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Abstract
Using the fixed point and direct methods, we prove the generalized Hyers-Ulam
stability of the following additive-quadratic functional equation in non-Archimedean
normed spaces
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1 Introduction and preliminaries
A classical question in the theory of functional equations is the following: ‘When is it true
that a function which approximately satisfies a functional equationmust be close to an ex-
act solution of the equation?’ If the problem accepts a solution, we say that the equation is
stable. The first stability problem concerning group homomorphisms was raised by Ulam
[] in . In the next year, Hyers [] gave a positive answer to the above question for
additive groups under the assumption that the groups are Banach spaces. In , Rassias
[] proved a generalization of Hyers’ theorem for additive mappings. This new concept is
known as generalized Hyers-Ulam stability or Hyers-Ulam-Rassias stability of functional
equations. Furthermore, in , a generalization of Rassias’ theorem was obtained by
Gǎvruta [] by replacing the bound ε(‖x‖p + ‖y‖p) by a general control function ϕ(x, y).
In , a generalized Hyers-Ulam stability problem for the quadratic functional equa-

tion was proved by Skof [] for mappings f : X → Y , where X is a normed space and Y is
a Banach space. In , Cholewa [] noticed that the theorem of Skof is still true if the
relevant domain X is replaced by an Abelian group and, in , Czerwik [] proved the
generalized Hyers-Ulam stability of the quadratic functional equation. The reader is re-
ferred to [–] and references therein for detailed information on stability of functional
equations.

© 2012 Park et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.journalofinequalitiesandapplications.com/content/2012/1/174
mailto:azadi@mail.yu.ac.ir
http://creativecommons.org/licenses/by/2.0


Park et al. Journal of Inequalities and Applications 2012, 2012:174 Page 2 of 18
http://www.journalofinequalitiesandapplications.com/content/2012/1/174

In ,Hensel [] has introduced a normed spacewhich does not have theArchimede-
an property. It turned out that non-Archimedean spaces have many nice applications (see
[, –, ]).

Definition . By a non-Archimedean field, we mean a field K equipped with a function
(valuation) | · | :K → [,∞) such that for all r, s ∈K, the following conditions hold:
() |r| =  if and only if r = ;
() |rs| = |r||s|;
() |r + s| ≤ max{|r|, |s|}.

Definition . LetX be a vector space over a scalar fieldKwith a non-Archimedean non-
trivial valuation | · |. A function ‖ · ‖ : X → R is a non-Archimedean norm (valuation) if it
satisfies the following conditions:
() ‖x‖ =  if and only if x = ;
() ‖rx‖ = |r‖|x‖ (r ∈K, x ∈ X);
() The strong triangle inequality (ultrametric); namely,

‖x + y‖ ≤ max
{‖x‖,‖y‖}, x, y ∈ X.

Then (X,‖ · ‖) is called a non-Archimedean space.

Due to the fact that

‖xn – xm‖ ≤ max
{‖xj+ – xj‖ :m≤ j ≤ n – 

}
(n >m).

Definition . A sequence {xn} is Cauchy if and only if {xn+ – xn} converges to zero in a
non-Archimedean space. By a complete non-Archimedean space we mean one in which
every Cauchy sequence is convergent.

Definition . Let X be a set. A function d : X×X → [,∞] is called a generalized metric
on X if d satisfies
() d(x, y) =  if and only if x = y;
() d(x, y) = d(y,x) for all x, y ∈ X ;
() d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X .

We recall a fundamental result in fixed point theory.

Theorem . ([, ]) Let (X,d) be a complete generalized metric space and let J : X → X
be a strictly contractive mapping with Lipschitz constant α < . Then for each given element
x ∈ X, either

d
(
Jnx, Jn+x

)
= ∞

for all nonnegative integers n or there exists a positive integer n such that
() d(Jnx, Jn+x) < ∞, ∀n≥ n;
() the sequence {Jnx} converges to a fixed point y* of J ;
() y* is the unique fixed point of J in the set Y = {y ∈ X | d(Jnx, y) <∞};
() d(y, y*) ≤ 

–α
d(y, Jy) for all y ∈ Y .
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In , G. Isac and Th. M. Rassias [] were the first to provide applications of stability
theory of functional equations for the proof of new fixed-point theorems with applica-
tions. By using fixed-point methods, the stability problems of several functional equations
have been extensively investigated by a number of authors (see [, , , , ]).
This paper is organized as follows: In Section , using the fixed-point method, we prove

the Hyers-Ulam stability of the following additive-quadratic functional equation:

rf
(
x + y + z

s

)
+ rf

(
x – y + z

s

)
+ rf

(
x + y – z

s

)
+ rf

(
–x + y + z

s

)

= γ f (x) + γ f (y) + γ f (z), (.)

where x, y, z ∈ X, in non-Archimedean normed space. In Section , using direct methods,
we prove the Hyers-Ulam stability of the additive-quadratic functional equation (.) in
non-Archimedean normed spaces.
It is easy to see that a mapping f with f () =  is a solution of equation (.) if and only

if f is of the form f (x) = A(x) +Q(x) for all x ∈ X.

