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Abstract

Let ℝ+ and B be the set of positive real numbers and a Banach space, respectively, f,
g, h : ℝ+ ® B and ψ : R2

+ → R be a nonnegative function of some special forms.
Generalizing the stability theorem for a Jensen-type logarithmic functional equation,
we prove the Hyers-Ulam stability of the Pexiderized logarithmic functional inequality

||f (xy) − g(x) − h(y)|| ≤ ψ(x, y)

in restricted domains of the form {(x, y) : xkys ≥ d} for fixed k, s Î ℝ, d > 0. We also
discuss an L∞-version of the Hyers-Ulam stability of the inequality. 2000 MSC: 39B22.

Keywords: logarithmic functional equation, Hyers-Ulam stability, asymptotic behavior

1. Introduction
The Hyers-Ulam stability problems of functional equations go back to 1940 when

Ulam proposed a question concerning the approximate homomorphisms from a group

to a metric group (see [1]). A partial answer was given by Hyers [2,3] under the

assumption that the target space of the involved mappings is a Banach space. After the

result of Hyers, Aoki [4] and Bourgin [5,6] treated with this problem, however, there

were no other results on this problem until 1978 when Rassias [7] treated again with

the inequality of Aoki [4]. Following the Rassias’ result a great number of articles on

the subject have been published concerning numerous functional equations in various

directions [8-19]. Among the results, the stability problem in a restricted domain was

investigated by Skof, who proved the stability problem of the Cauchy functional equa-

tion in a restricted domain [20]. Developing this result, Jung, Rassias and Rassias con-

sidered the stability problems in restricted domains for the Jensen functional equation

[21,22] and Jensen-type functional equations [23]. We also refer the reader to [24-29]

for some interesting results on functional equations and their Hyers-Ulam stabilities in

restricted conditions. In this article, generalizing the result in [8], we consider the

Hyers-Ulam stability of the Pexiderized Jensen functional equation

||f (xy) − g(x) − h(y)|| ≤ ψ(x, y) (1:1)

in the restricted domains Uk,s,d = {(x, y): x > 0, y > 0, xkys ≥ d} for fixed k, s Î ℝ and

d > 0, where ψ(x, y) = j (xy), j (x) or j (y). Making use of the result, we prove the
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asymptotic behavior of f, g and h satisfying

||f (xy) − g(x) − h(y)|| → 0 (1:2)

as xkys®∞. Finally, we discuss the Hyers-Ulam stability of the inequality

||f (xy) − g(x) − h(y)||L∞(Uk,s,d) ≤ ε (1:3)

and its asymptotic behavior.

2. Stability in classical sense
We call L: ℝ+ ® B a logarithmic function provided that

L(xy) − L(x) − L(y) = 0

for all x, y > 0. Let j : ℝ+ ® [0, ∞). We assume that

�(x) :=
∞∑
k=1

2−k
(
φ(x2

k
) + 2φ(x2

k−1
) + φ(1)

)
< ∞

for all x > 0. As a direct consequence of Aoki [4] or Bourgin [5,6], we obtain the

generalized Hyers-Ulam stability for the logarithmic functional equation, viewing 〈ℝ+,

×〉 as a multiplicative group.

Theorem A. Suppose that f : ℝ+ ® B satisfies

||f (xy) − f (x) − f (y)|| ≤ φ(xy) + φ(x) + φ(y) + φ(1)

for all x, y > 0. Then, there exists a unique logarithmic function L : ℝ+ ® B satisfy-

ing

||f (x) − L(x)|| ≤ �(x)

for all x > 0.

In this section, we first consider the logarithmic functional inequality (1.1) in the

restricted domain

Uk,s,d = {(x, y) : x > 0, y > 0, xkys ≥ d}

for fixed k, s Î ℝ and d > 0.

Theorem 2.1. Let d > 0, k, s Î ℝ, k ≠ s. Suppose that f, g, h : ℝ+ ® B satisfy

||f (xy) − g(x) − h(y)|| ≤ φ(xy) (2:1)

for all x,y Î Uk,s,d. Then, there exists a unique logarithmic function L1 : ℝ+ ® B such

that

||f (x) − L1(x) − f (1)|| ≤ �(x) (2:2)

for all x Î ℝ+.

