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Abstract
In this paper, a modified simple penalty function is proposed for a constrained
nonlinear programming problem by augmenting the dimension of the program with
a variable that controls the weight of the penalty terms. This penalty function enjoys
improved smoothness. Under mild conditions, it can be proved to be exact in the
sense that local minimizers of the original constrained problem are precisely the local
minimizers of the associated penalty problem.
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1 Introduction
Merit function has always taken an important role in optimization problem. It is tradi-
tionally constructed to solve nonlinear programs by augmenting the objective function
or a corresponding Lagrange function some penalty or barrier terms with respect of the
constraints. Then it can be optimized by some unconstrained or bounded constrained op-
timization softwares or sequential quadratic programming (SQP) techniques. No matter
what kind of techniques are involved, the merit function always depends on a small pa-
rameter ε or large parameter ρ = ε–. As ε → , the minimizer of a merit function such
as a barrier function or the quadratic penalty function, converges to a minimizer of the
original problem. By using some exact penalty function such as l penalty function (see
[, , –]), the minimizer of the corresponding penalty problem must be a minimizer
of the original problem when ε is sufficiently small. There are some nonsmooth penalty
functions for nonsmooth optimization problems, such as the exact penalty function using
the distance function for the nonsmooth variational inequality problem in Hilbert spaces
[] and the one in [].
The traditional exact penalty functions [] are always nonsmooth. When it is used as a

merit function to accept a new iterate in an SQP method, it may cause the Maratos effect
[]. On the other hand, a traditional smooth penalty function like the quadratic penalty
function cannot be an exact one. So we must compute a sequence of minimization sub-
problem as ε → . At that time, ill-conditioning may occur when the penalty parameter is
too large or small, which also brings difficulty of computation. In [] and [], some kinds
of augmented Lagrangian penalty functions have been proposed with improved exactness
under strong conditions. In [], exact penalty functions via regularized gap function for
variational inequalities have also been given. All these functions enjoy some smoothness,
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but at the very beginning, to use this smoothness we need second-order or third-order
derivative information of the problem function that is difficult to estimate in practice.
Besides, all the above kinds of penalty functions (see [–, , ] for summary) may be
unbounded below even when the constrained problem is bounded, which may make it
difficult to locate a minimizer.
In the paper [], a new penalty function is proposed for the constrained optimization

problem. By augmenting the dimension of the program with an additional variable ε that
controls the weight of the penalty terms, this new penalty function enjoys properties of
smoothness and exactness, and remains bounded below under reasonable conditions. Its
important new idea is that the penalty function is considered as a function of variable x
and the additional variable ε simultaneously. Under proper assumptions, the minimizer
(x*, ε*) of the merit function satisfies ε* = , and x* is a minimizer of the original problem.
However, the penalty function given in [] is not smooth in a small neighborhood of
(x*, ), where the minimizer of the original constrained problem lies. In this paper, we give
a penalty function which enjoys the properties of the penalty function given in [] and
has improved smoothness.
The rest of this paper is organized as follows. In Section , a penalty function is in-

troduced for a smooth nonlinear optimization problem with equality constraints and
bounded constraints. The smoothness of this penalty function is discussed, aswell as other
properties, including being bounded below under mild assumptions. Section  shows the
exactness of our penalty function in the sense that under certain conditions, local mini-
mizer of our penalty function has the form (x*, ε*) with ε* =  and x* is a local minimizer
of the original problem, and a converse result holds.

Notation Throughout this paper, we use the Euclidean norm ‖x‖ =
√∑

xk . The subvec-
tor of x indexed by the indices in J is denoted by xJ . We denote sets of the form

[x,x] := x ∈ Rn|{x≤ x ≤ x},

where the lower bound x ∈ (R ∪ {–∞})n and the upper bound x ∈ (R ∪ {∞})n are vectors
containing proper or infinite bounds on the components of x and [x,x] is referred to an
n-dimensional box.