2 Stability of functional equation (1.1): a fixed point method
In this section, we deal with the stability problem for the additive-quadratic functional
equation (.). In the rest of the present article, let || 	= .

Theorem . Let X is a non-Archimedean normed space and that Y be a complete non-
Archimedean space. Let ϕ : X → [,∞) be a function such that there exists an α <  with

ϕ(x, y, z)≤ ||αϕ(x, y, z) (.)

for all x, y, z ∈ X. Let f : X → Y be an odd mapping satisfying

∥∥∥∥rf
(
x + y + z

s

)
+ rf

(
x – y + z

s

)
+ rf

(
x + y – z

s

)

+ rf
(
–x + y + z

s

)
– γ f (x) – γ f (y) – γ f (z)

∥∥∥∥
Y

≤ ϕ(x, y, z) (.)

for all x, y, z ∈ X. Then there exists a unique additive mapping A : X → Y such that

∥∥f (x) –A(x)
∥∥
Y ≤ max{ϕ(x, , ),ϕ(x,x, )}

|γ |( – α)
(.)

for all x ∈ X.

Proof Putting y = z =  in (.) and replacing x by x, we get

∥∥∥∥rf
(
x
s

)
–

γ


f (x)

∥∥∥∥
Y

≤ 
||ϕ(x, , ) (.)

for all x ∈ X. Putting y = x and z =  in (.), we have

∥∥∥∥rf
(
x
s

)
– γ f (x)

∥∥∥∥
Y

≤ 
||ϕ(x,x, ) (.)
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for all x ∈ X. By (.) and (.), we get

∥∥∥∥ f (x)
– f (x)

∥∥∥∥
Y
=


|γ |

∥∥∥∥γ


f (x)± rf

(
x
s

)
– γ f (x)

∥∥∥∥
Y

≤ 
|γ | max

{∥∥∥∥rf
(
x
s

)
–

γ


f (x)

∥∥∥∥
Y
,
∥∥∥∥rf

(
x
s

)
– γ f (x)

∥∥∥∥
Y

}

≤ 
|γ | max

{
ϕ(x, , ),ϕ(x,x, )

}
. (.)

Consider the set S := {h : X → Y } and introduce the generalized metric on S:

d(g,h) = inf
{
μ ∈ (, +∞) :

∥∥g(x) – h(x)
∥∥
Y ≤ μmax

{
ϕ(x, , ),ϕ(x,x, )

}
,∀x ∈ X

}
,

where, as usual, infφ = +∞. It is easy to show that (S,d) is complete (see []). Now we
consider the linear mapping J : S → S such that Jg(x) := 

g(x) for all x ∈ X. Let g,h ∈ S be
given such that d(g,h) = ε. Then

∥∥g(x) – h(x)
∥∥
Y ≤ εmax

{
ϕ(x, , ),ϕ(x,x, )

}

for all x ∈ X. Hence,

∥∥Jg(x) – Jh(x)
∥∥
Y =

∥∥∥∥ g(x) –


h(x)

∥∥∥∥
Y

=
‖g(x) – h(x)‖Y

||
≤ ε

|| max
{
ϕ(x, , ),ϕ(x, x, )

}

≤ α · εmax
{
ϕ(x, , ),ϕ(x,x, )

}

for all x ∈ X. So d(g,h) = ε implies that d(Jg, Jh) ≤ αε. This means that d(Jg, Jh) ≤ αd(g,h)
for all g,h ∈ S.
It follows from (.) that d(f , Jf ) ≤ 

|γ | . By Theorem ., there exists a mapping A : X →
Y satisfying the following:
() A is a fixed point of J , i.e.,

A(x) = A(x) (.)

for all x ∈ X. ThemappingA is a unique fixed point of J in the setM = {g ∈ S : d(h, g) < ∞}.
This implies that A is a unique mapping satisfying (.) such that there exists a μ ∈ (,∞)
satisfying ‖f (x) –A(x)‖Y ≤ μmax{ϕ(x, , ),ϕ(x,x, )} for all x ∈ X;
() d(Jnf ,A) →  as n→ ∞. This implies the equality

lim
n→∞

f (nx)
n

= A(x) for all x ∈ X;