Proof. For given x,y Î ℝ+, choosing a z > 0 such that xkyszs-k ≥ d, xkzs-k ≥ d, yszs-k ≥ d

and zs-k ≥ d, we have
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||f (xy) − f (x) − f (y) + f (1)|| ≤ ||f (xy) − g(xz−1) − h(yz)||
+ || − f (x) + g(xz−1) + h(z)||
+ || − f (y) + g(z−1) + h(yz)||
+ ||f (1) − g(z−1) − h(z)||

≤ φ(xy) + φ(x) + φ(y) + φ(1).

(2:3)

Now, by Theorem A, we get the result.

Corollary 2.2. Let �,d > 0, k, s Î ℝ, k ≠ s. Suppose that f, g, h : ℝ+ ® B satisfy

||f (xy) − g(x) − h(y)|| ≤ ε (2:4)

for all x,y Î Uk,s,d. Then, there exists a unique logarithmic function L1: ℝ+ ® B such

that

||f (x) − L1(x) − f (1)|| ≤ 4ε (2:5)

for all x Î ℝ+.

Remark 2.1. Note that the Corollary 2.2 fails if k = s. Indeed, let L: ℝ+ ® B be a

nonzero logarithmic function. Define g(x) = h(x) = L(x) for all x > 0 and

f (x) =
{
L(x), x ≥ d1/s,
0, 0 < x < d1/s.

Then, it is easy to see that the inequality (2.4) holds for all x, y > 0, with xy ≥ d1/s.

Assume that there exists a logarithmic function L1 satisfying (2.5). Then, we have

||L1(x)|| ≤ |f (1)| + 4ε = 4ε (2:6)

for all 0 <x <d1/s. The inequality (2.6) implies L1 = 0. Indeed, if L1(x0) ≠ 0 for some

x0 > 0, then we have L1(1/x0) = -L1(x0) ≠ 0. Thus, we may assume that 0 <x0 < 1.

Now, we encounter the contradiction

|nL1(x0)| = |L1(xn0)| ≤ 4ε

for all large integers n. Thus, L1 = 0 and the inequality (2.5) implies

||L(x)|| ≤ 4ε (2:7)

for all x ≥ d1/s. Similarly, using (2.7), we can show that L = 0, which contracts to the

choice of L.

As a direct consequence of Corollary 2.2, we have the following.

Corollary 2.3. [8]Let p,q,P,Q be nonzero real numbers and ε, d > 0, k, s ∈ R, kp �= s
q .

Suppose that f : ℝ+ ® B satisfies

||f (xpyq) − Pf (x) − Qf (y)|| ≤ ε (2:8)

for all x,y Î Uk,s,d. Then, there exists a unique logarithmic function L : ℝ+ ® B such

that

||f (x) − L(x) − f (1)|| ≤ 4ε (2:9)

for all x Î ℝ+.
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Proof. Replacing x by x
1
p , y by y

1
q in (2.8), we have

||f (xy) − Pf (x
1
p ) − Qf (y

1
q )|| ≤ ε

for all x,y > 0, with x
k
p y

s
q ≥ d . Letting g(x) = Pf (x

1
p ), h(y) = Qf (y

1
q ) , applying Cor-

ollary 2.2 and letting L(x) = L1(x), we get the result.

Theorem 2.4. Let d > 0, s ≠ 0. Suppose that f, g, h: ℝ+ ® B satisfy

||f (xy) − g(x) − h(y)|| ≤ φ(x) (2:10)

for all x,y Î Uk,s,d. Then, there exists a unique logarithmic function L2 : ℝ+ ® B such

that

||g(x) − L2(x) − g(1)|| ≤ �(x) (2:11)

for all x Î ℝ+.

Proof. For given x,y Î ℝ+, choosing a z > 0 such that xkykzs ≥ d, xkyszs ≥ d, ykzs ≥ d

and yszs ≥ d, we have

||g(xy) − g(x) − g(y) + g(1)|| ≤ || − f (xyz) + g(xy) + h(z)||
+ ||f (xyz) − g(x) − h(yz)||
+ ||f (yz) − g(y) − h(z)||
+ || − f (yz) + g(1) + h(yz)||

≤ φ(xy) + φ(x) + φ(y) + φ(1).

(2:12)

Now, by Theorem A, we get the result.

Corollary 2.5. Let �, d > 0, s ≠ 0. Suppose that f, g, h : ℝ+ ® B satisfy

||f (xy) − g(x) − h(y)|| ≤ ε (2:13)

for all x, y Î Uk,s,d. Then, there exists a unique logarithmic function L2: ℝ+ ® B such

that

||g(x) − L2(x) − g(1)|| ≤ 4ε (2:14)

for all x Î ℝ+.

