym,x) = x – yi, we denote this multilinear fractional type operator by Īα . In ,
L. Tang [] obtained the estimation of the exponential integrability of the above operator
Īα , which is quite similar to Theorem B.
Thus, it is natural to ask whether Theorem B is true or not for I��,α with rough kernels.

Moreover, one may ask if Theorem B still holds or not for the operator with rough kernels
defined by

Ī�,α(�f )(x) =
∫
(Rn)m

∏m
j= |fj(yj)||�j(x – yj)|

|(x – y,x – y, . . . ,x – ym)|mn–α
d�y.

Inspired by the works above, in this paper, we study the Trudinger inequality associated
tomultilinear fractional integral operators I��,α and Ī�,α with rough homogeneous kernels.
Precisely, we obtain the following theorems, which give a positive answer to the above
questions.

Theorem . Let  < α < n, s = n
α
, s =


p
+ 

p
+ · · ·+ 

pm , pj > , j = , , . . . ,m, m ≥ . Denote
B as a ball with radius R in R

n; if fj ∈ Lpjωj (B), supp(fj) ⊂ B (j = , , . . . ,m), � ∈ Ln/(n–α)(Sn–),

and ν �ω =
∏m

j= ω

s
pj
j , where ωj ∈ As, ωj ≥ . Then for any γ < , there is a constant C, inde-

pendent of n, α, θj , γ , such that

∫
B
exp

(
nγ

( LI��,α(�f )(x)
‖�‖Ln/(n–α)

∏m
j= ‖fj‖Lpjωj

)n/(n–α))
ν �ω dx ≤ C

m∏
j=

ωj(B),

where L =
∏m

j= |θj|n/pj , � = (θ, θ, . . . , θm), �f = (f, f, . . . , fK ).

Remark . If we take � = , then Theorem . coincides with Theorem B. If wj ≡  for
j = , . . . ,K , then Theorem . is just Theorem A that appeared in []. We give an example
of ν �ω as follows: Let ωj(x) = ( + |x|)αj (αj ≥  for each j), then νω(x) satisfy the conditions
of the above Theorem ..
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Remark . Assumem = , ωj = . If α = , Trudinger [] proved exponential integrabil-
ity of Iα(�f ), and Strichartz [] for other α. In , Hedberg [] gave a simpler proof for
all α. In , Hempel-Morris-Trudinger [] showed that if γ > , for α =  the inequality
in Theorem . cannot hold, and later Adams [] obtained the same conclusion for all α;
meanwhile, in the endpoint case γ = , it is true. In , Chang and Marshall [] proved
a similar sharp exponential inequality concerning the Dirichlet integral. Assume m ≥ ,
wj = , then the result was obtained by Grafakos [] as we have already mentioned above.

Corollary . Let B, fj, pj, s, and ν �ω be the same as in Theorem ., then I��,α(�f ) is in
Lq(ν �ω(B)) for every q > , that is,

∥∥I��,α(�f )
∥∥
Lq(ν �ω(B))

≤ C‖�‖Ln/(n–α)(Sn–)

m∏
j=

‖fj‖Lpjωj

for some constant C depending only on q on n on α and on the θj ’s.

Theorem . Let m ≥ ,  < α <mn, /p = /p + /p + · · · + /pm = α/n with  < pi < ∞
for i = , , . . . ,m. Let B be a ball with radius R in R

n and let fj ∈ Lpj (B) be supported in B,
and if �j is homogeneous of degree zero, and �j ∈ Lp

′
j (Sn–), where Sn– denotes the sphere

of Rn, and ν �ω(�y) = ∏m
j= ω

/pj
j (yj), where �y = (y, y, . . . , ym) and ωj ∈ As, ωj ≥ . Then there

exist constants k, k depending only on n, m, α, p, and the pj such that

∫
B
exp

(
k

( |Ī�,α(�f )(x)|∏m
j= ‖�j‖

L
p′j (Sn–)

‖fj‖Lpjωj

)n/(mn–α))
ν �ω(x)dx≤ k

m∏
j=

ωj(B).

Remark . If we take � = , wj ≡  for j = , . . . ,m, then Theorem . is just as Theo-
rem . appeared in []. But there is something that needs to be changed in the proof
of Theorem . in []. In the case r = r = · · · = rm– = , one cannot obtain the con-
clusion that F ≤ C[log 

√
mR
δ

](mn–α)/n. Thus, our proof gives an alternative correction of
Theorem . in [].