() d(f ,A) ≤ 
–α

d(f , Jf ), which implies the inequality d(f ,A) ≤ 
|γ |(–α) . This implies that

the inequalities (.) holds.
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It follows from (.) and (.) that

∥∥∥∥rA
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≤ lim
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||n ϕ

(
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)

≤ lim
n→∞


||n · ||nαnϕ(x, y, z)

= 

for all x, y, z ∈ X. So

rA
(
x + y + z

s

)
+ rA

(
x – y + z

s

)
+ rA

(
x + y – z

s

)

+ rA
(
–x + y + z

s

)
– γA(x) – γA(y) – γA(z) = 

for all x, y, z ∈ X. Hence, A : X → Y satisfying (.). This completes the proof. �

Corollary . Let θ be a positive real number and q is a real number with q > . Let f :
X → Y be an odd mapping satisfying

∥∥∥∥rf
(
x + y + z

s

)
+ rf

(
x – y + z

s

)
+ rf

(
x + y – z

s

)

+ rf
(
–x + y + z

s

)
– γ f (x) – γ f (y) – γ f (z)

∥∥∥∥
Y

≤ θ
(‖x‖q + ‖y‖q + ‖z‖q) (.)

for all x, y, z ∈ X. Then there exists a unique additive mapping A : X → Y such that

∥∥f (x) –A(x)
∥∥
Y ≤ ||θ‖x‖q

|γ |(|| – ||q)

for all x ∈ X.

Proof The proof follows from Theorem . by taking ϕ(x, y, z) = θ (‖x‖q + ‖y‖q + ‖z‖q) for
all x, y, z ∈ X. Then we can choose α = ||q– and we get the desired result. �

Theorem . Let X is a non-Archimedean normed space and that Y be a complete non-
Archimedean space. Let ϕ : X → [,∞) be a function such that there exists an α <  with

ϕ

(
x

,
y

,
z


)
≤ α

||ϕ(x, y, z) (.)
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for all x, y, z ∈ X. Let f : X → Y be an odd mapping satisfying (.). Then there exists a
unique additive mapping A : X → Y such that

∥∥f (x) –A(x)
∥∥
Y ≤ αmax{ϕ(x, , ),ϕ(x,x, )}

|γ |( – α)

for all x ∈ X.

Proof Let (S,d) be the generalized metric space defined in the proof of Theorem ..
Now we consider the linear mapping J : S → S such that

Jg(x) := g
(
x


)

for all x ∈ X.
Replacing x by x

 in (.) and using (.), we have

∥∥∥∥f (x) – f
(
x


)∥∥∥∥
Y

≤ 
|γ | max

{
ϕ(x, , ),ϕ

(
x

,
x

, 

)}

≤ α

|γ | max
{
ϕ(x, , ),ϕ(x,x, )

}
. (.)

So d(f , Jf ) ≤ α
|γ | .

The rest of the proof is similar to the proof of Theorem .. �

Corollary . Let θ be a positive real number and q is a real number with  < q < . Let
f : X → Y be an oddmapping satisfying (.). Then there exists a unique additive mapping
A : X → Y such that

∥∥f (x) –A(x)
∥∥
Y ≤ ||θ‖x‖q

|γ |(||q – ||)

for all x ∈ X.

Proof The proof follows from Theorem . by taking ϕ(x, y, z) = θ (‖x‖q + ‖y‖q + ‖z‖q) for
all x, y, z ∈ X. Then we can choose α = ||–q and we get the desired result. �

Theorem . Let X is a non-Archimedean normed space and that Y be a complete non-
Archimedean space. Let ϕ : X → [,∞) be a function such that there exists an α <  with

ϕ(x, y, z)≤ ||αϕ(x, y, z) (.)

for all x, y, z ∈ X. Let f : X → Y be an even mapping with f () =  and satisfying (.). Then
there exists a unique quadratic mapping Q : X → Y such that

∥∥f (x) –Q(x)
∥∥
Y ≤ max{ϕ(x, , ), ||ϕ(x,x, )}

|γ |( – α)
(.)

for all x ∈ X.
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Proof Consider the set S* = {g : X → Y ; g() = } and the generalized metric d* in S* de-
fined by

d*(g,h) = inf
{
μ ∈ (, +∞) :

∥∥g(x) – h(x)
∥∥
Y ≤ μmax

{
ϕ(x, , ), ||ϕ(x,x, )},∀x ∈ X

}
,

where, as usual, infφ = +∞. It is easy to show that (S*,d*) is complete (see []). Now we
consider the linear mapping J : (S*,d*) → (S*,d*) such that

Jg(x) :=


g(x)

for all x ∈ X.
Putting y = x and z =  in (.), we have

∥∥∥∥rf
(
x
s

)
– γ f (x)

∥∥∥∥
Y

≤ ϕ(x,x, ) (.)

for all x ∈ X.
Substituting y = z =  and then replacing x by x in (.), we obtain

∥∥∥∥rf
(
x
s

)
– γ f (x)

∥∥∥∥
Y

≤ ϕ(x, , ). (.)

