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Abstract
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1 Introduction
In nonlinear functional analysis, one of the most productive tools is the fixed-point the-
ory, which has numerous applications in many quantitative disciplines such as biology,
chemistry, computer science, and additionally in many branches of engineering. In this
theory, the Banach contraction principle can be considered as a cornerstone pioneering
result which in elementary terms states that each contraction has a unique fixed point in a
complete metric space. Due to its potential of applications in the fields above mentioned
and many more, the fixed-point theory, in particular, the Banach contraction principle,
attracts considerable attention from many authors (see, e.g., [–]). Especially, it is con-
sidered very natural and curious to investigate the existence and uniqueness of a fixed
point for several contraction type mappings in various abstract spaces. A major example
in this direction is the work of Mustafa and Sims [] in which they introduced the con-
cept of G-metric spaces as a generalization of (usual) metric spaces in . After this
remarkable paper, a number of papers have appeared on this topic in the literature (see,
e.g., [–, , , –]).
For the sake of completeness, we recall some basic definitions and elementary results

from the literature. Throughout this paper, N is the set of nonnegative integers, and N
* is

the set of positive integers.

Definition  (See []) Let X be a nonempty set, G : X × X × X → R
+ be a function

satisfying the following properties:
(G) G(x, y, z) =  if x = y = z,
(G)  <G(x,x, y) for all x, y ∈ X with x �= y,
(G) G(x,x, y)≤ G(x, y, z) for all x, y, z ∈ X with y �= z,
(G) G(x, y, z) =G(x, z, y) =G(y, z,x) = · · · (symmetry in all three variables),
(G) G(x, y, z) ≤ G(x,a,a) +G(a, y, z) for all x, y, z,a ∈ X (rectangle inequality).
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Then the function G is called a generalized metric, or more specially, a G-metric on X,
and the pair (X,G) is called a G-metric space.

Every G-metric on X defines a metric dG on X by

dG(x, y) =G(x, y, y) +G(y,x,x), for all x, y ∈ X. (.)

Example  Let (X,d) be a metric space. The function G : X ×X ×X → [, +∞), defined
by

G(x, y, z) =max
{
d(x, y),d(y, z),d(z,x)

}
,

or

G(x, y, z) = d(x, y) + d(y, z) + d(z,x),

for all x, y, z ∈ X, is a G-metric on X.

Definition  (See []) Let (X,G) be aG-metric space, and let {xn} be a sequence of points
of X, therefore, we say that (xn) isG-convergent to x ∈ X if limn,m→+∞ G(x,xn,xm) = , that
is, for any ε > , there exists N ∈ N such that G(x,xn,xm) < ε, for all n,m ≥ N . We call x
the limit of the sequence and write xn → x or limn→+∞ xn = x.

Proposition  (See []) Let (X,G) be a G-metric space. The following are equivalent:
() {xn} is G-convergent to x,
() G(xn,xn,x) →  as n→ +∞,
() G(xn,x,x)→  as n→ +∞,
() G(xn,xm,x)→  as n,m → +∞.

Definition  (See []) Let (X,G) be a G-metric space. A sequence {xn} is called a G-
Cauchy sequence if, for any ε > , there is N ∈N such that G(xn,xm,xl) < ε for allm,n, l ≥
N , that is, G(xn,xm,xl) →  as n,m, l → +∞.

Proposition  (See []) Let (X,G) be a G-metric space. Then the following are equiva-
lent:
() the sequence {xn} is G-Cauchy,
() for any ε > , there exists N ∈N such that G(xn,xm,xm) < ε, for all m,n≥ N .

Definition  (See []) A G-metric space (X,G) is called G-complete if every G-Cauchy
sequence is G-convergent in (X,G).

Definition  Let (X,G) be a G-metric space. A mapping F : X ×X ×X → X is said to be
continuous if for any three G-convergent sequences {xn}, {yn} and {zn} converging to x, y,
and z, respectively, {F(xn, yn, zn)} is G-convergent to F(x, y, z).

Definition  Let F : X × X → X and g : X → X be mappings. The mappings F and g are
said to commute if

g
(
F(x, y)

)
= F

(
g(x), g(y)

)
, for all x, y ∈ X.
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In [], Shatanawi proved the following theorems.

