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Abstract
This paper gives necessary and sufficient conditions in order that a series

∑
anλn

should be summable |B|k , k ≥ 1, whenever
∑

an is summable |A|. Some new results
have also been obtained.
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1 Introduction
Let

∑
an be a given infinite series with the partial sums (sn). Let (pn) be a sequence of

positive numbers such that

Pn =
n∑

v=

pv → ∞ as (n→ ∞), (P–i = p–i = , i≥ ). ()

The sequence-to-sequence transformation

tn =

Pn

n∑
v=

pvsv ()

defines the sequence (tn) of the Riesz means of the sequence (sn) generated by the se-
quence of coefficients (pn) (see []). The series

∑
an is said to be summable |R,pn|k , k ≥ ,

if (see [])

∞∑
n=

nk–|tn – tn–|k <∞. ()

Let A = (anv) be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal
entries. Then A defines the sequence-to-sequence transformation, mapping the sequence
s = (sn) to As = (An(s)), where

An(s) =
n∑

v=

anvsv, n = , , . . . . ()
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The series
∑

an is said to be summable |A|k , k ≥ , if (see [])

∞∑
n=

nk–
∣∣�̄An(s)

∣∣k < ∞, ()

where

�̄An(s) = An(s) –An–(s).

If we take anv = pv
Pn , then |A|k summability is the same as |R,pn|k summability.

Before stating the main theorem we must first introduce some further notations.
Given a normal matrix A = (anv), we associate two lover semimatrices Ā = (ānv) and

Â = (ânv) as follows:

ānv =
n∑
i=v

ani, n, v = , , . . . ()

and

â = ā = a, ânv = ānv – ān–,v, n = , , . . . . ()

Itmay be noted that Ā and Â are thewell-knownmatrices of series-to-sequence and series-
to-series transformations, respectively. Then, we have

An(s) =
n∑

v=

anvsv =
n∑

v=

ānvav ()

and

�̄An(s) =
n∑

v=

ânvav. ()

If A is a normal matrix, then A′ = (a′
nv) will denote the inverse of A. Clearly if A is nor-

mal, then Â = (ânv) is normal and has two-sided inverse Â′ = (â′
nv), which is also normal

(see []).
Sarıgöl [] has proved the following theorem for |R,pn|k summability method.

TheoremA Suppose that (pn) and (qn) are positive sequences with Pn → ∞ and Qn → ∞
as n→ ∞. Then

∑
anλn is summable |R,qn|k , k ≥  whenever

∑
an is summable |R,pn|, if

and only if

λn =O
{
n


k –

qnPn

pnQn

}
, ()

Wn�(Qn–λn) =O
(
pn
Pn

)
, ()

Qnλn+Wn =O() ()
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provided that

Wn =

{ ∞∑
v=n+

vk–
(

qv
QvQv–

)k
} 

k

<∞.

Theorem B The |R,pn| summability implies the |R,qn|k , k ≥ , summability if and only if
the following conditions hold:

qv
Qv

· Pv

pv
=O

{
v

k –

}
, ()

|�Qv–| ·Wv =O
(
pv
Pv

)
, ()

QvWv =O(), ()

where

Wv =

{ ∞∑
i=v+

ik–
(

qi
QiQi–

)k
} 

k

<∞

and we regarded that the above series converges for each v and � is the forward difference
operator.

It may be remarked that the above theorem has been proved by Orhan and Sarıgöl [].

Lemma ([]) A = (anv) ∈ (l, lk) if and only if

sup
v

∞∑
n=

|anv|k < ∞ ()

for the cases  ≤ k < ∞, where (l, lk) denotes the set of all matrices A which map l into
lk = {x = (xn) :

∑ |xn|k < ∞}.

2 Main theorem
The aimof this paper is to generalize TheoremA for the |A| and |B|k summabilities. There-
fore we shall prove the following theorem.

Theorem Let k ≥ , A = (anv) and B = (bnv) be two positive normal matrices such that

an–,v ≥ anv, for n≥ v + , ()

ān = , n = , , , . . . . ()

Then, in order that
∑

anλn is summable |B|k whenever∑
an is summable |A|, it is necessary

that

|λn| =O
(
n


k –

ann
bnn

)
, ()
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∞∑
n=v+

nk–
∣∣�v(b̂nvλv)

∣∣k =O
(
akvv

)
, ()

∞∑
n=v+

nk–|b̂n,v+λv+|k =O(). ()

Also ()-() and

b̄n = , n = , , , . . . , ()

ann – an+,n =O(annan+,n+), ()
∞∑

v=r+

∣∣b̂nvâ′
vrλv

∣∣ =O
(|b̂n,r+λr+|

)
()

are sufficient for the consequent to hold.