By (.) and (.), we get

∥∥∥∥ f (x)
– f (x)

∥∥∥∥
Y
=


|γ |

∥∥∥∥
(
rf

(
x
s

)
– γ f (x)

)
–

(
rf

(
x
s

)
– γ f (x)

)∥∥∥∥
Y

≤ 
|γ | max

{
||

∥∥∥∥rf
(
x
s

)
– γ f (x)

∥∥∥∥
Y
,
∥∥∥∥rf

(
x
s

)
– γ f (x)

∥∥∥∥
Y

}

≤ 
|γ | max

{
ϕ(x, , ), ||ϕ(x,x, )}. (.)

The rest of the proof is similar to the proof of Theorem .. �

Corollary . Let θ be a positive real number and q is a real number with q > . Let f :
X → Y be an even mapping with f () =  and satisfying (.). Then there exists a unique
quadratic mapping Q : X → Y such that

∥∥f (x) –Q(x)
∥∥
Y ≤ ||||θ‖x‖q

|γ |(|| – ||q)

for all x ∈ X.

Proof The proof follows from Theorem . by taking ϕ(x, y, z) = θ (‖x‖q + ‖y‖q + ‖z‖q) for
all x, y, z ∈ X. Then we can choose α = ||q– and we get the desired result. �

Theorem . Let X is a non-Archimedean normed space and that Y be a complete non-
Archimedean space. Let ϕ : X → [,∞) be a function such that there exists an α <  with

ϕ

(
x

,
y

,
z


)
≤ α

||ϕ(x, y, z) (.)
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for all x, y, z ∈ X. Let f : X → Y be an even mapping with f () =  and satisfying (.). Then
there exists a unique quadratic mapping Q : X → Y such that

∥∥f (x) –Q(x)
∥∥
Y ≤ αmax{ϕ(x, , ), ||ϕ(x,x, )}

|γ |( – α)
(.)

for all x ∈ X.

Proof It follows from (.) that

∥∥∥∥f (x) – f
(
x


)∥∥∥∥
Y

≤ 
|γ | max

{
ϕ(x, , ), ||ϕ

(
x

,
x

, 

)}

≤ α

|γ | max
{
ϕ(x, , ), ||ϕ(x,x, )}.

The rest of the proof is similar to the proof of Theorems . and .. �

Corollary . Let θ be a positive real number and q is a real number with  < q < . Let
f : X → Y be an evenmapping with f () =  and satisfying (.). Then there exists a unique
quadratic mapping Q : X → Y such that

∥∥f (x) –Q(x)
∥∥
Y ≤ ||||θ‖x‖q

|γ |(||q – ||)

for all x ∈ X.

Proof The proof follows from Theorem . by taking ϕ(x, y, z) = θ (‖x‖q + ‖y‖q + ‖z‖q) for
all x, y, z ∈ X. Then we can choose α = ||–q and we get the desired result. �

Let f : X → Y be a mapping satisfying f () =  and (.). Let fe(x) := f (x)+f (–x)
 and fo(x) =

f (x)–f (–x)
 . Then fe is an even mapping satisfying (.) and fo is an odd mapping satisfying

(.) such that f (x) = fe(x) + fo(x).
On the other hand

∥∥Dfo (x, y, z)
∥∥ ≤ max{Df (x, y, z),Df (–x, –y, –z)}

|| ≤ max{ϕ(x, y, z),ϕ(–x, –y, –z)}
||

and

∥∥Dfe (x, y, z)
∥∥ ≤ max{Df (x, y, z),Df (–x, –y, –z)}

|| ≤ max{ϕ(x, y, z),ϕ(–x, –y, –z)}
||

for all x, y, z ∈ X, whereDf (x, y, z) is the difference operator of the functional equation (.).
So we obtain the following theorem.