2 New penalty function
We consider the smooth nonlinear optimization problem with equality constraints and
bound constraints:

(P)
min f (x)
s.t. x ∈ [u, v], F(x) = ,

(.)

where [u, v] is a box in �n with nonempty interior, f : D → � and F : D → �m are con-
tinuously differentiable in an open set D containing [u, v] and m < n. We fix w ∈ �m and
consider the equivalent problem:

(P)
min f (x)
s.t. Fj(x) = εγwj, j = , . . . ,m,

x ∈ [u, v], ε = ,
(.)

where γ > .
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Let ε >  be an upper bound of the parameter ε. Then the corresponding penalty func-
tion fσ on D× [, ε] for (P) is given as follows:

fσ (x, ε) =

⎧⎪⎨
⎪⎩
f (x) if ε = 	(x, ε) = ,
f (x) + 

εα
	(x,ε)

–q	(x,ε) + σεβ if ε > ,	(x, ε) < q–,
+∞ otherwise

(.)

with the constraint violation measure

	(x, ε) :=
∥∥F(x) – εγw

∥∥,

where, in addition, γ > α ≥ β ≥  and q > , are all fixed numbers, σ >  is a penalty
parameter and ‖ · ‖ is a Euclidean norm, with ‖x‖ = √

xTx for any vector x.
Obviously, ε = 	(x, ε) =  if and only if ε = , Fj(x) = , j = , . . . ,m. The corresponding

penalty problem then reads

(Pσ )
min fσ (x, ε)
s.t. (x, ε) ∈ [u, v]× [, ε].

(.)

The main difference between (.) and the penalty function given in [] is that in (.),
β(ε) = εβ , which does not have the property that β ′(ε) → +∞, as ε → +.
It is easy to see that fσ (x, ε) is continuously differentiable with respect to (x, ε) on

Dq :=
{
(x, ε) ∈D× (, ε]

∣∣∣≤ 	(x, ε) <

q

}
.

2.1 Boundedness of the penalty function
If F(x) = , (x, ε) ∈Dq, then

fσ (x, ε) = f (x) +
εγ–α‖w‖

 – qεγ ‖w‖ + σεβ ≥ fσ (x, ) = f (x). (.)

Therefore, fσ (x, ε) is bounded below on the set

D′ =
{
x ∈ [u, v]|∥∥F(x)∥∥ ≤ q–/ + εγ ‖w‖},

whenever f (x) is bounded below on the set D′. This is a reasonable condition since it usu-
ally holds when f is bounded below on the feasible set, ε is small enough, and q is large
enough.
The denominator  – q	(x, ε) is included since it forces the level sets of fσ to remain

in the set {(x, ε) ∈ �n+|	(x, ε) < q–}, hence in some sense does not go far away from the
feasible set of (P).
Now we see a simple example:

minx

s.t. x –  = ,
x ∈ �.
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Figure 1 β = 1, γ = 3, α = 2, and σ = 2,000.

It has a bounded feasible domain, a global minimizer at x* = – with f (x*) = –, and a local
minimizer x = . The traditional quadratic penalty function for this problem

P(x) = x +

ε

(
x – 

),
is unbounded below for all penalty parameters ε >  since, e.g., p(x) → –∞ for x = –s,
s → +∞. It is also the case for traditional penalty functions, including multiplier penalty
functions that use an additional term +λ(x –). On the other hand, our new penalty func-
tion is bounded below. Set w = , it reads

fσ (x, ε) =

⎧⎪⎨
⎪⎩
x if ε = r = ,
x + 

εα
r

–qr + σεβ if ε > , |r| < q–/,
+∞ otherwise,

where r =  + εγ – x. Since fσ (x, ε) = +∞, if |x| ≥ √
q–/ +  + εγ , it is obvious that our

penalty function is bounded below. See Figure  for the display of the contour of the penalty
function on this example.