Corollary . Let B, fj, pj, s, and ν �ω be the same as in Theorem .. Then Ī�,α(�f ) is in
Lq(ν �ω(B)) for every q > , that is,

∥∥Ī�,α(�f )
∥∥
Lq(ν �ω(B))

≤ C
m∏
j=

‖�j‖
L
p′j (Sn–)

‖fj‖Lpjωj

for some constant C depending only on q on n on α.

Corollary . and Corollary . follow since exponential integrability of Ī�,α(�f ) implies in-
tegrability to any power q.
On the other hand, we shall study the boundedness of themultilinear fractionalmaximal

operator with a weighted norm. It follows the following theorem.
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Theorem . If  < pj < ∞, 
s =

∑m
j=


pj
, 

r =

s –

α
n , ω

pj
s
j ∈ A(s, srjpj ), /rj = /pj( – αs/n),

j = , , . . . ,m, ν �ω =
∏m

j= ωj , then there is a constant C, independent fj, such that

(∫
Rn

(
M�

,α(�f )(x)ν �ω(x)
)r dx) 

r
≤ C

m∏
j=

(∫
Rn

∣∣fj(x)ωj(x)
∣∣pj dx) 

pj
,

where �f = (f, f, . . . , fm), fj ∈ Lpjωj (Rn).

2 The proof of Theorem 1.1
In this section, we will prove Theorem ..

Proof For any δ > ,

∣∣I��,α(�f )(x)
∣∣ ≤ CδαM�(�f )(x) +

∫
|y|≥δ

|�(y)|
|y|n–α

m∏
j=

fj(x – θjy)dy.

Set P = min{ 
θj
: j = , , . . . ,K}. For any R > , denote B(R) as a ball with radius R in R

n,
then for any x ∈ B(R), when |x – θjy| < R, |θjy| < R for j = , . . . ,m. Therefore, |y| < RP. So,

∫
|y|≥δ

m∏
j=

fj(x – θjy)|y|α–n dy =
∫

δ≤|y|<PR

m∏
j=

fj(x – θjy)|y|α–n dy.

According to the relationship between s and pj: 
p

+ 
p

+ · · · + 
pm + 

n/(n–α) = , from the
Hölder’s inequality and ν �ω ≥ , it follows that

∫
δ≤|y|<PR

�(y)
m∏
j=

fj(x – θjy)|y|α–n dy

≤
(∫

δ≤|y|≤PR

( m∏
j=

fj(x – θjy)

)s

dy

)/s(∫
δ≤|y|≤PR

( |�(y)|
|y|n–α

)s′

dy
)/s′

≤
(∫

δ≤|y|≤PR

m∏
j=

fj(x – θjy)sν �ω(x – θjy)dy

)/s

‖�‖Ls′
(
ln

PR
δ

) n–α
n

≤
m∏
j=

(∫
δ≤|y|≤PR

∣∣fj(x – θjy)
∣∣pjωj(x – θjy)dy

) 
pj ‖�‖Ls′

(

n
ln

(
PR
δ

)n) n–α
n

≤ L–
m∏
j=

‖fj‖Lpjωj ‖�‖Ls′
(

n
ln

(
PR
δ

)n) n–α
n
.

Hence, we obtain that

∣∣I��,α(�f )(x)
∣∣ ≤ CδαM�

�f (x) + L–
m∏
j=

‖fj‖Lpjωj ‖�‖Ls′
(

n
ln

(
PR
δ

)n) n–α
n
.
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Set δ = ε(|I��,α(�f )(x)|/CM�(�f )(x))/α , then

exp

{
nγ

( LI��,α(�f )(x)
‖�‖Ls′

∏m
j= ‖fj‖Lpjωj

) n
n–α

}
≤ lnCRn

(
M�(�f )(x)
I��,α(�f )(x)

)n/α

.

Now we put B = {x ∈ B : I��,α (�f )(x)
‖�‖Ln/(n–α)

∏m
j= ‖fj‖

L
pj
ωj

≥ }, B = B – B, thus

∫
B
exp

(
nγ

( LI��,α(�f )(x)
‖�‖Ln/(n–α)

∏m
j= ‖fj‖Lpjωj

)n/(n–α))
ν �ω(x)dx

≤ CRn
∫
B

(
M�(�f )(x)
I��,α(�f )(x)

)n/α

ν �ω(x)dx

≤ CRn
∫
B

(
M�(�f )(x)

‖�‖Ln/(n–α)
∏m

j= ‖fj‖Lpjωj

)n/α

ν �ω(x)dx.

