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Abstract
In this paper we consider a class of Schur-concave functions with somemeasure
properties. The isoperimetric inequality and Brunn-Minkowsky’s inequality for such
kind of functions are presented. Applications in geometric programming and
optimization theory are also derived.
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1 Introduction
About  years ago, the properties concerning such notions as length, area, volume as
well as the probability of events were abstracted under the banner of the word measure.
We review the notion of measure using this word in an unusual way. More exactly, we
study some measure properties of a special class of Schur-concave functions which will
be revealed via some discrete versions of isoperimetric inequality andBrunn-Minkowsky’s
inequality.
The notion of Schur-convex function was introduced by I. Schur in  and has had in-

teresting applications in analytic inequalities, elementary quantum mechanics and quan-
tum information theory. See []. Let us consider x = (x, . . . ,xn), y = (y, . . . , yn) to be two
vectors from R

n.

Definition  We say that x is majorized by y, denote it by x ≺ y, if the rearrangement of
the components of x and y such that x[] ≥ x[] ≥ · · · ≥ x[n], y[] ≥ y[] ≥ · · · ≥ y[n] satisfies∑k

i= x[i] ≤
∑k

i= y[i] (≤ k ≤ n – ) and
∑n

i= x[i] =
∑n

i= y[i].

Definition  The function F : A → R, where A ⊂ R
n, is called Schur-convex if x ≺ y im-

plies F(x)≤ F(y). Any such function F is called Schur-concave if –F is Schur-convex.

An important source of Schur-convex functions can be found in Merkle []. Guan [,
] proved that all symmetric elementary functions and the symmetric means of order
k are Schur-concave functions. Other families of Schur-convex functions are studied in
[–, –, ].
In [] a class of analytic inequalities for Schur-convex functions that are made of so-

lutions of a second order nonlinear differential equation was established. These analytic
inequalities are used to infer some geometric inequalities such as isoperimetric inequal-
ity. Li and Trudinger [] consider a special class of inequalities for elementary symmetric
functions that are relevant to the study of partial differential equations associated with
curvature problems.
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Recall here a classical result concerning the study of Schur-convexity for the case of
smooth functions. See [].

Theorem  Let F(x) = F(x, . . . ,xn) be a symmetric function with continuous partial
derivatives on In = I × I × · · · × I, where I is an open interval. Then F : In → R is Schur-
convex if and only if the inequality

(xi – xj)
(

∂F
∂xi

–
∂F
∂xj

)
≥  (.)

holds on In for each i, j ∈ {, . . . ,n}. It is strictly Schur-convex if the inequality (.) is strict for
xi �= xj,  ≤ i, j ≤ n. Any such function F is Schur-concave if the inequality (.) is reversed.

We present a discrete version of isoperimetric inequality related to a special class of
Schur-concave functions. The reason we discuss isoperimetric inequality in the context
of Schur-concave functions is given by the well-known property of every Schur-concave
function F , which is an essential property of the volume measure

F(x, . . . ,xn) ≤ F
(
x + · · · + xn

n
, . . . ,

x + · · · + xn
n

)
. (.)

In other words, by using F as an area measure, the inequality (.) says that from all poly-
gons with n edges and the sum of all edges constant, the regular polygon with equal edges
has the biggest area.
The main result of the paper concerning the discrete isoperimetric inequality will be

presented in Section . Generalized geometric programming refers to optimization prob-
lems that involve signomial functions which have applications in process synthesis, pro-
cess design, molecular conformation, chemical equilibrium. See []. In Section  we in-
troduce a class of Schur-convex functions where we emphasize the relevance of such type
of functions in convexification transformations for geometric programming. In addition,
we consider a family of symmetric functions which have applications in fully nonlinear
elliptic equations such as Monge-Ampère equation. See Theorem ., Corollary . in
[].

2 A discrete isoperimetric inequality
In this section we define some volume measures by using a family of Schur-concave func-
tions. Somediscrete versions of isoperimetric inequality andBrunn-Minkowsky’s inequal-
ity will confirm that our approach is correct. Recall here a well-known result concerning
Brunn-Minkowski’s inequality for convex bodies, which are nonempty compact, convex
subsets of Rn.

Theorem  Let λ ∈ (, ) and let K, L be two convex bodies. Then we have

(
Voln

(
( – λ)k + λL

))/n ≥ ( – λ)
(
Voln(K)

)/n + λ
(
Voln(L)

)/n, (.)

with equality when K and L are identically up to a translation.
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We replace the volume measure Voln(K) by a Schur-concave function of the form
Fn(x, . . . ,xn) = f (x) + · · · + f (xn), where f is a nonnegative concave function. In the rest
of the paper, Fn will be called the n-dimensional volume function.