Theorem  Let (X,G) be a G-metric space. Let F : X × X → X and g : X → X be two
mappings such that

G
(
F(x, y),F(u, v),F(z,w)

) ≤ k
(
G(gx, gu, gz) +G(gy, gv, gw)

)
for all x, y,u, v, z,w. (.)

Assume that F and g satisfy the following conditions:
() F(X ×X) ⊂ g(X),
() g(X) is G-complete,
() g is G-continuous and commutes with F .

If k ∈ [,  ), then there is a unique x ∈ X such that gx = F(x,x) = x.

Corollary  Let (X,G) be a complete G-metric space. Let F : X × X → X be a mapping
such that

G
(
F(x, y),F(u, v),F(u, v)

) ≤ k
(
G(x,u,u) +G(y, v, v)

)
for all x, y,u, v ∈ X. (.)

If k ∈ [,  ), then there is a unique x ∈ X such that F(x,x) = x.

In this paper, we aim to extend the above coupled fixed-point results.

2 Main results
We start with an example to show the weakness of Theorem .

Example  Let X = [, ]. Define G : X ×X ×X → [, +∞) by

G(x, y, z) = |x – y| + |x – z| + |y – z|

for all x, y, z ∈ X. Then (X,G) is a G-metric space. Define a map F : X ×X → X by F(x, y) =

x + 

y and g : X → X by g(x) = x
 for all x, y ∈ X. Then, for all x, y,u, v, z,w ∈ X with

y = v = w, we have

G
(
F(x, y),F(u, v),F(z,w)

)
= G

(


x +



y,


u +



v,


z +



w

)

=
|x – u| + |x – z| + |u – z|



and

G(gx, gu, gz) +G(gy, gv, gw) = G
(
x

,
u

,
z


)
+G

(
y

,
v

,
w


)

=
|x – u| + |x – z| + |u – z|


.

Then it is easy to that there is no k ∈ [,  ) such that

G
(
F(x, y),F(u, v),F(z,w)

) ≤ k
[
G(gx, gu, gz) +G(gy, gv, gw)

]
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for all x, y,u, v, z,w ∈ X. Thus, Theorem  cannot be applied to this example. However, it
is easy to see that  is the unique point x ∈ X such that x = gx = F(x,x).

We now state our first result which successively guarantee a coupled fixed point.

Theorem  Let (X,G) be a G-metric space. Let F : X × X → X and g : X → X be two
mappings such that

G
(
F(x, y),F(u, v),F(u, v)

)
+G

(
F(y,x),F(v,u),F(v,u)

)
≤ k

[
G(gx, gu, gu) +G(gy, gv, gv)

]
(.)

for all x, y,u, v ∈ X. Assume that F and g satisfy the following conditions:
() F(X ×X) ⊂ g(X),
() g(X) is G-complete,
() g is G-continuous and commutes with F .

If k ∈ [, ), then there is a unique x ∈ X such that gx = F(x,x) = x.

Proof Take x, y ∈ X. Noting that F(X ×X)⊂ g(X), we can construct two sequences {xn}
and {yn} in X such that

gxn+ = F(xn, yn), gyn+ = F(yn,xn), n ∈N.

Let

Mn =G(gxn, gxn+, gxn+) +G(gyn, gyn+, gyn+), n ∈N.

Then, by using (.), for each n ∈N
*, we have

Mn = G(gxn, gxn+, gxn+) +G(gyn, gyn+, gyn+)

= G
(
F(xn–, yn–),F(xn, yn),F(xn, yn)

)
+G

(
F(yn–,xn–),F(yn,xn),F(yn,xn)

)
≤ k

[
G(gxn–, gxn, gxn) +G(gyn–, gyn, gyn)

]
= kMn–,

which yields that

Mn ≤ knM, n ∈ N. (.)