By the fact that

M�(�f )(x) = sup
r>

∫
|y|<r

∣∣�(y)
∣∣∑m

j=
s
pj

m∏
j=

fj(x – θjy)dy

≤ sup
r>

m∏
j=

(

rn

∫
|y|<r

∣∣�(y)
∣∣f pj

s
j (x – θjy)dy

) s
pj

≤
m∏
j=

(
M�

(
f
pj
s
)
(x)

) s
pj .

Therefore, we get

∫
B
exp

(
nγ

( LI��,α(�f )(x)
‖�‖Ln/(n–α)

∏m
j= ‖fj‖Lpjωj

)n/(n–α))
ν �ω(x)dx

≤ CRn

‖�‖Ln/(n–α)
∏m

j= ‖fj‖sLpjωj

∫
B

m∏
j=

(
M�

(
f
pj
s

j (x)
)) s

pj ν �ω(x)dx

≤ CRn

‖�‖Ln/(n–α)
∏m

j= ‖fj‖sLp–jωj

m∏
j=

(∫
B

(
M�

(
f
pj
s

j (x)
))s

ωj(x)dx
) 

s
s
pj

≤ CRn

‖�‖Ln/(n–α)
∏m

j= ‖fj‖sLpjωj

m∏
j=

∥∥f pj
s

j
∥∥ s

pj
Lsωj

≤ CRn.

Here, in the above third inequality, we have used thewell-knownweighted result ofHardy-
Littlewood maximal function.

http://www.journalofinequalitiesandapplications.com/content/2012/1/179
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From ωj ≥  (j = , , . . . ,m), we get

Rn = c
∫
B
dx ≤ c

∫
B
ωj(x)dx = cωj(B).

Hence,

∫
B
exp

(
nγ

( LI��,α(�f )(x)
‖�‖Ln/(n–α)

∏m
j= ‖fj‖Lpjωj

)n/(n–α))
ν �ω(x)dx ≤ C′

m∏
j=

ωj(B).

On the other hand,

∫
B
exp

(
nγ

( LI��,α(�f )(x)
‖�‖Ln/(n–α)

∏m
j= ‖fj‖Lpjωj

)n/(n–α))
ν �ω(x)dx

≤ exp(nγ )
(

L
‖�‖Ls′

) n
n–α

∫
B

ν �ω(x)dx

≤ C
m∏
j=

ωj(B).

From the above all, we obtain that

∫
B
exp

(
nγ

( LI��,α(�f )(x)
‖�‖Ln/(n–α)

∏m
j= ‖fj‖Lpjωj

)n/(n–α))
ν �ω(x)dx≤ C

m∏
j=

ωj(B).
�

3 The proof of Theorem 1.5
In this section, we will prove Theorem ..

Proof By the well-known Hölder’s inequality, we get

M,α(�f )(x) = sup
r>


|r|n–α

∫
|y|<r

m∏
j=

fj(x – y)dy

≤ sup
r>


|r|n–α

m∏
j=

(∫
|y|<r

f
pj
s

j (x – y)dy
) s

pj

≤
m∏
j=

(
sup
r>


|r|n–α

∫
|y|<r

f
pj
s

j (x – y)dy
) s

pj

=
m∏
j=

(
M,α

(
f pj/s

)
(x)

) s
pj .

Hence,

(∫
Rn

(
M,α(�f )(x)ν �ω(x)

)r dx)/r

≤
[∫

Rn

( m∏
j=

[
M,α

(
f pj/s

)
(x)ωpj/s

j (s)
] s
pj

)r

dx

]/r

≤
m∏
j=

[∫
Rn

(
M,α

(
f pj/sj

)
(x)ωpj/s(x)

)srj/pj dx]
pj
srj

s
pj
.

http://www.journalofinequalitiesandapplications.com/content/2012/1/179
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In addition, from the condition ω
pj/s
j (x) ∈ A(s, srjpj ), it follows that

[∫
Rn

(
M,α

(
f pj/sj

)
(x)ωpj/s(x)

)srj/pj dx]
pj
srj

s
pj ≤ Cj

[∫
Rn

(
f pj/sj (x)ωpj/s

j (x)
)s dx]/pj

.

According to the above, we obtain that

(∫
Rn

(
M,α(�f )(x)ν �ω(x)

)r dx)/r

= C
m∏
j=

(∫
Rn

(
fj(x)ωj(x)

)pj dx)/pj
.