3 Exactness of the penalty function
In this section, we show that our penalty function is exact in the sense that under certain
conditions, local minimizer of our penalty function has the form (x*, ε*) in which ε* = 
and x* is a local minimizer of the original problem and a converse proposition holds.
Firstly, recall the Mangasarian-Fromovitz condition. We say that the Mangasarian-

Fromovitz condition (see []) for Problem (P) holds at x ∈ [u, v] if F ′(x) has full rank and
there is a vector p ∈ �n with F ′(x)p =  and

pi

{
>  if xi = ui,
<  if xi = vi.

(.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/173
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Theorem. Assume that the set D′ defined in Section  is bounded, and theMangasarian-
Fromovitz condition holds at each x′ ∈ D′. Let γ > α ≥ β ≥  in (Pσ ). If σ is sufficiently
large, then there is no Kuhn-Tucker point (x, ε) of (Pσ ) with ε > .

Proof Let the Lagrangian function of (Pσ ) for σ >  be

L(x, ε, y, z) = fσ (x, ε) +
n∑
i=

yi(ui – xi) +
n∑
i=

zi(xi – vi) + yn+(–ε) + zn+(ε – ε),

where yi, zi ∈ �, i = , . . . ,n +  are the Lagrangian multipliers. If (x, ε) is a Kuhn-Tucker
point of (Pσ ) with ε > , then there exist vectors y, z ∈ �n+ such that

∇(x,ε)L(x, ε, y, z) = ,

ui – xi ≤ , xi – vi ≤ , i = , . . . ,n,

–ε < , ε – ε ≤ ,

yi(ui – xi) = , zi(vi – xi) = , zn+(ε – ε) = , yn+ε = ,

then

∇(x,ε)fσ (x, ε) = y – z,

and

inf(yi,xi – ui) = inf(zi, vi – xi) = , i = , . . . ,n,

yn+ = inf(zn+, ε – ε) = ,

where ∇(x,ε)fσ (x, ε) is the gradient of fσ with respect to (x, ε). The assertion of the theorem
is proved by contradiction. �

Assume that there exists a sequence {(xk , εk ,σk)} with εk >  for all k, σk → +∞ as k →
∞, where (xk , εk) is a Kuhn-Tucker point of (Pσk ). We use the abbreviation 	k :=	(xk , εk).
The point xk satisfies

∥∥F(
xk

)∥∥ ≤ 	/
k + ε

γ

k ‖w‖ ≤ q–/ + εγ ‖w‖,

hence, xk ∈ D′ = {x ∈ [u, v]|‖F(x)‖ ≤ q–/ + εγ ‖w‖}. Since D′ is closed and bounded, we
may restrict ourselves to a subsequence if necessary and assume that

lim
k→∞

εk = ε* ∈ [, ε] and lim
k→∞

xk = x* ∈D′.

The condition ∂
∂ε
fσ (xk , εk) ≤  yields

αq	
k + (γ – α)εγk ‖w‖ + (α – γ )εγ

k

m∑
j=

Fj
(
xk

)
wj

+ βε
α+β

k ( – q	k)σk ≤ α

m∑
j=

F
j
(
xk

)
(.)
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with equality in the case εk �= ε. When σk → ∞ and because α
∑m

j= F
j (xk) - the right side

of (.) is a finite number, we have

lim
k→∞

εk = ε* =  or lim
k→∞

	(
xk , εk

)
= 	* = q–, (.)

where 	* = 	(x*, ε*). On the other side, the derivative the penalty function fσ with respect
to x is given as

∂

∂xi
fσ

(
xk , εk

)
=

∂

∂xi
f
(
xk

)
+


εα
k

∂
∂xi

	(xk , εk)
 – q	(xk , εk)

+

εα
k

q	(xk , εk) ∂
∂xi

	(xk , εk)
( – q	(xk , εk))

=
∂

∂xi
f
(
xk

)
+


εα
k

∂
∂xi

	(xk , εk)
( – q	(xk , εk))

⎧⎪⎨
⎪⎩

≥  if xki = ui,
=  if ui < xki < vi,
≤  if xki = vi

(.)