Theorem . Let X is a non-Archimedean normed space and that Y be a complete non-
Archimedean space. Let ϕ : X → [,∞) be a function such that there exists an α <  with

ϕ(x, y, z)≤ ||αϕ(x, y, z)
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for all x, y, z ∈ X. Let f : X → Y be a mapping with f () =  and satisfying (.). Then there
exist a unique additive mapping A : X → Y and a unique quadratic mapping Q : X → Y
such that

∥∥f (x) –A(x) –Q(x)
∥∥
Y

≤ max

{∥∥∥∥ f (x) – f (–x)


–A(x)
∥∥∥∥
Y
,
∥∥∥∥ f (x) + f (–x)


–Q(x)

∥∥∥∥
Y

}

≤ max

{
max{max{ϕ(x, , ),ϕ(–x, , )},max{ϕ(x,x, ),ϕ(–x, –x, )}}

|γ |( – α)
,

max{max{ϕ(x, , ),ϕ(–x, , )}, ||max{ϕ(x,x, ),ϕ(–x, –x, )}}
|γ |( – α)

}

for all x ∈ X.

Theorem . Let X is a non-Archimedean normed space and that Y be a complete non-
Archimedean space. Let ϕ : X → [,∞) be a function such that there exists an α <  with

ϕ

(
x

,
y

,
z


)
≤ αϕ(x, y, z)

||

for all x, y, z ∈ X. Let f : X → Y be a mapping with f () =  and satisfying (.). Then there
exist a unique additive mapping A : X → Y and a unique quadratic mapping Q : X → Y
such that

∥∥f (x) –A(x) –Q(x)
∥∥
Y

≤ αmax

{
max{max{ϕ(x, , ),ϕ(–x, , )},max{ϕ(x,x, ),ϕ(–x, –x, )}}

|γ |( – α)
,

max{max{ϕ(x, , ),ϕ(–x, , )}, ||max{ϕ(x,x, ),ϕ(–x, –x, )}}
|γ |( – α)

}

for all x ∈ X.

3 Stability of functional equation (1.1): a direct method
In this section, using direct method, we prove the generalized Hyers-Ulam stability of the
additive-quadratic functional equation (.) in non-Archimedean space.

Theorem . Let G be a vector space and that X is a non-Archimedean Banach space.
Assume that ϕ :G → [, +∞) be a function such that

lim
n→∞||nϕ

(
x
n

,
y
n

,
z
n

)
=  (.)

for all x, y, z ∈G. Suppose that, for any x ∈G, the limit

	(x) = lim
n→∞max

{
||k max

{
ϕ

(
x
k

, , 
)
,ϕ

(
x

k+
,

x
k+

, 
)}

;  ≤ k < n
}

(.)
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exists and f :G → X be an odd mapping satisfying

∥∥∥∥rf
(
x + y + z

s

)
+ rf

(
x – y + z

s

)
+ rf

(
x + y – z

s

)

+ rf
(
–x + y + z

s

)
– γ f (x) – γ f (y) – γ f (z)

∥∥∥∥
X

≤ ϕ(x, y, z). (.)

Then the limit

A(x) := lim
n→∞nf

(
x
n

)

exists for all x ∈G and defines an additive mapping A :G → X such that

∥∥f (x) –A(x)
∥∥ ≤ 

|γ |	(x). (.)

Moreover, if

lim
j→∞ lim

n→∞max

{
||k max

{
ϕ

(
x
k

, , 
)
,ϕ

(
x

k+
,

x
k+

, 
)}

; j ≤ k < n + j
}
= 

then A is the unique additive mapping satisfying (.).

Proof By (.), we know

∥∥∥∥f (x) – f
(
x


)∥∥∥∥
X

≤ 
|γ | max

{
ϕ(x, , ),ϕ

(
x

,
x

, 

)}
(.)

for all x ∈G. Replacing x by x
n in (.), we obtain

∥∥∥∥nf
(

x
n

)
– n+f

(
x

n+

)∥∥∥∥
X

≤ ||n
|γ | max

{
ϕ

(
x
n

, , 
)
,ϕ

(
x

n+
,

x
n+

, 
)}

. (.)

Thus, it follows from (.) and (.) that the sequence {nf ( x
n )}n≥ is a Cauchy sequence.

Since X is complete, it follows that {nf ( x
n )}n≥ is convergent. Set

A(x) := lim
n→∞nf

(
x
n

)
.

By induction on n, one can show that

∥∥∥∥nf
(

x
n

)
– f (x)

∥∥∥∥
X

≤ 
|γ | max

{
||k max

{
ϕ

(
x
k

, , 
)
,ϕ

(
x

k+
,

x
k+

, 
)}

;  ≤ k < n
}

(.)
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for all n ≥  and x ∈ G. By taking n → ∞ in (.) and using (.), one obtains (.). By (.)
and (.), we get

∥∥∥∥rA
(
x + y + z

s

)
+ rA

(
x – y + z

s

)
+ rA

(
x + y – z

s

)

+ rA
(
–x + y + z

s

)
– γA(x) – γA(y) – γA(z)