Theorem  Let λ ∈ [, ]. Then, for each nonnegative concave function f , we have

(
Fn

(
( – λ)x + λy

))/n ≥ ( – λ)
(
Fn(x)

)/n + λ
(
Fn(y)

)/n, ∀x, y ∈R
n,

where Fn(x, . . . ,xn) = f (x) + · · · + f (xn).

Proof Let g(x, . . . ,xn) = (x + · · · + xn)/n defined on R
n
+, which is globally concave and

nondecreasing in each variable. What we need to prove is the concavity of the function
g(f (x), . . . , f (xn)), which holds since we have a composing between a nondecreasing glob-
ally concave function and another concave function. �

Let us consider a more difficult problem concerning the classical isoperimetric inequal-
ity for convex bodies from R

N .

Theorem  (See []) Let K be a convex subset fromR
n and B a closed ball fromR

n. Then
we have

(
Voln(K)
Voln(B)

) 
n

≤
(
Sn–(K)
Sn–(B)

) 
n–

, (.)

with equality if and only if K is a ball. Here, Sn–(K) means the area of the surface of a
convex body K.

We replace the volume measure Voln with Fn, the n-dimensional volume function from
above. Notice that thewell-knownmeasures - perimeter, area, volume - are Schur-concave
functions. For example, in R

 the functions F(x,x,x) = xxx, F(x,x,x) = (xx +
xx +xx) and F(x,x,x) = (x +x +x) are Schur-concave. In fact, Fn(x, . . . ,xn) could
mean the n-dimensional volume of a body with edges x, . . . ,xn.
The difficulty here is to develop a connection between the n-dimensional volume func-

tions Fn. We define the connection between the n dimensional volume function Fn and
the n –  dimensional volume function Fn– in the following way:

Fn–(x, . . . ,xn) = Fn
(
x + · · · + xn

n
,x, . . . ,xn

)
+ · · · + Fn

(
x, . . . ,

x + · · · + xn
n

)
.

Remark  It is easy to check that if Fn is a Schur-concave function, then Fn– is also a
Schur-concave function. Hence, our relation between Fn and Fn– is well defined.

Now, we are able to present the discrete form of the isoperimetric inequality in the con-
text of this type of n-dimensional volume functions.

Theorem  Let (x, . . . ,xn) ∈ R
n
+ and Fn(x, . . . ,xn) = f (x) + · · · + f (xn), where f :R+ →R+

is a concave function. Then we have the following isoperimetric inequality:

(
Fn(x, . . . ,xn)

Fn( x+···+xn
n , . . . , x+···+xn

n )

) 
n

≤
(

Fn–(x, . . . ,xn)
Fn–( x+···+xn

n , . . . , x+···+xn
n )

) 
n–

. (.)
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Proof If we denote byM = f ( x+···+xn
n ), the inequality (.) becomes

(
f (x) + · · · + f (xn)

nM

) 
n

≤
(
(n – )(f (x) + · · · + f (xn)) + nM

nM

) 
n–

.

Since M = f ( x+···+xn
n ) ≥ f (x)+···+f (xn)

n = x, it is sufficient to prove that for each x ≤ M we
have

(
x
M

) 
n

≤
(
(n – )x +M

nM

) 
n–

. (.)

If we consider the function f (x) = 
n (lnx– lnM) – 

n– (ln((n–)x+M) – ln(nM)), we need
to prove that f is nonpositive for every  < x ≤ M.
If we compute f ′(x) = M–x

nx((n–)x+M) , we have that f is nondecreasing on (,M]. Since
f (M) = , it follows that f (x) ≤  for every  < x≤ M. �

In the following, we extend the class of Schur-concave functions which verifies (.).
Consider the elementary symmetric functions of n variables given by

Ek
n =F k

n

/(
n
k

)
, where F k

n =
∑

≤i<···<ik≤n

k∏
j=

xij ,k = , , . . . ,n.

Proposition  Each elementary symmetric functionF k
n satisfies the isoperimetric inequal-

ity (.).

Proof For k = , the inequality (.) is obvious. If Fn =Fn
n the inequality (.) becomes the

classical means inequality, i.e., the geometric mean is greater than the harmonic mean.
For simplicity, we present the proof only in the case k = . In this case, the inequality (.)
is reduced to

nn
(
E 
n
)(E

n
)n– ≤ (


(
E 
n
) + (n – )E

n
)n. (.)