Now, for all m,n ∈ N with m > n, by using rectangle inequality of G-metric and (.), we
get

G(gxn, gxm, gxm) +G(gyn, gym, gym)

≤ G(gxn, gxn+, gxn+) +G(gxn+, gxm, gxm)

+G(gyn, gyn+, gyn+) +G(gyn+, gym, gym)

≤ G(gxn, gxn+, gxn+) +G(gxn+, gxn+, gxn+) +G(gxn+, gxm, gxm)

http://www.journalofinequalitiesandapplications.com/content/2012/1/170


Ding and Karapınar Journal of Inequalities and Applications 2012, 2012:170 Page 5 of 9
http://www.journalofinequalitiesandapplications.com/content/2012/1/170

+G(gyn, gxn+, gyn+) +G(gyn+, gyn+, gyn+) +G(gyn+, gym, gym)

...

≤ G(gxn, gxn+, gxn+) +G(gxn+, gxn+, gxn+) + · · · +G(gxm–, gxm, gxm)

+G(gyn, gyn+, gyn+) +G(gyn+, gyn+, gyn+) + · · · +G(gym–, gym, gym)

≤ Mn +Mn+ + · · · +Mm–

≤ (
kn + kn+ + · · · + km–)M

≤ kn

 – k
M,

which yields that

lim
n,m→+∞G(gxn, gxm, gxm) +G(gyn, gym, gym) = .

Then, by Proposition , we conclude that the sequences {gxn} and {gyn} are G-Cauchy.
Noting that g(X) is G-complete, there exist x, y ∈ g(X) such that {gxn} and {gyn} are G-

convergent to x and y, respectively, i.e.,

lim
n→+∞G(gxn,x,x) = , lim

n→+∞G(gyn, y, y) = .

Also, since g is G-continuous, we get

lim
n→+∞G(ggxn, gx, gx) = , lim

n→+∞G(ggyn, gy, gy) = . (.)

In addition, by (.) and the fact g commutes with F , we get

G
(
ggxn+,F(x, y),F(x, y)

)
+G

(
ggyn+,F(y,x),F(y,x)

)
=G

(
g
(
F(xn, yn)

)
,F(x, y),F(x, y)

)
+G

(
g
(
F(yn,xn)

)
,F(y,x),F(y,x)

)
=G

(
F(gxn, gyn),F(x, y),F(x, y)

)
+G

(
F(gyn, gxn),F(y,x),F(y,x)

)
≤ k

[
G(ggxn, gx, gx) +G(ggyn, gy, gy)

]
.

Combining this with (.), we get

G
(
ggxn+,F(x, y),F(x, y)

)
+G

(
ggyn+,F(y,x),F(y,x)

) → , n→ +∞.

On the other hand, by the fact that G is continuous on its variables (cf. []), we have

G
(
ggxn+,F(x, y),F(x, y)

)
+G

(
ggyn+,F(y,x),F(y,x)

)
→ G

(
gx,F(x, y),F(x, y)

)
+G

(
gy,F(y,x),F(y,x)

)
, n → +∞.

Thus, we conclude that

G
(
gx,F(x, y),F(x, y)

)
+G

(
gy,F(y,x),F(y,x)

)
= ,
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i.e.,

G
(
gx,F(x, y),F(x, y)

)
=G

(
gy,F(y,x),F(y,x)

)
= ,

which yields that

gx = F(x, y), gy = F(y,x).

Moreover, it follows from

G(gx, gy, gy) +G(gy, gx, gx)

=G
(
F(x, y),F(y,x),F(y,x)

)
+G

(
F(y,x),F(x, y),F(x, y)

)
≤ k

[
G(gx, gy, gy) +G(gy, gx, gx)

]

that G(gx, gy, gy) +G(gy, gx, gx) = . Thus, G(gx, gy, gy) = , i.e., gx = gy.
Next, let us show that gx = F(x,x) = x. By using rectangle inequality of G-metric and

(.), we have

G(x, gx, gx) +G(y, gy, gy)

≤ G(x, gxn+, gxn+) +G(gxn+, gx, gx) +G(y, gyn+, gyn+) +G(gyn+, gy, gy)

≤ [
G(x, gxn+, gxn+) +G(y, gyn+, gyn+)

]
+

[
G

(
F(xn, yn),F(x, y),F(x, y)

)
+G

(
F(yn,xn),F(y,x),F(y,x)

)]
≤ [

G(x, gxn+, gxn+) +G(y, gyn+, gyn+)
]
+ k

[
G(gxn, gx, gx) +G(gyn, gy, gy)

]
≤ [

G(x, gxn+, gxn+) +G(y, gyn+, gyn+)
]

+ k
[
G(x, gx, gx) +G(y, gy, gy)

]
+ k

[
G(gxn,x,x) +G(gyn, y, y)

]
,

which gives that

G(x, gx, gx) +G(y, gy, gy)

≤ G(x, gxn+, gxn+) +G(y, gyn+, gyn+) + k[G(gxn,x,x) +G(gyn, y, y)]
 – k

.