∥∥∥∥
X

= lim
n→∞||n

∥∥∥∥rf
(
x + y + z

ns

)
+ rf

(
x – y + z

ns

)
+ rf

(
x + y – z

ns

)

+ rf
(
–x + y + z

ns

)
– γ f

(
x
n

)
– γ f

(
y
n

)
– γ f

(
z
n

)∥∥∥∥
X

≤ lim
n→∞||nϕ

(
x
n

,
y
n

,
z
n

)

= 

for all x, y, z ∈ X. Therefore, the mapping A :G → X satisfies (.).
To prove the uniqueness property of A, let L be another mapping satisfying (.). Then

we have

∥∥A(x) – L(x)
∥∥
X

= lim
n→∞||n

∥∥∥∥A
(

x
n

)
– L

(
x
n

)∥∥∥∥
X

≤ lim
k→∞

||nmax

{∥∥∥∥A
(

x
n

)
– f

(
x
n

)∥∥∥∥
X
,
∥∥∥∥f

(
x
n

)
– L

(
x
n

)∥∥∥∥
X

}

≤ lim
j→∞ lim

n→∞max

{
||k max

{
ϕ

(
x
k

, , 
)
,ϕ

(
x

k+
,

x
k+

, 
)}

; j ≤ k < n + j
}

= 

for all x ∈G. Therefore, A = L. This completes the proof. �

Corollary . Let ξ : [,∞)→ [,∞) be a function satisfying

ξ
(||–t) ≤ ξ

(||–)ξ (t), ξ
(||–) < ||–

for all t ≥ . Assume that κ >  and f :G → X be a mapping with f () =  such that

∥∥∥∥rf
(
x + y + z

s

)
+ rf

(
x – y + z

s

)
+ rf

(
x + y – z

s

)

+ rf
(
–x + y + z

s

)
– γ f (x) – γ f (y) – γ f (z)

∥∥∥∥
X

≤ κ
(
ξ
(‖x‖) + ξ

(‖y‖) + ξ
(‖z‖)) (.)

for all x, y, z ∈G. Then there exists a unique additive mapping A :G → X such that

∥∥f (x) –A(x)
∥∥
X ≤ 

|γ | max

{
κζ

(‖x‖), 
||κζ

(‖x‖)
}
.
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Proof Defining ϕ :G → [,∞) by ϕ(x, y, z) := κ(ξ (‖x‖) + ξ (‖y‖) + ξ (‖z‖)), then we have

lim
n→∞||nϕ

(
x
n

,
y
n

,
z
n

)
≤ lim

n→∞
(||ξ(||–))nϕ(x, y, z) = 

for all x, y, z ∈ G. The last equality comes form the fact that ||ξ (||–) < . On the other
hand, it follows that

	(x) = lim
n→∞max

{
||k max

{
ϕ

(
x
k

, , 
)
,ϕ

(
x

k+
,

x
k+

, 
)}

;  ≤ k < n
}

≤ max

{
ϕ(x, , ),ϕ

(
x

,
x

, 

)}

= max

{
κζ

(‖x‖), 
||κζ

(‖x‖)
}

exists for all x ∈G. Also, we have

lim
j→∞ lim

n→∞max

{
||k max

{
ϕ

(
x
k

, , 
)
,ϕ

(
x

k+
,

x
k+

, 
)}

; j ≤ k < n + j
}

= lim
j→∞||jmax

{
ϕ

(
x
j
, , 

)
,ϕ

(
x
j+

,
x
j+

, 
)}

= .

Thus, applying Theorem ., we have the conclusion. This completes the proof. �

Theorem . Let G be a vector space and that X is a non-Archimedean Banach space.
Assume that ϕ :G → [, +∞) be a function such that

lim
n→∞

ϕ(nx, ny, nz)
||n =  (.)

for all x, y, z ∈G. Suppose that, for any x ∈G, the limit

	(x) = lim
n→∞max

{
max{ϕ(k+x, , ),ϕ(kx, kx, )}

||k ;  ≤ k < n
}

(.)

exists and f :G →X be an oddmapping satisfying (.). Then the limit A(x) := limn→∞ f (nx)
n

exists for all x ∈G and

∥∥f (x) –A(x)
∥∥
X ≤ 

|γ |	(x) (.)

for all x ∈ G. Moreover, if

lim
j→∞ lim

n→∞max

{
max{ϕ(k+x, , ),ϕ(kx, kx, )}

||k ; j ≤ k < n + j
}
= ,

then A is the unique mapping satisfying (.).
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Proof By (.), we get

∥∥∥∥ f (x)
– f (x)

∥∥∥∥
X

≤ max{ϕ(x, , ),ϕ(x,x, )}
|γ | (.)

for all x ∈G. Replacing x by nx in (.), we obtain

∥∥∥∥ f (
n+x)
n+

–
f (nx)
n

∥∥∥∥
X

≤ max{ϕ(n+x, , ),ϕ(nx, nx, )}
|γ |||n . (.)