Remark 2.2. Similarly as in Corollary 2.2, the above result fails if s = 0. Let L : ℝ+ ®
B be a nonzero logarithmic function. Define f(x) = h(x) = L(x) for all x > 0 and

g(x) =
{
L(x), x ≥ d1/k,
0, 0 < x < d1/s.

Then, the inequality (2.13) holds for all x, y > 0, with xk ≥ d but (2.14) does not hold

for any logarithmic function L2.

As a direct consequence of Corollary 2.5, we have the following.

Corollary 2.6. [8]Let p, q, P, Q be nonzero real numbers and �, d > 0, k, s Î ℝ with s

≠ 0. Suppose that f : ℝ+ ® B satisfies

||f (xpyq) − Pf (x) − Qf (y)|| ≤ ε (2:15)

for all x,y Î Uk,s,d. Then, there exists a unique logarithmic function L : ℝ+ ® B such

that
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||f (x) − L(x) − f (1)|| ≤ 4ε

|P| (2:16)

for all x Î ℝ+.

Proof. Replacing x by x
1
p , y by y

1
q in (2.15), we have

||f (xy) − Pf (x
1
p ) − Qf (y

1
q )|| ≤ ε

for all x,y > 0, with x
k
p y

s
q ≥ d . Letting g(x) = Pf (x

1
p ), h(y) = Qf (y

1
q ) , applying Cor-

ollary 2.5 and dividing the result by |P|, we get the result with L(x) =
1
P
L2(xp) .

Theorem 2.7. Let d > 0, k ≠ 0. Suppose that f, g, h : ℝ+ ® B satisfy

||f (xy) − g(x) − h(y)|| ≤ φ(y) (2:17)

for all x,y Î Uk,s,d. Then, there exists a unique logarithmic function L3 : ℝ+ ® B such

that

||h(x) − L3(x) − h(1)|| ≤ �(x) (2:18)

for all x Î ℝ+.

Proof. For given x,y Î ℝ+, choosing a z > 0 such that xsyszk ≥ d, xkyszk ≥ d, xszk ≥ d

and xkzk ≥ d, we have

||h(xy) − h(x) − h(y) + h(1)|| ≤ || − f (xyz) + g(z) + h(xy)||
+ ||f (xyz) − g(xz) − h(y)||
+ ||f (zx) − g(z) − h(x)||
+ || − f (xz) + g(xz) + h(1)||

≤ φ(xy) + φ(x) + φ(y) + φ(1).

(2:19)

Now, by Theorem A, we get the result.

Corollary 2.8. Let �, d > 0, k ≠ 0. Suppose that f, g, h: ℝ+ ® B satisfy

||f (xy) − g(x) − h(y)|| ≤ ε (2:20)

for all x,y Î Uk,s,d. Then, there exists a unique logarithmic function L3 : ℝ+ ® B such

that

||h(x) − L3(x) − h(1)|| ≤ 4ε (2:21)

for all x Î ℝ+.

Remark 2.3. Similarly, as in Remark 2.2, we can show that the above result fails if k

= 0. Also, as a direct consequence of the result, we have the following.

Corollary 2.9. [8]Let p, q, P, Q be nonzero real numbers and �, d > 0, k, s Î ℝ with k

≠ 0. Suppose that f : ℝ+ ® B satisfies

||f (xpyq) − Pf (x) − Qf (y)|| ≤ ε (2:22)

for all x,y Î Uk,s,d. Then, there exists a unique logarithmic function L: ℝ+ ® B such

that
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||f (x) − L(x) − f (1)|| ≤ 4ε

|Q| (2:23)

for all x Î ℝ+.

Theorem 2.10. Let �, d > 0, k, s ≠ 0, k ≠ s. Suppose that f, g, h : ℝ+ ® B satisfy

||f (xy) − g(x) − h(y)|| ≤ ε (2:24)

for all x,y Î Uk,s,d. Then, there exists a unique logarithmic function L : ℝ+ ® B such

that

||f (x) − L(x) − f (1)|| ≤ 4ε,

||g(x) − L(x) − g(1)|| ≤ 4ε,

||h(x) − L(x) − h(1)|| ≤ 4ε

for all x Î ℝ+.

Proof. In view of Corollaries 2.2, 2.5 and 2.8, it suffices to prove that L1 = L2 = L3.