(.) is equivalent to

εα
k
(
 – q	(

xk , εk
)) ∂

∂xi
f
(
xk

)
+

∂

∂xi
	(

xk , εk
)

= εα
k
(
 – q	(

xk , εk
)) ∂

∂xi
f
(
xk

)
+ 

(
F ′(xk)T(

F
(
xk

)
– ε

γ

k w
))

i⎧⎪⎨
⎪⎩

≥  if xki = ui,
=  if ui < xki < vi,
≤  if xki = vi.

(.)

Let k → +∞, since ε* =  or 	* = q–, we have

(
F ′(x*)T(

F
(
x*

)
– ε

γ
* w

))
i

⎧⎪⎨
⎪⎩

≥  if x*i = ui,
=  if ui < x*i < vi,
≤  if x*i = vi.

(.)

Because x* ∈D′, thus Mangasarian-Fromovitz condition holds at x* and there exists some
vector p ∈ �n such that F ′(x*)p = , where p satisfies (.). Let I := {i|x*i = ui}, I := {i|x*i =
vi} and 	* := F(x*) – ε

γ
* w. Then by (.), we have

 =
(
F ′(x*)p)T	* =

∑
i∈I

pi
(
F ′(x*)T	*

)
i +

∑
i∈I

pi
(
F ′(x*)T	*

)
i. (.)

(.) and the Mangasarian-Fromovitz condition (.) imply (F ′(x*)T	*)i =  for i ∈ I ∪ I.
Thus, F ′(x*)T	* = . Now the fact that F ′(x*) has full rank yields 	* = , i.e.,

F
(
x*

)
– ε

γ
* w = ,

and by 	* = limk→∞(F(xk) – ε
γ

k w) = , it follows that

lim
k→∞

	(
xk , εk

)
= lim

k→∞
∥∥F(

xk
)
– ε

γ

k w
∥∥ = 	* = .
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By (.), we obtain

lim
k→∞

εk = ε* = .

Thus, limk→∞ F(xk) = F(x*) = .
Furthermore, by (.), it holds that

q
ε

α+β

k

	(xk , εk) +  γ

α
– 

ε
α+β–γ
k

‖w‖ + 
(
 –

γ

α

)
ε

γ–(α+β)
k

m∑
i=

Fi
(
xk

)
wi

+
β

α

(
 – q	(

xk , εk
))

σk ≤
∑m

i= F
i (xk)

ε
α+β

k

.

Let k → ∞, the last term on the left-hand side tend to +∞. Thus, the vectors yk = F(xk )

ε

α+β


k

satisfies ‖yk‖ → +∞. The vectors zk = yk

‖yk‖ have norm , and (.) implies that the numbers
μk
i (i = , . . . ,n), defined by

μk
i =


‖yk‖

∂

∂xi
f
(
xk

)
+


‖yk‖


εα
k ( – q	(xk , εk))

(
F ′(xk)T(

F(xk) – ε
γ

k w
))

i

=


‖yk‖
∂

∂xi
f
(
xk

)
+



ε
α–β


k ( – q	(xk , εk))

(
F ′(xk)T(

zk –
ε

γ– α+β


k w
‖yk‖

))
i
,

satisfy

μk
i

⎧⎪⎨
⎪⎩

≥  if xki = ui,
=  if ui < xki < vi,
≤  if xki = vi.

If we pick a convergent subsequence znk with the limit z* and pass to the limit we obtain

(
F ′(x*)z*)i

⎧⎪⎨
⎪⎩

≥  if x*i = ui,
=  if ui < x*i < vi,
≤  if x*i = vi.

Now similarly as above, it yields z* = , which is a contradiction with ‖z*‖ = . Thus such a
sequence {(xk , εk ,σk)} cannot exist, and for sufficiently large σ > , all Kuhn-Tucker points
of (Pσ ) are of the form (x, ).