We consider the function g(x) = (x + (n – )a)n – nnxan–, where a = E
n . By Newton’s

inequalities we have (E 
n) ≥ E

n , and now the inequality (.) is equivalent to f (x) ≥ ,
which holds for all x ≥ a. �

Moreover, it can be easily seen that if Fn is a Schur-concave function with the property

Fn
(
x + · · · + xn

n
,x, . . . ,xn

)
+ · · · + Fn

(
x, . . . ,

x + · · · + xn
n

)

≥ (n – )Fn(x, . . . ,xn) + Fn
(
x + · · · + xn

n
, . . . ,

x + · · · + xn
n

)
, (.)

then the inequality (.) holds. We have the equality in (.) if Fn = f (x) + · · · + f (xn), but
(.) is not necessary. For example, the symmetric fundamental polynomial of degree n
satisfies (.) but not (.).
Finally, it remains an open question if all Schur-concave functions satisfy the isoperi-

metric inequality (.).
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3 Schur-convexity of a family of symmetric functions and applications
Let us consider the following family of symmetric functions:

F k
n =

∑
≤i<···<ik≤n

k∏
j=

f (xij ), k = , , . . . ,n,

where f is a positive function.
In this section, we apply the Schur-convexity of such a family of symmetric functions to

infer some applications in generalized geometric programming.
For the case k = , if f is a convex function, then the Schur-convexity of F 

n is obvious.
See Hardy-Littlewood-Polya’s inequality []. In [] an extensive study concerning the
Schur convexity of the above class of symmetric functions was given. For the convenience
of the reader, we recall here the proof of the Schur-convexity of F k

n only in the cases k = 
and k = n – .
We say that a function f : � → R+ is log-convex if the function log f is convex. If f is a

log-convex function then f is also a convex function. See [].

Theorem  Let I ⊂ R be a convex set with a nonempty interior. If f : I → R+ is a dif-
ferentiable function in the interior of I, continuous on I, positive and log-convex, then
F

n (x) =
∑

≤i<j≤n f (xi)f (xj), xi,xj ∈ �, is Schur-convex on In.

Proof We can write F
n in the following form:

F
n (x) = f (x)f (x) +

(
f (x) + f (x)

) n∑
i=

f (xi) +
∑

≤i<j≤n

f (xi)f (xj).

Thus, we have

(x – x)
(

∂F
n (x)

∂x
–

∂F
n (x)

∂x

)

= (x – x)

(
f ′(x)f (x) – f ′(x)f (x) +

(
f ′(x) – f ′(x)

) n∑
i=

f (xi)

)
.

Since f is a log-convex function ( f
′
f is monotone increasing), we deduce that f is convex

and we have

(x – x)
(
f ′(x)f (x) – f ′(x)f (x)

) ≥ ,

respectively,

(x – x)
(
f ′(x) – f ′(x)

) ≥ .

In conclusion, we obtain

(x – x)
(

∂F
n (x)

∂x
–

∂F
n (x)

∂x

)
≥ ,

and it follows that F
n is a Schur-convex function. �
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Theorem  Let I ⊂ R be a convex set with a nonempty interior. If f : I → R+ is a dif-
ferentiable function in the interior of I, continuous on I, positive and log-convex, then
Fn–

n (x) =
∑

≤i···<in–≤n
∏n–

j= f (xij ) is Schur-convex on In.

Proof We can write Fn–
n in the following form:

Fn–
n (x) =

n∏
i=

f (xi)

(
f (x) + f (x) + f (x)f (x)

n∑
j=


f (xj)

)
.

Hence, we have

(x – x)
(

∂Fn–
n (x)
∂x

–
∂Fn–

n (x)
∂x

)

= (x – x)
n∏
i=

f (xi)

(
f ′(x) – f ′(x) +

n∑
j=


f (xj)

(
f ′(x)f (x) – f ′(x)f (x)

))

