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Abstract

In this article, we consider infinite sums derived from the reciprocals of the Fibonacci
polynomials and Lucas polynomials, and infinite sums derived from the reciprocals of
the square of the Fibonacci polynomials and Lucas polynomials. Then applying the
floor function to these sums, we obtain several new equalities involving the
Fibonacci polynomials and Lucas polynomials.
Mathematics Subject Classification (2010): Primary, 11B39.

Keywords: Fibonacci polynomials, Lucas polynomials, inequality, floor function

1. Introduction
For any variable quantity x, the Fibonacci polynomials Fn(x) and Lucas polynomials Ln
(x) are defined by Fn+2(x) = xFn+1(x) + Fn(x), n ≥ 0 with the initial values F0(x) = 0 and

F1(x) = 1; Ln+2(x) = xLn+1(x) + Ln(x), n ≥ 0 with the initial values L0(x) = 2 and L1(x) =

x. For x = 1 we obtain the usual Fibonacci numbers and Lucas numbers. Let

α =
1
2

(
x +

√
x2 + 4

)
and β =

1
2

(
x −

√
x2 + 4

)
, then from the properties of the sec-

ond-order linear recurrence sequences we have

Fn (x) =
αn − βn

√
x2 + 4

and Ln (x) = αn + βn.

Various authors studied the properties of Fibonacci polynomials and Lucas polyno-

mials, and obtained many interesting results, see [1-3]. Recently, several authors studied

the infinite sums derived from the reciprocals of the Fibonacci numbers and Pell num-

bers, and obtained some important results. For example, Ohtsuka and Nakamura [4] stu-

died the properties of the Fibonacci numbers, and proved the following conclusions:⎢⎢⎢⎣( ∞∑
k=n

1
Fk

)−1
⎥⎥⎥⎦ =

{
Fn−2, if n is even and n ≥ 2;
Fn−2 − 1, if n is odd and n ≥ 1.

⎢⎢⎢⎣( ∞∑
k=n

1

F2k

)−1
⎥⎥⎥⎦ =

{
Fn−1Fn − 1, if n is even and n ≥ 2;
Fn−1Fn, if n is odd and n ≥ 1.
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Wenpeng and Tingting [5] studied the infinite sums derived from the Pell numbers,

and obtained two similar results.

In this article, we considered infinite sums derived from the reciprocal of the

Fibonacci polynomials and Lucas polynomials, and proved the following:

Theorem 1. For any positive integer x, we have⎢⎢⎢⎣( ∞∑
k=n

1
Fk (x)

)−1
⎥⎥⎥⎦ =

{
Fn (x) − Fn−1 (x) , if n is even and n ≥ 2;
Fn (x) − Fn−1 (x) − 1, if n is odd and n ≥ 1.

Theorem 2. For any positive integer x, we have⎢⎢⎢⎣( ∞∑
k=n

1

F2k (x)

)−1
⎥⎥⎥⎦ =

{
xFn−1 (x) Fn (x) − 1, if n is even and n ≥ 2;
xFn−1 (x) Fn (x) , if n is odd and n ≥ 1.

Theorem 3. For any positive integer x, we have⎢⎢⎢⎣( ∞∑
k=n

1
Lk (x)

)−1
⎥⎥⎥⎦ =

{
Ln (x) − Ln−1 (x) − 1, if n is even and n ≥ 2;
Ln (x) − Ln−1 (x) , if n is odd and n ≥ 3.

Theorem 4. For any positive integer x ≥ 2, we have⎢⎢⎢⎣( ∞∑
k=n

1

L2k (x)

)−1
⎥⎥⎥⎦ =

{
xL2n−1 (x) + 1, if n is even and n ≥ 2;
xL2n−1 (x) − 2, if n is odd and n ≥ 3.

If x = 1 and x = 2, then from our theorems we can deduce the conclusions of [4,5].

Especially, we also have the following:

Corollary 1. For any positive integer n, we have the identities⎢⎢⎢⎣( ∞∑
k=n

1
Lk

)−1
⎥⎥⎥⎦ =

{
Ln−2 − 1, if n is even and n ≥ 2;
Ln−2, if n is odd and n ≥ 1.

Corollary 2. For any positive integer n, we have the identities⎢⎢⎢⎣( ∞∑
k=n

1
Pk

)−1
⎥⎥⎥⎦ =

{
Pn − Pn−1, if n is even and n ≥ 2;
Pn − Pn−1 − 1, if n is odd and n ≥ 1;

Corollary 3. For any positive integer n, we have the identities⎢⎢⎢⎣( ∞∑
k=n

1

P2
k

)−1
⎥⎥⎥⎦ =

{
2Pn−1Pn − 1, if n is even and n ≥ 2;
2Pn−1Pn, if n is odd and n ≥ 1.