For given x,y > 0, choose a z > 0 such that xkyszs-k ≥ d, zs-k ≥ d. Then, in view of

(2.24), we have

||f (xy) − g(xz−1) − h(yz)|| ≤ ε, (2:25)

|| − f (1) + g(z−1) + h(z)|| ≤ ε. (2:26)

Using the inequalities (2.10) and (2.15), we have

||g(xz−1) − g(x) − g(z−1) + g(1)|| ≤ 4ε, (2:27)

||h(yz) − h(z) − h(y) + h(1)|| ≤ 4ε (2:28)

for all x,y,z > 0. From (2.25)-(2.28), using the triangle inequality, we have

||f (xy) − g(x) − h(y) − f (1) + g(1) + h(1)|| ≤ 10ε (2:29)

for all x,y > 0. From the inequalities (2.5), (2.14), (2.21), (2.29) using the triangle

inequality, we have

||L1(xy) − L2(x) − L3(y)|| ≤ 22ε. (2:30)

Putting y = 1 and x = 1 in (2.30) separately, and using the fact that for all x > 0, n Î
N, Lj(x

n) = nLj(x), j = 1,2,3, we can show that L1 = L2 and L1 = L3. This completes the

proof.

As a direct consequence of Theorem 2.10, we have the following.

Corollary 2.11. [8]Let p, q, P ,Q be nonzero real numbers and �, d > 0, k, s Î ℝ with

k ≠ 0, s ≠ 0 and k ≠ s. Suppose that f : ℝ+ ® B satisfies

||f (xpyq) − Pf (x) − Qf (y)|| ≤ ε (2:31)

for all x,y Î Uk,s,d. Then, there exists a unique logarithmic function L: ℝ+ ® B such

that

||f (x) − L(x) − f (1)|| ≤ min
{
4ε,

4ε

|P| ,
4ε

|Q|
}

(2:32)
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for all x Î ℝ+.

3. Asymptotic behaviors
In this section, we consider asymptotic behaviors of f,g, h satisfying (1.2).

Theorem 3.1. Let k, s Î ℝ, k ≠ s. Suppose that f, g, h : ℝ+ ® B satisfy the asymptotic

condition

||f (xy) − g(x) − h(y)|| → 0 (3:1)

as xkys ® ∞. Then, there exists a unique logarithmic function L : ℝ+ ® B such that

f (x) = L(x) + f (1) (3:2)

for all x Î ℝ+.

Proof. By the condition (3.1), for each n Î N, there exists dn > 0 such that

||f (xy) − g(x) − h(y)|| ≤ 1
n

(3:3)

for all x, y > 0, with xkys ≥ dn. By Corollary 2.2, there exists a unique logarithmic

function Ln : ℝ+ ® B such that

||f (x) − Ln(x) − f (1)|| ≤ 4
n

(3:4)

for all x Î ℝ+. Replacing n by m in (3.4) and using the triangle inequality we have

||Ln(x) − Lm(x)|| ≤ 4
n
+

4
m

≤ 8 (3:5)

for all x Î ℝ+. Now, for all x > 0 and all rational numbers r > 0, we have

||Ln(x) − Lm(x)|| = 1
r
||Ln(xr) − Lm(xr)|| ≤ 8

r
. (3:6)

Letting r ® ∞ in (3.6), we have Ln = Lm. Letting n ® ∞ in (3.4), we get the result.

Using Corollary 2.5, we obtain the following.

Theorem 3.2. Let s ≠ 0. Suppose that f, g, h : ℝ+ ® B satisfy the asymptotic condition

||f (xy) − g(x) − h(y)|| → 0 (3:7)

as xkys ® ∞. Then, there exists a unique logarithmic function L: ℝ+ ® B such that

g(x) = L(x) + g(1) (3:8)

for all x Î ℝ+.

Using Corollary 2.8, we obtain the following.

Theorem 3.3. Let k ≠ 0. Suppose that f, g, h : ℝ+ ® B satisfies the asymptotic condi-

tion

||f (xy) − g(x) − h(y)|| → 0 (3:9)

as xkys ® ∞. Then, there exists a unique logarithmic function L : ℝ+ ® B such that

h(x) = L(x) + h(1) (3:10)

for all x Î ℝ+.
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Theorem 3.4. Let k, s ≠ 0 and k ≠ s. Suppose that f, g, h : ℝ+ ® B satisfy the asymp-

totic condition

||f (xy) − g(x) − h(y)|| → 0 (3:11)

as xkys ® ∞. Then, there exists a unique logarithmic function L : ℝ+ ® B and c1, c2
Î B such that

f (x) = L(x) + c1 + c2,

g(x) = L(x) + c1,

h(x) = L(x) + c2

for all x Î ℝ+.

