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Abstract

For a sequence of arbitrarily dependent random variables (Xn)nÎN and Borel sets (Bn)
nÎN, on real line the strong limit theorems, represented by inequalities, i.e. the strong
deviation theorems of the delayed average Sn.kn (ω) are investigated by using the
notion of asymptotic delayed log-likelihood ratio. The results obtained popularizes
the methods proposed by Liu.
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1. Introduction
Let (an)nÎN be a sequence of real numbers and let (kn)nÎN be a sequence of positive

integers. The numbers

ρn,kn =

{
kn∑
j=1

an+j−1

}
/kn

are called the (forward) delayed first arithmetic means (See [1]). In [2], using the lim-

iting behavior of delayed average, Chow found necessary and sufficient conditions for

the Borel summability of i.i.d. random variables and also obtained very simple proofs

of a number of well-known results such as the Hsu-Robbins-Spitzer-Katz theorem. In

[3], Lai studied the analogues of the law of the iterated logarithim for delayed sums of

independent random variables. Recently, Chen [4] has presented an accurate descrip-

tion the limiting behavior of delayed sums under a non-identically distribution setup,

and has deduced Chover-type laws of the iterated logarithm for them.

Our aim in this article is to establish strong deviation theorems (limit theorem

expressed by inequalities, see [5]) of delayed average for the dependent absolutely con-

tinuous random variables. By using the notion of asymptotic delayed log-likelihood

ratio, we extend the analytic technique proposed by Liu [5] to the case of delayed

sums. The crucial part of the proof is to construct a delayed likelihood ratio depending

on a parameter, and then applies the Borel-Cantelli lemma.

Throughout, let (Xn)nÎN be a sequence of absolutely continuous random variables on

a fixed probability space {�,F ,P} with the joint density function g1, n(x1,..., xn), n Î
N, and fj(x), j = 1, 2,... be the the marginal density function of random variable Xj. (kn)
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nÎN be a subsequence of positive integers, such that, for every ε > 0,∑∞
n=1 exp (−knε) < ∞ .

Definition 1. The delayed likelihood ratio is defined by

Ln (ω) =

⎧⎪⎨
⎪⎩

�
n+kn−1
j=n fj

(
Xj

)
gn,n+kn−1(Xn ,...,Xn+kn−1)

, if denominator > 0

0, otherwise

(1:1)

Let

L (ω) = − lim inf
n

1
kn

logLn (ω) (1:2)

L (ω) is called asymptotic delayed log-likelihood ratio, where

gn,n+kn−1
(
xn, . . . , xn+kn−1

)
denotes the joint density function of random vector(

Xn, . . . ,Xn+kn−1
)
, ω is a sample point (with log 0 = -∞).

It will be shown in Lemma 1 that L (ω) ≥ 0a.e. in any case.

Remark 1. It will be seen below that L (ω) has the analogous properties of the like-

lihood ratio in [5], Although L (ω) is not a proper metric among probability measures,

we nevertheless consider it as a measure of “discrimination” between the dependence

(their joint distribution) and independence (the product of their marginals). Obviously,

Ln (ω) = 1 , a.e. nÎ N if (Xn)nÎN is independent. In view of the above discussion of the

asymptotic logarithmic delayed likelihood ratio, it is natural for us to think of L (ω)

as a measure how far (the random deviation) of (Xn)nÎN is from being independent

and how dependent they are. The closer L (ω) approaches to 0, the smaller the devia-

tion is.

Lemma 1. Let Ln (ω) be define as above, then

lim sup
n

1
kn

logLn (ω) ≤ 0, a.e. (1:3)

Proof. Let B =
{(
xn, . . . , xn+kn−1

)
: gn,n+kn−1

(
xn, . . . , xn+kn−1

)
> 0

}
. Since

E [Ln (ω)]

=
∫

· · ·
∫

(xn,...,xn+kn−1)∈B

∏n+kn−1
j=n fj

(
xj

)
gn,n+kn−1

(
xn, . . . , xn+kn−1

)
.gn,n+kn−1 (

xn, . . . , xn+kn−1
)
dxn . . . dxn+kn−1

=
∫

· · ·
∫

(xn,...,xn+kn−1)∈B

n+kn−1∏
j=n

fj
(
xj

)
dxn . . . dxn+kn−1

≤
∫

· · ·
∫

(xn,...,xn+kn−1)∈Rkn

n+kn−1∏
j=n

fj
(
xj

)
dxn . . . dxn+kn−1 = 1.