2. Proof of theorems
In this section, we shall complete the proof of our theorems. We shall prove only The-

orems 1 and 2, and the other two theorems are proved similarly and omitted. First we

prove Theorem 1. We consider the case that n = 2m is even. At this time, Theorem 1

equivalent to
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1
F2m (x) − F2m−1 (x) + 1

<

∞∑
k=2m

1
Fk (x)

≤ 1
F2m (x) − F2m−1 (x)

. (2:1)

Now we prove that for any positive integers x and k ≥ 1,

1
F2k (x)

+
1

F2k+1 (x)
<

1
F2k (x) − F2k−1 (x)

− 1
F2k+2 (x) − F2k+1 (x)

. (2:2)

This inequality equivalent to

F2k−1 (x)
F2k (x) (F2k (x) − F2k−1 (x))

>
F2k+2 (x)

F2k+1 (x) (F2k+2 (x) − F2k+1 (x))
,

or

F2k−1 (x) F2k+1 (x) (F2k+2 (x) − F2k+1 (x))

> F2k (x) F2k+2 (x) (F2k (x) + F2k−1 (x)) ,

applying the identities

Fm (x) Fn (x) =
1

x2 + 4

(
Lm+n (x) − (−1)nLm−n (x)

)
,

Lm (x) Ln (x) = Lm+n (x) + (−1)nLm−n (x) ,

Fm (x) Ln (x) = Fm+n (x) + (−1)nFm−n (x) = Fm+n (x) − (−1)mFn−m (x) ,

the inequality (2.2) equivalent to

(L4k (x) + L2 (x)) (F2k+2 (x) − F2k+1 (x))

> (L4k+2 (x) − L2 (x)) (F2k (x) − F2k−1 (x)) ,

or

F2k+4 (x) + 2F2k+2 (x) − F2k+1 (x)

+F2k (x) − 2F2k−1 (x) − F2k−3 (x) > 0.
(2:3)

It is easy to check that the inequality (2.3) holds for any positive integers x and k ≥ 1.

So the inequality (2.2) is true. Using (2.2) repeatedly, we have

∞∑
k=2m

1
Fk (x)

=
∞∑
k=m

(
1

F2k (x)
+

1
F2k+1 (x)

)

<

∞∑
k=m

(
1

F2k (x) − F2k−1 (x)
− 1

F2k+2 (x) − F2k+1 (x)

)

=
1

F2m (x) − F2m−1 (x)
.

(2:4)

On the other hand, we prove that for any positive integers x and k ≥ 1,

1
F2k (x)

+
1

F2k+1 (x)

>
1

F2k (x) − F2k−1 (x) + 1
− 1

F2k+2 (x) − F2k+1 (x) + 1
.

(2:5)
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The inequality (2.5) equivalent to

F2k+2 (x) + 1
F2k+1 (x) (F2k+2 (x) − F2k+1 (x) + 1)

>
F2k−1 (x) − 1

F2k (x) (F2k (x) − F2k−1 (x) + 1)

or

L4k+3 (x) − L4k−1 (x) − F2k+3 (x) − (
x2 + 3

)
F2k+2 (x) +

(
2x2 + 8

)
F2k+1 (x)

+2F2k (x) +
(
x2 + 3

)
F2k−1 (x) + F2k−2 (x) − 2x2 − 4 > 0.

(2:6)

It is easy to check that the inequality (2.6) holds for all positive integers x and k ≥ 1.

So the inequality (2.5) is true. Using (2.5) repeatedly, we have

∞∑
k=2m

1
Fk (x)

=
∞∑
k=m

(
1

F2k (x)
+

1
F2k+1 (x)

)

>

∞∑
k=m

(
1

F2k (x) − F2k−1 (x) + 1
− 1

F2k+2 (x) − F2k+1 (x) + 1

)

=
1

F2m (x) − F2m−1 (x) + 1
.

(2:7)

Now the inequality (2.1) follows from (2.4) and (2.7).