Thus, it follows from (.) and (.) that the sequence { f (nx)n }n≥ is convergent. Set

A(x) := lim
n→∞

f (nx)
n

.

On the other hand, it follows from (.) that

∥∥∥∥ f (
px)
q

–
f (qx)
q

∥∥∥∥
X

=

∥∥∥∥∥
q–∑
k=p

f (k+x)
k+

–
f (kx)
k

∥∥∥∥∥
X

≤ max

{∥∥∥∥ f (
k+x)
k+

–
f (kx)
k

∥∥∥∥
X
;p≤ k < q – 

}

≤ 
|γ | max

{
max{ϕ(k+x, , ),ϕ(kx, kx, )}

||k ;p ≤ k < q
}

for all x ∈G and p,q ≥  with q > p≥ . Letting p = , taking q → ∞ in the last inequality
and using (.), we obtain (.).
The rest of the proof is similar to the proof of Theorem .. This completes the proof.

�

Theorem . Let G be a vector space and that X is a non-Archimedean Banach space.
Assume that ϕ :G → [, +∞) be a function such that

lim
n→∞||nϕ

(
x
n

,
y
n

,
z
n

)
=  (.)

for all x, y, z ∈G. Suppose that, for any x ∈G, the limit

(x) = lim
n→∞max

{
||k max

{
ϕ

(
x
k

, , 
)
, ||ϕ

(
x

k+
,

x
k+

, 
)}

;  ≤ k < n
}

(.)

exists and f :G → X be an even mapping with f () =  and satisfying (.). Then the limit
Q(x) := limn→∞ nf ( x

n ) exists for all x ∈ G and defines a quadratic mapping Q : G → X
such that

∥∥f (x) –Q(x)
∥∥
X ≤ 

|γ |(x). (.)
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Moreover, if

lim
j→∞ lim

n→∞max

{
||k max

{
ϕ

(
x
k

, , 
)
, ||ϕ

(
x

k+
,

x
k+

, 
)}

; j ≤ k < n + j
}
= 

then Q is the unique additive mapping satisfying (.).

Proof It follows from (.) that

∥∥∥∥f (x) – f
(
x


)∥∥∥∥
X

≤ 
|γ | max

{
ϕ(x, , ), ||ϕ

(
x

,
x

, 

)}
. (.)

Replacing x by x
n in (.), we have

∥∥∥∥nf
(

x
n

)
– n+f

(
x

n+

)∥∥∥∥
X

≤ ||n
|γ | max

{
ϕ

(
x
n

, , 
)
, ||ϕ

(
x

n+
,

x
n+

, 
)}

. (.)

It follows from (.) and (.) that the sequence {nf ( x
n )}n≥ is Cauchy sequence. The

rest of the proof is similar to the proof of Theorem .. �

Similarly, we can obtain the followings. We will omit the proof.

Theorem . Let G be a vector space and that X is a non-Archimedean Banach space.
Assume that ϕ :G → [, +∞) be a function such that

lim
n→∞

ϕ(nx, ny, nz)
||n =  (.)

for all x, y, z ∈G. Suppose that, for any x ∈G, the limit

(x) = lim
n→∞max

{
max{ϕ(k+x, , ),ϕ(kx, kx, )}

||k ;  ≤ k < n
}

(.)

exists and f :G → X be an even mapping with f () =  and satisfying (.). Then the limit
Q(x) := limn→∞ f (nx)

n exists for all x ∈G and

∥∥f (x) –Q(x)
∥∥
X ≤ 

|γ |(x) (.)

for all x ∈ G. Moreover, if

lim
j→∞ lim

n→∞max

{
max{ϕ(k+x, , ),ϕ(kx, kx, )}

||k ; j ≤ k < n + j
}
= ,

then Q is the unique mapping satisfying (.).

Let f : X → Y be a mapping satisfying f () =  and (.). Let fe(x) := f (x)+f (–x)
 and fo(x) =

f (x)–f (–x)
 . Then fe is an even mapping satisfying (.) and fo is an odd mapping satisfying

(.) such that f (x) = fe(x) + fo(x). On the other hand,

∥∥Dfo (x, y, z)
∥∥ ≤ max{ϕ(x, y, z),ϕ(–x, –y, –z)}

||
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Park et al. Journal of Inequalities and Applications 2012, 2012:174 Page 15 of 18
http://www.journalofinequalitiesandapplications.com/content/2012/1/174

and

∥∥Dfe (x, y, z)
∥∥ ≤ max{ϕ(x, y, z),ϕ(–x, –y, –z)}

||

for all x, y, z ∈ X, whereDf (x, y, z) is the difference operator of the functional equation (.).
So we obtain the following theorem.