It is easy to see that

M�
,α(�f )(x) = sup

r>


rn–α

∫
|y|<r

m∏
j=

∣∣fj(x – θjy)
∣∣dy,

where � = (θ, θ, . . . , θm), θj ∈ R holds, also. �

4 The proof of Theorem 1.3
In this section, we will prove Theorem ..

Proof For any δ >  and x ∈ B,

∣∣Ī�,α(f, f, . . . , fm)(x)
∣∣

≤
∫

|(x–y,x–y,...,x–ym)|<δ

∏m
j= |�j(yj)fj(yj)|

|(x – y,x – y, . . . ,x – ym)|mn–α
d�y

+
∫

|(x–y,x–y,...,x–ym)|≥δ

∏m
j= |�j(yj)fj(yj)|

|(x – y,x – y, . . . ,x – ym)|mn–α
d�y

:= F + F.

For F, let α =
∑m

j= αj with αj = n/pj for j = , , . . . ,m. Then

F ≤
∫

|(x–y,x–y,...,x–ym)|<δ

|�j(yj)fj(yj)|∏m
j= |x – yj|n–αj

d�y

≤
m∏
j=

∫
|x–yj|<δ

|�j(yj)fj(yj)|
|x – yj|n–αj

dyj

≤ C
m∏
j=

δαjM�j (fj)(x)

:= Cδ
α

m∏
j=

M�j (fj)(x),

whereM� denotes asM�(f )(x) = supr>

rn

∫
|x–y|<r |�(y)f (y)|dy.

For F, if (y, y, . . . , ym) satisfies |(x–y,x–y, . . . ,x–ym)| ≥ δ, then for some j ∈ , , . . . ,m,
|x – yj| ≤ δ√

m . Without losing the generalization, we set j =m.
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Thus,

F ≤
∫

δ/
√
m≤|x–ym|≤R

∫
(Rn)m–

∏m
j= |�j(yj)fj(yj)|

|(x – y,x – y, . . . ,x – ym)|mn–α
d�y.

Define that f j = fjχB(x,δ/
√
m) and f ∞

j = f – f j for j = , , . . . ,m. By the condition of ν �ω , we
have

F ≤
∑

�r∈{,∞}m

∫
δ/

√
m≤|x–ym|≤R

∫
(Rn)m–

∏m–
j= |�j(yj)f

rj
j (yj)||�m(ym)fm(ym)|

|(x – y,x – y, . . . ,x – ym)|mn–α
d�y

≤
∑

�r∈{,∞}m

∫
δ/

√
m≤|x–ym|≤R

∫
(Rn)m–

∏m–
j= |�j(yj)f

rj
j (yj)||�m(ym)fm(ym)|

|(x – y,x – y, . . . ,x – ym)|mn–α
ν �ω(�y)d�y,

where �r = (r, r, . . . , rm). In the case that r = r = · · · = rm– = , by the fact that

∣∣(x – y,x – y, . . . ,x – ym)
∣∣mn–α ≥ |x – ym|mn–α

= |x – ym|n–αm |x – ym|
∑m–

j= n/p′
j

≥ |x – ym|n–αm

(
δ√
m

)∑m–
j= n/p′

j
,

we have

∫
δ/

√
m≤|x–ym|≤R

∫
(Rn)m–

∏m–
j= |�j(yj)f j (yj)||�(ym)fm(ym)|

|(x – y,x – y, . . . ,x – ym)|mn–α
ν �ω(�y)d�y

≤
m–∏
j=

δ
– n
p′j

∫
δ√
m≤|x–ym|≤R

|�m(ym)fm(ym)|
|x – ym|n–αm

ω/pm
m (ym)dym

×
m–∏
j=

∫
|x–yj|<δ/

√
m

∣∣�j(yj)fj(yj)
∣∣ω/pj

j (yj)dyj

≤ C
m∏
j=

‖�j‖
L
p′j (Sn–)

‖fj‖Lpjωj
(
log

R
√
m

δ

)/p′
m

≤ C
m∏
j=

‖�j‖
L
p′j (Sn–)

‖fj‖Lpjωj
(
log

R
√
m

δ

)(mn–α)/n

.