Similarly, we can consider the case that n = 2m + 1 is odd. Note that F1(x) - F0(x) -

1 = 0 and

∞∑
k=1

1
Fk (x)

= 1 +
1
x
+

1
x2 + 1

+ · · · > 1,

So Theorem 1 is true if m = 0. If m ≥ 1, then our Theorem 1 equivalent to the

inequality

1
F2m+1 (x) − F2m (x)

<

∞∑
k=2m+1

1
Fk (x)

≤ 1
F2m+1 (x) − F2m (x) − 1

. (2:8)

First we can prove that for any positive integers x and k ≥ 1,

1
F2k+1 (x)

+
1

F2k+2 (x)

<
1

F2k+1 (x) − F2k (x) − 1
− 1

F2k+3 (x) − F2k+2 (x) − 1
.

(2:9)

The inequality (2.9) equivalent to

F2k+3 (x) − 1
F2k+2 (x) (F2k+3 (x) − F2k+2 (x) − 1)

<
F2k (x) + 1

F2k+1 (x) (F2k+1 (x) − F2k (x) − 1)

or

L4k+5 (x) − L4k+1 (x) − F2k+5 (x) − F2k+4 (x) − 3F2k+3 (x) − F2k+2 (x)

−3F2k+1 (x) + F2k (x) − F2k−1 (x) + F2k−2 (x) + 2x2 + 8 > 0.
(2:10)

It is easy to check that the inequality (2.10) holds for all positive integers x and k ≥ 1.

So the inequality (2.9) is true. Using (2.9) repeatedly, we have
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∞∑
k=2m+1

1
Fk (x)

=
∞∑
k=m

(
1

F2k+1 (x)
+

1
F2k+2 (x)

)

<

∞∑
k=m

(
1

F2k+1 (x) − F2k (x) − 1
− 1

F2k+3 (x) − F2k+2 (x) − 1

)

=
1

F2m+1 (x) − F2m (x) − 1
.

(2:11)

On the other hand, we prove that for any positive integers x and k ≥ 1,

1
F2k+1 (x)

+
1

F2k+2 (x)
>

1
F2k+1 (x) − F2k (x)

− 1
F2k+3 (x) − F2k+2 (x)

. (2:12)

The inequality (2.12) equivalent to

F2k+3 (x)
F2k+2 (x) (F2k+3 (x) − F2k+2 (x))

>
F2k (x)

F2k+1 (x) (F2k+1 (x) − F2k (x))

or

F2k+5 (x) + 2F2k+3 (x) − F2k+2 (x)

+F2k+1 (x) − 2F2k (x) − F2k−2 (x) > 0.
(2:13)

It is easy to check that the inequality (2.13) holds for all positive integers x and k ≥ 1.

So the inequality (2.12) is true. Using (2.12) repeatedly, we have

∞∑
k=2m+1

1
Fk (x)

=
∞∑
k=m

(
1

F2k+1 (x)
+

1
F2k+2 (x)

)

>

∞∑
k=m

(
1

F2k+1 (x) − F2k (x)
− 1

F2k+3 (x) − F2k+2 (x)

)

=
1

F2m+1 (x) − F2m (x)
.

(2:14)

Combining (2.11) and (2.14) we deduce the inequality (2.8). This proves Theorem 1.

Proof of Theorem 2. First we consider the case that n = 2m is even. At this time,

Theorem 2 equivalent to

1
xF2m−1 (x) F2m (x)

<

∞∑
k=2m

1

F2k (x)
≤ 1

xF2m−1 (x) F2m (x) − 1
. (2:15)

Now we prove that for any positive integers x and k ≥ 1,

1

F22k (x)
+

1

F22k+1 (x)
>

1
xF2k−1 (x) F2k (x)

− 1
xF2k+1 (x) F2k+2 (x)

. (2:16)

So the inequality (2.16) equivalent to

F2k+3 (x)

F22k+1 (x) F2k+2 (x)
>

F2k−2 (x)

F2k−1 (x) F22k (x)

or

(L4 (x) − 2) (L4k+2 (x) + L4k (x)) > 0. (2:17)
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It is clear that the inequality (2.17) holds for all positive integers x and k ≥ 1. So the

inequality (2.16) is true. Using (2.16) repeatedly, we have

∞∑
k=2m

1

F2k (x)
=

∞∑
k=m

(
1

F22k (x)
+

1

F22k+1 (x)

)

>

∞∑
k=m

(
1

xF2k−1 (x) F2k (x)
− 1

xF2k+1 (x) F2k+2 (x)

)

=
1

xF2m−1 (x) F2m (x)
.