It should be noted that if we take anv = pv
Pn and bnv = qv

Qn
, then we get Theorem A. Also if

we take λn = , then we get Theorem B.

Proof of the Theorem
Necessity. Let (xn) and (yn) denote A-transform and B-transform of the series

∑
an and∑

anλn, respectively. Then, by () and (), we have

�̄xn =
n∑

v=

ânvav and �̄yn =
n∑

v=

b̂nvavλv. ()

For k ≥ , we define

A =
{
(ai) :

∑
ai is summable |A|

}
, B =

{
(aiλi) :

∑
aiλi is summable |B|k

}
.

Then it is routine to verify that these are BK-spaces, if normed by

‖X‖ =
{ ∞∑

n=

|�̄xn|
}

()

and

‖Y‖ =
{ ∞∑

n=

nk–|�̄yn|k
} 

k

()

respectively. Since
∑

an is summable |A| implies
∑

anλn is summable |B|k , by the hypoth-
esis of the theorem,

‖X‖ < ∞ ⇒ ‖Y‖ < ∞.

Now consider the inclusion map c : A → B defined by c(x) = x. This is continuous, which
is immediate as A and B are BK-spaces. Thus there exists a constantM such that

‖Y‖ ≤ M‖X‖. ()
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By applying () to av = ev – ev+ (ev is the vth coordinate vector), we have

�̄xn =

⎧⎪⎪⎨
⎪⎪⎩
, if n < v,

ânv, if n = v,

�vânv, if n > v

and

�̄yn =

⎧⎪⎪⎨
⎪⎪⎩
, if n < v,

b̂nvλv, if n = v,

�v(b̂nvλv), if n > v.

So () and () give us

‖X‖ =
{
avv +

∞∑
n=v+

|�vânv|
}

and

‖Y‖ =
{
vk–bvv|λv|k +

∞∑
n=v+

nk–
∣∣�v(b̂nvλv)

∣∣k}

k

.

Hence it follows from () that

vk–bvv|λv|k +
∞∑

n=v+

nk–|�vb̂nvλv|k ≤ Mkakvv +Mk
∞∑

n=v+

|�vânv|k .

Using (), we can find

vk–bvv|λv|k +
∞∑

n=v+

nk–
∣∣�v(b̂nvλv)

∣∣k =O
(
akvv

)
.

The above inequality will be true if and only if each term on the left-hand side is O(akvv).
Taking the first term,

vk–bvv|λv|k =O
(
akvv

)

then

|λv| =O
(
v

k –

avv
bvv

)

which verifies that () is necessary. Using the second term, we have

∞∑
n=v+

nk–
∣∣�v(b̂nvλv)

∣∣k =O
(
akvv

)
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which is condition (). Now, if we apply () to av = ev+, we have

�̄xn =

⎧⎨
⎩, if n ≤ v,

ân,v+, if n > v

and

�̄yn =

⎧⎨
⎩, if n≤ v,

b̂n,v+λv+, if n > v,

respectively. Hence

‖X‖ =
{ ∞∑
n=v+

|ân,v+|
}
,

‖Y‖ =
{ ∞∑
n=v+

nk–|b̂n,v+λv+|k
} 

k

.

Hence it follows from () that

∞∑
n=v+

nk–|b̂n,v+λv+|k ≤ Mk

{ ∞∑
n=v+

|ân,v+|
}k

.

Using () we can find

∞∑
n=v+

nk–|b̂n,v+λv+|k =O()

which is condition ().
Sufficiency. We use the notations of necessity. Then

�̄xn =
n∑

v=

ânvav ()

which implies

av =
v∑

r=

â′
vr�̄xr . ()

In this case

�̄yn =
n∑

v=

b̂nvavλv =
n∑

v=

b̂nvλv

v∑
r=

â′
vr�̄xr .