Theorem . Assume that (x*, ε*) is a local minimizer of minimizer of (Pσ ) with finite
fσ (x*, ε*), where σ >  is sufficiently large. If the hypotheses of Theorem . are fulfilled, then
x* is a local minimizer of (P).

Proof Now let (x*, ε*) be a local minimizer of (Pσ ) with finite fσ (x*, ε*) and σ >  is suffi-
ciently large. If ε* > , then (x*, ε*) must be a Kuhn-Tucker point of (Pσ ), which is a con-
tradiction with Theorem .. Therefore, ε* = , and since fσ (x*, ε*) is finite, 	(x*, ε*) = . It

http://www.journalofinequalitiesandapplications.com/content/2012/1/173
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implies that F(x*) = , and by (.) there is a neighborhood N(x*) of x* where f (x) ≥ f (x*)
for feasible x. Therefore, x* is a local minimizer of (P). �

We now show a converse result of Theorem ., which will use the following lemmas.

Lemma . Suppose F(x*) = , and F ′(x*) has full rank. Then there exist a neighborhood
N(x*) of x* and a constant κ >  such that for each x ∈ N(x*), and each subset J of
{, , . . . ,m}, there exists a vector y = y(x) ∈ N(x*) with Fi(y) = , for i ∈ J and Fi(y) = Fi(x),
i ∈ K = {, , . . . ,m} \ J , such that

‖x – y‖ ≤ κ
∥∥FJ (x)∥∥.

Proof Since F(x*) =  and F ′(x*) has full rank, there exists a matrix B ∈ �(n–m)×n such that
the augmented matrix

( F ′(x*)
B

)
is nonsingular. By the continuity of F ′(·) at x*, there exists

a neighborhood N(x*) ⊂ D of x* such that
( F ′(x)

B

)
is nonsingular, for any x ∈ N(x*). Take

for A the closed convex hull of {F ′(x)|x ∈ N(x*)}, then for all A ∈ A, the matrix
( A
B

)
is

nonsingular. We now show that for any x, y ∈N(x*), there exists a matrix A ∈A such that

F(x) – F(y) = A(x – y). (.)

In fact, given x, y ∈ N(x*), it follows from the mean value theorem that

F(x) – F(y) =
∫ 


F ′(y + s(x – y)

)
(x – y)ds

= Ax,y(x – y),

where Ax,y =
∫ 
 F

′(y + s(x – y))ds ∈A, so (.) holds. Set the mapping H(z) :=
( F(z)
B(z–x*)

)
, for

z ∈ N(x*). By the proof in [, Theorem .], we have that there exists a neighborhood
N(x*) ⊂N(x*) of x* such that for each x ∈N(x*), and each subset J of {, , . . . ,m}, there
exists a vector y = y(x) ∈ N(x*) with

H(y) =

(
F(y)

B(y – x*)

)
=

⎛
⎜⎝


FK (x)

B(x – x*)

⎞
⎟⎠ ,

so Fi(y) = , for i ∈ J and Fi(y) = Fi(x), i ∈ K .
For x, y ∈N(x*), we have

H(x) –H(y) =

(
A
B

)
(x – y),

for some A ∈A. On the other side, we have

∥∥H(x) –H(y)
∥∥ =

∥∥FJ (x)∥∥. (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/173
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Therefore, combining (.) with (.), we have

‖x – y‖ ≤
∥∥∥∥∥
(
A
B

)–∥∥∥∥∥
∥∥FJ (x)∥∥ ≤ κ

∥∥FJ (x)∥∥,
where

κ :=

∥∥∥∥∥supA∈A

(
A
B

)–∥∥∥∥∥ < +∞,

and this complete the proof. �

Lemma . Assume that x* is a local minimizer of problem (.) with ui ≤ x*i ≤ vi, i ∈
{, . . . ,p}, where m ≤ p ≤ n. Suppose that F ′(x*) has full rank. Then there exists a constant
κ >  such that

f (x)≥ f
(
x*

)
– κ

∥∥F(x)∥∥, for all x ∈N
(
x*

)
,

where N(x*) is defined in Lemma ..