Proof. By the condition (3.11), for each n Î N, there exists dn > 0 such that

||f (xy) − g(x) − h(y)|| ≤ 1
n

(3:12)

for all x, y > 0, with xkys ≥ dn. By Theorem 2.10, there exists a unique logarithmic

function Ln : ℝ+ ® B such that

||f (x) − Ln(x) − f (1)|| ≤ 4
n
, (3:13)

||g(x) − Ln(x) − g(1)|| ≤ 4
n
, (3:14)

||h(x) − Ln(x) − h(1)|| ≤ 4
n

(3:15)

for all x Î ℝ+. Similarly, as in the proof of Theorem 3.1, we have Ln = Lm for all n,

m Î N. Letting n ® ∞ in (3.13)-(3.15), and using (3.11), we get the result.

4. Stability in L∞-sense and its asymptotic behavior
Let f, g, h be locally integrable functions on ℝ+. In this section, we consider the L∞-ver-

sion of Hyers-Ulam stability of the inequality

||f (xy) − g(x) − h(y)||L∞(Uk,s,d) ≤ ε, (4:1)

where k ≠ 0, s ≠ 0, k ≠ s, d > 0 are fixed and Uk,s,d = {(x, y): xkys ≥ d}. Let ω on ℂ be

a nonnegative infinitely differentiable function satisfying the conditions

suppω ⊂ { x : |x| ≤ 1}

and
∫

ω(x)dx = 1.

Let ωt(x): = t-1ω(x/t), t > 0 and f be a locally integrable function. Then, for each t >0,

f * ωt(x) = ∫ f(y)ωt(x - y) dy is a smooth function of x Î ℂ and f * ωt(x) ® f(x) for

almost every x Î ℂ as t ® 0+. Now, we are in a position to prove the Hyers-Ulam sta-

bility of the inequality (3.1).
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Theorem 4.1. Let f, g, h be locally integrable functions satisfying (3.1). Then, there

exist c1, c2, c3, a Î ℂ such that

||f (x) − c1 − a ln x||L∞(R+) ≤ 4ε,

||g(x) − c2 − a ln x||L∞(R+) ≤ 4ε,

||h(x) − c3 − a ln x||L∞(R+) ≤ 4ε.

Proof. Using the change of variables x by 2x and y by 2y in (4.1), we have

||f (2x+y) − g(2x) − h(2y)||L∞(Ud) ≤ ε, (4:2)

where Ud = {(x, y) : kx + sy ≥ logd2 := d1} . Now, let

F(x) = f (2x), G(x) = g(2x), H(x) = h(2x). (4:3)

Then, we have

||F(x + y) − G(x) − H(y)||L∞(Ud) ≤ ε. (4:4)

Convolving ωt(x)ωs(y) in (4.4) as in the proof of [8, Theorem 3.1], we have

|F ∗ ωt ∗ ωs(x + y) − G ∗ ωt(x) − H ∗ ωs(y)| ≤ ε (4:5)

holds for all kx + sy ≥ d2 := d1 +
√
k2 + s2 and 0 <t < 1, 0 <s < 1. Using the same

method as in [9, Theorem 4.3], we get the result.

Now, we discuss an asymptotic behavior of the inequality (4.1).

Theorem 4.2. Let f, g, h : ℝ+ ® ℂ, j = 1, 2, 3, be locally integrable functions satisfying

||f (xy) − g(x) − h(y)||L∞(Uk,s,d) → 0 (4:6)

as d ® ∞. Then, there exist a, c1, c2, c3 Î ℂ such that

||f (x) − c1 − a ln x||L∞(R+) = 0,

||g(x) − c2 − a ln x||L∞(R+) = 0,

||h(x) − c3 − a ln x||L∞(R+) = 0.

Proof. By the condition (4.6), for any positive integer n, there exists dn > 0 such that

||f (xy) − g(x) − h(y)||L∞(Uk,s,dn ) ≤ 1
n

(4:7)

for all x, y ∈ Uk,s,dn . Now, by Theorem 4.1, there exist a, c1, c2, c3 Î ℂ (which are

independent of n) such that

||f (x) − c1 − a ln x||L∞(R+) ≤ 4
n
, (4:8)

||g(x) − c2 − a ln x——L∞(R+) ≤ 4
n
, (4:9)

||h(x) − c3 − a ln x||L∞(R+) ≤ 4
n
. (4:10)

Letting n ® ∞ in (4.8)-(4.10), we get the result.
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