≥ ,

by the same arguments as in the proof from above. �

From many other applications of Schur-convex functions we recall here some results
in optimization problems. Generalized geometric programming refers to optimization
problems that involve signomial functions which have applications in process synthesis,
process design, molecular conformation, chemical equilibrium. See []. A signomial func-
tion is the sum of products of independent variables, each of them exponentiated to some
nonzero rational number. A posynomial is a signomial function with positive coefficients.
In geometric programming, the properties of the function f : R → R, such that the

transformation x �→ f (y) convexifies a posynomial, are investigated.
The main idea to solve such optimization problems is to convexificate the function

which needs to be optimized. It will be easy to find the supremum of a convex function be-
cause we are looking only to the boundary of the definition domain. Moreover, in the case
of Schur-convex functions, the minimum is attained when all the independent variables
are equal.
This is the reason why we investigate the transformation which convexifies a particular

function. In fact, in geometric programming, the particular case is reduced to the study
of convexity of the transformation.
Consider a family of strict positive and monotone functions fi : R → R, i = , . . . ,n and

define Pn(y, . . . , yn) =
∏n

i= fi(yi). Recall here a recent result from [].

Theorem  If fi(y)f ′′
i (y) – (f ′

i (y)) ≥  for every i = , . . . ,n, and y ∈R, then the transforma-
tion function Pn(y, . . . , yn) is convex in R

n.

Consider the following family of functions:

Pk
n =

∑
≤i<···<ik≤n

k∏
j=

fij (xij ), k = , , . . . ,n.

http://www.journalofinequalitiesandapplications.com/content/2012/1/159
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We are now in position to use the Schur-convexity of our family of symmetric func-
tions.

Theorem Let fi :R →R, i = , . . . ,n, be a family of strict positive andmonotone functions.
If each function fi is a log-convex function, then the function Pk

n is convex. Moreover, the
function Pk

n is Schur-convex provided that f = · · · = fn.

Proof Taking into account Theorems ,  and  because the constant function is log-
convex, summing term by term, we obtain that all functions Pk

n are convex. �

Finally, we refer to some inequalities for elementary symmetric functions which are re-
lated to the study of partial differential equations associated with curvature problems and
have applications to fully nonlinear elliptic equations [, ]. Other results on min-max
inequalities and optimization theory can be found in [, ].

Proposition  Consider the symmetric function Fkl(x,x, . . . ,xn) = F
nF l

n
Fk
n

, where xi > , i =
, . . . ,n. Then Fkl is Schur-convex, for each  ≤ l ≤ k ≤ n.

Remark  The convexity of such functions is an open problem and has applications in
fully nonlinear elliptic equations such as Monge-Ampère equation. See Theorem .,
Corollary . from [], where the above functions are defined on a particular convex
cone.

Proof For simplicity, we denote by σk the elementary symmetric function F k
n , by σi(–x)

the elementary symmetric function of order i which contains only the variables x,x, . . . ,
xn, by σi(–x) the elementary symmetric function of order i which contains only the vari-
ables x,x, . . . ,xn and by σi(–x, –x) the elementary symmetric function of order i which
contains only the variables x,x, . . . ,xn.
In order to study the Schur-convexity of F , we need to evaluate the two partial deriva-

tives

∂f
∂x

=
(σl + σσl–(–x))σk – σσlσk–(–x)

σ 
k

,

∂f
∂x

=
(σl + σσl–(–x))σk – σσlσk–(–x)

σ 
k

,

and it follows that

(x – x)
(

∂f
∂xi

–
∂f
∂xj

)
= (x – x)

σ

σ 
k

(
σlσk–(–x, –x) – σkσl–(–x, –x)

)
.

Now, we need to study the sign of σlσk–(–x, –x) – σkσl–(–x, –x). Taking into account
that

σl = xxσl–(–x, –x) + (x + x)σl–(–x, –x) + σl(–x, –x),

σk = xxσk–(–x, –x) + (x + x)σk–(–x, –x) + σk(–x, –x),

http://www.journalofinequalitiesandapplications.com/content/2012/1/159
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we obtain

σlσk–(–x, –x) – σkσl–(–x, –x)

= (x + x)
(
σl–(–x, –x)σk–(–x, –x) – σk–(–x, –x)σl–(–x, –x)

)
.

We need to prove that σl–σk– ≥ σk–σl–. If we denote by Ei the arithmetic mean of the
elementary symmetric function of order i, we have E

i ≥ Ei–Ei+, the so called Newton’s
inequalities. Hence, Newton’s inequalities imply the fact that El–Ek– ≥ Ek–El–, for k ≥ l.
Since, for each k ≥ l we have

(
n – 
k – 

)(
n – 
l

)
≥

(
n – 
k

)(
n – 
l – 

)
,

it is obvious that σl–σk– ≥ σk–σl–.
Hence, the Schur convexity of the function Fkl follows. �

Remark  By a similar argument, it follows that the function Fα is Schur convex for each
α > .
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