Consider the case where exactly l of the rj are ∞ for some  ≤ l ≤ m. Without losing the
generalization, we only give the argument for rj = ∞, j = , , . . . , l, then

∫
δ/

√
m≤|x–ym|≤R

∫
(Rn)m–

∏m
j= �j(yj)

∏l
j= |f ∞

j (yj)
∏m–

k=l+ f k (yk)fm(ym)|
|(x – y,x – y, . . . ,x – ym)|mn–α

ν �ω d�y

≤
m–∏
k=l+

∫
|x–yk |<δ/

√
m

∣∣�k(yk)fk(yk)
∣∣ω/pm

k (yk)dyk

×
l∏
j=

∫
δ/

√
m≤|x–yj|≤R

|�j(yj)fj(yj)|
|x – yj|n–αj

ω
/pj
j (yj)dyj
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×
∫

δ/
√
m≤|x–ym|≤R

|�m(ym)fm(ym)|
|x – ym|(m–l)n–

∑m
k=l+ αk

ω/pm
m (ym)dym

≤ C
[
log


√
mR
δ

]∑l
k=


p′m

m∏
j=

‖�j‖
L
p′j (Sn–)

‖fj‖Lpjωj

≤ C
m∏
j=

‖�j‖
L
p′j (Sn–)

‖fj‖Lpjωj
[
log


√
mR
δ

](mn–α)/n

.

Combining the above cases, we obtain

F ≤ C

m∏
j=

‖�j‖
L
p′j (Sn–)

‖fj‖Lpjωj
[
log


√
mR
δ

](mn–α)/n

.

Thus, by the estimates for F, F, we have

Ī�,α(f, f, . . . , fm)(x) ≤ Cδ
α

m∏
j=

M�j (fj)(x)

+C

m∏
j=

‖�j‖
L
p′j (Sn–)

‖fj‖Lpjωj
[
log


√
mR
δ

](mn–α)/n

.

In particular, we chose δ = 
√
mR for all x ∈ B, then

Ī�,α(f, f, . . . , fm)(x)≤ Cδ
α

m∏
j=

M�j (fj)(x).

Now, we set

δ = δ(x) = ε

[∣∣Ī�,α(f, f, . . . , fm)(x)
∣∣/C

m∏
j=

M�j (fj)(x)

]/α

,

where ε < .
Then

∣∣Ī�,α(f, f, . . . , fm)(x)
∣∣

≤ εα
∣∣Ī�,α(f, f, . . . , fm)(x)

∣∣
+C

m∏
j=

‖�j‖
L
p′j (Sn–)

‖fj‖Lpjωj
[

n
log

( (
√
mR)n[C

∏m
j=M�j (fj)(x)]n/α

εn|Ī�,α(f, f, . . . , fm)(x)|n/α
)](mn–α)/n

.

Hence,

exp

(
k

( |Ī�,α(f, f, . . . , fm)(x)|∏m
j= ‖�j‖

L
p′j (Sn–)

‖fj‖Lpjωj

)n/(mn–α))
≤ C[

∏m
j=M�j (fj)(x)]n/α

|Ī�,α(f, f, . . . , fm)(x)|n/α
.
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Let B = {x ∈ B : |Ī�,α (f,f,...,fm)(x)|∏m
j= ‖�j‖

L
p′j (Sn–)

‖fj‖Lpj
≥ } and B = B – B, then

∫
B
exp

(
k

( |Ī�,α(f, f, . . . , fm)(x)|∏m
j= ‖�j‖Lpj ′ (Sn–)‖fj‖Lpjωj

)n/(mn–α))
ν �ω dx

≤ CRn
∫
B

( ∏m
j=M�j (fj)(x)∏m

j= ‖�j‖
L
p′j (Sn–)

‖fj‖Lpjωj

)n/α

ν �ω dx

≤ CRn

( m∏
j=

‖M�j (fj)‖Lpjωj
‖�j‖

L
p′j (Sn–)

‖fj‖Lpjωj

)n/α

≤ CRn

≤ C
m∏
j

ωj(B).

On the other hand,

∫
B
exp

(
k

( |Ī�,α(f, f, . . . , fm)(x)|∏m
j= ‖�j‖

L
p′j (Sn–)

‖fj‖Lpj
)n/(mn–α))

ν �ω(x)dx

≤ exp (k)
m∏
j=

∫
B

ωj(x)dx

≤ C
m∏
j=

ωj(B).

Combining the above results, we obtain

∫
B
exp

(
k

( |Ī�,α(f, f, . . . , fm)(x)|∏m
j= ‖�j‖

L
p′j (Sn–)

‖fj‖Lpj
)n/(mn–α))

ν �ω(x)dx≤ k
m∏
j=

ωj(B),

where k, k are constants depending only on n,m, α, p, and the pj. �
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