(2:18)

On the other hand, we prove that for any positive integers x and k ≥ 1,

1

F22k (x)
+

1

F22k+1 (x)

<
1

xF2k−1 (x) F2k (x) − 1
− 1

xF2k+1 (x) F2k+2 (x) − 1
.

(2:19)

So the inequality (2.19) equivalent to

F2k+1 (x) F2k+3 (x) − 1

F22k+1 (x) (xF2k+1 (x) F2k+2 (x) − 1)
<

F2k−2 (x) F2k (x) + 1

F22k (x) (xF2k−1 (x) F2k (x) − 1)
,

or

2L8k + 6 (x) + 4L8k + 4 (x) -4L8k (x) -2L8k−2 (x) + L4k + 8 (x)

-6L4k + 4 (x) -11L4k + 2 (x) -11L4k (x) -6L4k−2 (x) + L4k−6 (x) > 0.
(2:20)

It is clear that the inequality (2.20) holds for all positive integers x and k ≥ 1.

So the inequality (2.19) is true. Using (2.19) repeatedly, we have

∞∑
k=2m

1

F2k (x)
=

∞∑
k=m

(
1

F22k (x)
+

1

F22k+1 (x)

)

<

∞∑
k=m

(
1

xF2k−1 (x) F2k (x) − 1
− 1

xF2k+1 (x) F2k+2 (x) − 1

)

=
1

xF2m−1 (x) F2m (x) − 1
.

(2:21)

Now the inequality (2.15) follows from (2.18) and (2.21).

Similarly, we can consider the case that n = 2m + 1 is odd. Note that xF0(x)F1(x) = 0

and

∞∑
k=1

1

F2k (x)
= 1 +

1
x2

+ · · · > 1.

So Theorem 2 is true if m = 0. If m ≥ 1, then Theorem 2 equivalent to

1
xF2m (x) F2m+1 (x) + 1

<

∞∑
k=2m+1

1

F2k (x)
≤ 1

xF2m (x) F2m+1 (x)
. (2:22)
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First we prove that for any positive integers x and k ≥ 1,

1

F22k+1 (x)
+

1

F22k+2 (x)
<

1
xF2k (x) F2k+1 (x)

− 1
xF2k+2 (x) F2k+3 (x)

. (2:23)

So the inequality (2.23) equivalent to

F2k+4 (x)

F22k+2 (x) F2k+3 (x)
<

F2k−1 (x)

F2k (x) F22k+1 (x)

or

(L4 (x) − 2) (L4k+4 (x) + L4k+2 (x)) > 0. (2:24)

It is clear that the inequality (2.24) is correct. So the inequality (2.23) is true.

Using (2.23) repeatedly, we have

∞∑
k=2m+1

1

F2k (x)
=

∞∑
k=m

(
1

F22k+1 (x)
+

1

F22k+2 (x)

)

<

∞∑
k=m

(
1

xF2k (x) F2k+1 (x)
− 1

xF2k+2 (x) F2k+3 (x)

)

=
1

xF2m (x) F2m+1 (x)
.

(2:25)

On the other hand, we prove that for any positive integers x and k ≥ 1,

1

F22k+1 (x)
+

1

F22k+2 (x)

>
1

xF2k (x) F2k+1 (x) + 1
− 1

xF2k+2 (x) F2k+3 (x) + 1
.

(2:26)

So the inequality (2.26) equivalent to

F2k+2 (x) F2k+4 (x) + 1

F22k+2 (x) (xF2k+2 (x) F2k+3 (x) + 1)
>

F2k−1 (x) F2k+1 (x) − 1

F22k+1 (x) (xF2k (x) F2k+1 (x) + 1)

or

2L8k + 10 (x) + 4L8k + 8 (x) –4L8k + 4 (x)–2L8k + 2 (x) –L4k + 10 (x)

+ 6L4k + 6 (x) + 11L4k + 4 (x) + 11L4k + 2 (x) + 6L4k (x) –L4k−4 (x) > 0.
(2:27)

It is clear that inequality (2.27) is correct. So the inequality (2.26) is true.

Using (2.26) repeatedly, we have

∞∑
k=2m+1

1

F2k (x)
=

∞∑
k=m

(
1

F22k+1 (x)
+

1

F22k+2 (x)

)

>

∞∑
k=m

(
1

xF2k (x) F2k+1 (x) + 1
− 1

xF2k+2 (x) F2k+3 (x) + 1

)

=
1

xF2m (x) F2m+1 (x) + 1
.

(2:28)

Now the inequality (2.22) follows from (2.25) and (2.28). This proves Theorem 2.
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