On the other hand, since

b̂n = b̄n – b̄n–,
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by (), we have

�̄yn =
n∑
v=

b̂nvλv

{ v∑
r=

â′
vr�̄xr

}

=
n∑
v=

b̂nvλv

{
â′
vv�̄xv + â′

v,v–�̄xv– +
v–∑
r=

â′
vr�̄xr

}

=
n∑
v=

b̂nvλvâ′
vv�̄xv +

n∑
v=

b̂nvλvâ′
v,v–�̄xv– +

n∑
v=

b̂nvλv

v–∑
r=

â′
vr�̄xr

= b̂nnλnâ′
nn�̄xn +

n–∑
v=

(
b̂nvλvâ′

vv + b̂n,v+λv+â′
v+,v

)
�̄xv

+
n–∑
r=

�̄xr
n∑

v=r+

b̂nvλvâ′
vr . ()

By considering the equality

n∑
k=v

â′
nkâkv = δnv,

where δnv is the Kronecker delta, we have that

b̂nvλvâ′
vv + b̂n,v+λv+â′

v+,v =
b̂nvλv

âvv
+ b̂n,v+λv+

(
–

âv+,v
âvvâv+,v+

)

=
b̂nvλv

avv
–
b̂n,v+λv+(āv+,v – āv,v)

avvav+,v+

=
b̂nvλv

avv
–
b̂n,v+λv+(av+,v+ + av+,v – avv)

avvav+,v+

=
�v(b̂nvλv)

avv
+ b̂n,v+λv+

avv – av+,v
avvav+,v+

and so

�̄yn =
bnnλn

ann
�̄xn +

n–∑
v=

�v(b̂nvλv)
avv

�̄xv +
n–∑
v=

b̂n,v+λv+
avv – av+,v
avvav+,v+

�̄xv

+
n–∑
r=

�̄xr
n∑

v=r+

b̂nvλvâ′
vr .

Let

Tn() =
bnnλn

ann
�̄xn +

n–∑
v=

�v(b̂nvλv)
avv

�̄xv +
n–∑
v=

b̂n,v+λv+
avv – av+,v
avvav+,v+

�̄xv,

Tn() =
n–∑
r=

�̄xr
n∑

v=r+

b̂nvλvâ′
vr .

http://www.journalofinequalitiesandapplications.com/content/2012/1/166


Özarslan and Ari Journal of Inequalities and Applications 2012, 2012:166 Page 8 of 9
http://www.journalofinequalitiesandapplications.com/content/2012/1/166

Since

∣∣Tn() + Tn()
∣∣k ≤ k

(∣∣Tn()
∣∣k + ∣∣Tn()

∣∣k)
to complete the proof of Theorem, it is sufficient to show that

∞∑
n=

nk–
∣∣Tn(i)

∣∣k <∞ for i = , .

Then

Tn() = n–

k Tn()

= n–

k
bnnλn

ann
�̄xn + n–


k

n–∑
v=

�v(b̂nvλv)
avv

�̄xv + n–

k

n–∑
v=

b̂n,v+λv+
avv – av+,v
avvav+,v+

�̄xv

=
∞∑
v=

cnv�̄xv,

where

cnv =

⎧⎪⎪⎨
⎪⎪⎩
n–


k (�v(bnvλv)

avv + b̂n,v+λv+
avv–av+,v
avvav+,v+

), if  ≤ v ≤ n – ,

n–

k bnnλn

ann , if v = n,

, if v > n.

Now

∑∣∣Tn()
∣∣k < ∞ whenever

∑
|�̄xn| < ∞

is equivalently

sup
v

∞∑
n=

|cnv|k <∞ ()

by Lemma. But it follows from conditions (), () and () that

∞∑
n=v

|cnv|k = O()

{
nk–

∣∣∣∣bnnλn

ann

∣∣∣∣
k

+
∞∑

n=v+

nk–
∣∣∣∣�v(b̂nvλv)

avv
+ b̂n,v+λv+

avv – av+,v
avvav+,v+

∣∣∣∣
k
}

= O() as v→ ∞.

Finally,

Tn() = n–

k Tn() = n–


k

n–∑
r=

�̄xr
n∑

v=r+

b̂nvâ′
vrλv =

∞∑
r=

dnr�̄xr ,

where

dnr =

⎧⎨
⎩n–


k
∑n

v=r+ b̂nvâ′
vrλv, if ≤ r ≤ n – ,

, if r > n – .
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Now

∑∣∣Tn()
∣∣k <∞ whenever

∑
|�̄xn| < ∞

is equivalently

sup
r

∞∑
n=

|dnr|k < ∞ ()

by Lemma. But it follows from conditions () and () that

∞∑
n=r+

|dnr|k = O()
∞∑

n=r+

nk–
{ ∞∑
v=r+

∣∣b̂nvâ′
vrλv

∣∣}k

= O()
∞∑

n=r+

nk–|b̂n,r+λr+|k

= O() as r → ∞.

Therefore, we have

∞∑
n=

nk–
∣∣Tn(i)

∣∣k <∞ for i = , .

This completes the proof of the Theorem. �
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