Proof From Lemma ., let N(x*) and κ be the one in Lemma .. Let x ∈ N(x*), then
by Lemma . with J = {, . . . ,m}, there exists an y = y(x) with F(y) =  and yi = x*i , i =
m + , . . . ,n such that

‖x – y‖ ≤ κ
∥∥F(x)∥∥. (.)

So y is a feasible point of problem (.), and f (y) ≥ f (x*). Since f is continuously differen-
tiable, for any x, y ∈N(x*), there exists a vector ξ ∈ �n such that

f (x) – f (y) = ∇f (ξ )T (x – y),

where ξ lies in the segment between x and y. Set L := supz∈N(x*) ‖∇f (z)‖, we have
∣∣f (x) – f (y)

∣∣ ≤ ∥∥∇f (ξ )
∥∥‖x – y‖

≤ L‖x – y‖
≤ Lκ

∥∥F(x)∥∥,
where the last inequality holds from (.).
Let κ = Lκ, then

f (x) = f (x) – f (y) + f (y) ≥ f
(
x*

)
– κ

∥∥F(x)∥∥,
which complete the proof. �

http://www.journalofinequalitiesandapplications.com/content/2012/1/173
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Theorem. If x* is a local minimizer of problem (P) with ui ≤ x*i ≤ vi, i ∈ {, . . . ,p}, where
m ≤ p ≤ n, and F ′(x*) has full rank, then for sufficiently large σ > , there are a neighbor-
hood N(x*) of x* and a ε′ ∈ (, ε] such that

fσ (x, ε) > fσ
(
x*, 

)
= f

(
x*

)
, for all (x, ε) ∈ N

(
x*

) × (, ε′].

In particular, (x*, ) is a local minimizer of fσ .

Proof Let N(x*) ⊂N(x*) is a neighborhood of x* such that

sup
x∈N(x*)

(
f
(
x*

)
– f (x)

)
< , (.)

where N(x*) is defined in Lemma ..
For (x, ε) ∈N(x*)× (, ε′], where ε′ ∈ (, ε] and ε′ ≤ , we distinguish two cases.
Case . 	(x, ε) = ‖F(x) – εγw‖ ≥ εα . For this case, we have

fσ (x, ε) ≥ f (x) +  + σεβ

≥ f
(
x*

)
+ σεβ

> f
(
x*

)
= fσ

(
x*, 

)
,

where the second inequality is by (.).
Case . 	(x, ε) < εα . Then ‖F(x)‖ ≤ 	 

 + εγ ‖w‖ ≤ ε
α
 + εγ ‖w‖, and

fσ (x, ε) ≥ f (x) + σεβ

≥ f
(
x*

)
– κ

∥∥F(x)∥∥ + σεβ

≥ f
(
x*

)
– κ

(
ε

α
 + εγ ‖w‖) + σεβ

≥ f
(
x*

)
+

(
σ – κ

(
 + εγ– α


)‖w‖)ε α

 . (.)

The last inequality holds since β ≤ α
 .

Let σ > κ( + εγ– α
 )‖w‖, we get

fσ (x, ε) ≥ f
(
x*

)
= fσ

(
x*, 

)
.

From Case  and Case , we obtain the conclusion. �

4 Conclusion remarks
In this paper, a modified exact penalty function for equality constrained nonlinear pro-
gramming problem is constructed by augmenting a new variable that controls the con-
straint violence. This function enjoys smoothness, and with very mild conditions it is
proved to be an exact penalty function.
Since in practice, a lot of applied problems are nonsmooth, it is a meaningful work to

extend the results in this paper to the nonsmooth case. By using the limiting subgradi-
ents that is presented in two books written by Mordukhovich [, ], as well as Clarke’s
generalized gradients in [], we can extend the penalty function with the mentioned good
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properties to nonsmooth optimization problems, just as that has been done in [–].
That will be our future research direction.
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