Combing this with the fact that {gxn} and {gyn} are G-convergent to x and y, respectively,
we conclude that

G(x, gx, gx) +G(y, gy, gy) = ,

which yields that

x = gx, y = gy.

Recalling that gx = gy and gx = F(x, y), we get x = y and x = gx = F(x,x).
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It remains to show the uniqueness. Let u ∈ X be such that u = gu = F(u,u). Then we have

G(u,x,x) = G
(
F(u,u),F(x,x),F(x,x)

)
+G

(
F(u,u),F(x,x),F(x,x)

)
≤ k

[
G(gu, gx, gx) +G(gu, gx, gx)

]
≤ kG(u,x,x),

which yields that ( – k)G(u,x,x)≤ . Thus, G(u,x,x) = , which means u = x. This com-
pletes the proof. �

Remark  It is easy to see that Theorem , appearing in [], is a direct corollary of
Theorem . On the other hand, Theorem  can deal with some cases, which Theorem 
cannot be applied. For this, let us reconsider Example . In fact, for all x, y,u, v ∈ X, we
have

G
(
F(x, y),F(u, v),F(u, v)

)
+G

(
F(y,x),F(v,u),F(v,u)

)

=G
(


x +



y,


u +



v,


u +



v
)
+G

(


y +



x,



v +



u,



v +



u
)

≤ (|x – u| + |y – v|)


=



[
G(gx, gu, gu) +G(gy, gv, gv)

]
,

i.e., (.) holds. Other assumptions of Theorem  are easy to verify. So, by Theorem ,
there exists a unique x ∈ X such that gx = F(x,x) = x.

Letting g = I , we can get the following result.

Corollary  Let (X,G) be a complete G-metric space. Let F : X × X → X be a mapping
such that

G
(
F(x, y),F(u, v),F(u, v)

)
+G

(
F(y,x),F(v,u),F(v,u)

)
≤ k

[
G(x,u,u) +G(y, v, v)

]
(.)

for all x, y,u, v ∈ X. If k ∈ [, ), then there is a unique x ∈ X such that F(x,x) = x.

Example  Let (X,G) be the same as in Example . Then (X,G) is a G-metric space.
Also, it is not difficult to verify that (X,G) is G-complete. Define a map F : X ×X → X by
F(x, y) =  – 

x
 – 

y
 for all x, y ∈ X. Then, for all x, y,u, v ∈ X, we have

G
(
F(x, y),F(u, v),F(u, v)

)
+G

(
F(y,x),F(v,u),F(v,u)

)

=G
(
 –




x –



y,  –



u –



v,  –



u –



v
)

+G
(
 –




y –



x,  –



v –



u,  –



v –



u
)

≤ 

∣∣u – x

∣∣ + 

∣∣v – y

∣∣ + 

∣∣v – y

∣∣ + 

∣∣u – x

∣∣

http://www.journalofinequalitiesandapplications.com/content/2012/1/170
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=



∣∣u – x
∣∣ + 


∣∣v – y

∣∣

≤ 

|u – x| + 


|v – y|

and

G(x,u,u) +G(y, v, v)

= 
(|x – u| + |y – v|).

Thus, the statement (.) of Corollary  is satisfied for any k ∈ [  , ). Thus, there is a
unique x ∈ X such that F(x,x) = x.

Remark  Corollary  cannot be applied to Example  since (.) does not hold. In fact,
if (.) holds for some k ∈ [,  ), then




= G
(



,


,



)
=G

(
F(, ),F

(
,




)
,F

(
,




))

≤ k
[
G(, , ) +G

(
,


,



)]

=
k


≤ 

,

which is a contradiction.
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