Theorem . Let G be a vector space and that X is a non-Archimedean Banach space.
Assume that ϕ :G → [, +∞) be a function such that

lim
n→∞

ϕ(nx, ny, nz)
||n = 

for all x, y, z ∈G. Suppose that the limits

	*(x) = lim
n→∞ max

≤k<n

{
max

{
max

{
ϕ
(
k+x, , 

)
,ϕ

(
–k+x, , 

)}
,

max
{
ϕ
(
kx, kx, 

)
,ϕ

(
–kx, –kx, 

)}}
/||k+}

and

*(x) = lim
n→∞ max

≤k<n

{
max

{
max

{
ϕ
(
k+x, , 

)
,ϕ

(
–k+x, , 

)}
,

max
{
ϕ
(
kx, kx, 

)
,ϕ

(
–kx, –kx, 

)}}
/
(||||k)}

exist for all x ∈ G and f : G → X be a mapping with f () =  and satisfying (.). Then
there exist an additive mapping A :G → X and a quadratic mapping Q :G → X such that

∥∥f (x) –A(x) –Q(x)
∥∥
X

≤ max

{∥∥∥∥ f (x) + f (–x)


–Q(x)
∥∥∥∥
X
,
∥∥∥∥ f (x) – f (–x)


–A(x)

∥∥∥∥
X

}

≤ max

{


|γ |	
*(x),


|γ |

*(x)
}

(.)

for all x ∈ G. Moreover, if

lim
j→∞ lim

n→∞ max
j≤k<n+j

{
max

{
max

{
ϕ
(
k+x, , 

)
,ϕ

(
–k+x, , 

)}
,

max
{
ϕ
(
kx, kx, 

)
,ϕ

(
–kx, –kx, 

)}}
/||k+} = 

and

lim
j→∞ lim

n→∞ max
j≤k<n+j

{
max

{
max

{
ϕ
(
k+x, , 

)
,ϕ

(
–k+x, , 

)}
,

max
{
ϕ
(
kx, kx, 

)
,ϕ

(
–kx, –kx, 

)}}
/
(||||k)} = 

then A, Q are the unique mappings satisfying (.).
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Theorem . Let G be a vector space and that X is a non-Archimedean Banach space.
Assume that ϕ :G → [, +∞) be a function such that

lim
n→∞||nϕ

(
x
n

,
y
n

,
z
n

)
= 

for all x, y, z ∈G. Suppose that the limits

	**(x) =

|| lim

n→∞ max
≤k<n

{
||k max

{
max

{
ϕ

(
x
k

, , 
)
,ϕ

(
–x
k

, , 
)}

,

max

{
ϕ

(
x

k+
,

x
k+

, 
)
,ϕ

(
–x
k+

,
–x
k+

, 
)}}}

and

**(x) =

|| lim

n→∞ max
≤k<n

{
||k max

{
max

{
ϕ

(
x
k

, , 
)
,ϕ

(
–x
k

, , 
)}

,

||max

{
ϕ

(
x

k+
,

x
k+

, 
)
,ϕ

(
–x
k+

,
–x
k+

, 
)}}}

exist for all x ∈ G and f : G → X be a mapping with f () =  and satisfying (.). Then
there exist an additive mapping A :G → X and a quadratic mapping Q :G → X such that

∥∥f (x) –A(x) –Q(x)
∥∥
X ≤ max{	**(x),**(x)}

|γ | (.)

for all x ∈ G. Moreover, if

lim
j→∞ lim

n→∞ max
j≤k<n+j

{
||k max

{
max

{
ϕ

(
x
k

, , 
)
,ϕ

(
–x
k

, , 
)}

,

max

{
ϕ

(
x

k+
,

x
k+

, 
)
,ϕ

(
–x
k+

,
–x
k+

, 
)}}}

= 

and

lim
j→∞ lim

n→∞ max
j≤k<n+j

{
||k max

{
max

{
ϕ

(
x
k

, , 
)
,ϕ

(
–x
k

, , 
)}

,

||max

{
ϕ

(
x

k+
,

x
k+

, 
)
,ϕ

(
–x
k+

,
–x
k+

, 
)}}}

= 

then A, Q are the unique mappings satisfying (.).

4 Conclusion
We linked here two different disciplines, namely, the non-Archimedean normed spaces
and functional equations.We established the generalizedHyers-Ulam stability of the func-
tional equation (.) in non-Archimedean normed spaces.
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