From Markov inequality, for every ε > 0, we have

P
[
1
kn

logLn (ω) ≥ ε

]
= P

[Ln (ω) ≥ exp (knε)
] ≤ 1 · exp (−knε) .
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Hence

∞∑
n=1

P
[
1
kn

logLn (ω) ≥ ε

]
≤

∞∑
n=1

exp (−knε) < ∞.

By Borel-Cantelli lemma, we have

P
[
lim sup

n

1
kn

logLn (ω) ≥ 2ε

]
= 0,

for any ε >0, (1.3) follows immediately. □

2. Main results and proofs
Theorem 1. Let (Xn)nÎN, Ln (ω) , L (ω) be defined as above, (Bn)nÎN be a sequence of

Borel sets of the real line. Let Sn,kn (ω) =
1
kn

∑n+kn−1
j=n 1Bj

(
Xj

)
, and assume

c = lim sup
n

1
kn

n+kn−1∑
j=n

P
(
Xj ∈ Bj

)
, (2:1)

then

lim sup
n

Sn,kn (ω) ≤ (√L (ω) +
√
c
)2
, a.e. (2:2)

where 1Bn (·) be the indicator function of Bn.

Proof. Assume s > 0 to be a constant, and let

hj
(
xj

)
=

s1Bj
(xj)

fj
(
xj

)
1 + (s − 1)

∫
Bj
fj

(
xj

)
dxj

, j = 1, 2, . . . (2:3)

It is not difficult to see that
∫
hj

(
xj

)
dxj = 1, j = 1, 2,... Let

�n (s,ω) =

⎧⎪⎨
⎪⎩

�
n+kn−1
j=n hj

(
Xj

)
gn,n+kn−1

(
Xn ,...,Xn+kn−1

) , if denominator > 0

0, otherwise

(2:4)

From Lemma 1, there exists A (s) ∈ F , P(A(s)) = 1, such that

lim sup
n

1
kn

log�n (s,ω) ≤ 0, ω ∈ A (s) (2:5)

Since
∫
Bj
fj

(
xj

)
dxj = P

(
Xj ∈ Bj

)
, by (2.3) we have

n+kn−1∏
j=n

hj
(
xj

)

=
n+kn−1∏
j=n

s1Bj(xj)fj
(
xj

)
1 + (s − 1)

∫
Bj
fj

(
xj

)
dxj

= s
∑n+kn−1

j=n 1Bj(xj)
n+kn−1∏
j=n

fj
(
xj

)
1 + (s − 1)P

(
Xj ∈ Bj

)
(2:6)
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It follows from (1.1), (2.4) and (2.6) that

log�n (s,ω) =
n+kn−1∑
j=n

1Bj

(
Xj

)
log s −

n+kn−1∑
j=n

log
[
1 + (s − 1) P

(
Xj ∈ Bj

)]
+ logLn (ω) (2:7)

(2.5) and (2.7) yield

lim sup
n

1
kn

⎛
⎝log s

n+kn−1∑
j=n

1Bj

(
Xj

) −
n+kn−1∑
j=n

log
[
1 + (s − 1) P

(
Xj ∈ Bj

)]
+ logLn (ω)

⎞
⎠ ≤ 0, ω ∈ A (s) (2:8)

Let s > 1, dividing the two sides of (2.8) by log s, we have

lim sup
n

1
kn

⎛
⎝n+kn−1∑

j=n

1Bj

(
Xj

) −
n+kn−1∑
j=n

log
[
1 + (s − 1)P

(
Xj ∈ Bj

)]
log s

+
logLn (ω)

log s

⎞
⎠ ≤ 0, ω ∈ A (s) (2:9)

By (1.2), (2.9) and the property lim supn(an - bn) ≤ d ⇒ lim supn(an - cn) ≤ lim supn
(bn - cn) + d, one gets

lim sup
n

1
kn

⎛
⎝n+kn−1∑

j=n

1Bj

(
Xj

) −
n+kn−1∑
j=n

log
[
1 + (s − 1)P

(
Xj ∈ Bj

)]
log s

⎞
⎠ ≤ L (ω)

log s
, ω ∈ A (s) (2:10)

By (2.10) and the property of the superior above and the inequality 0 < log(1+x) ≤ x

(x > 0), we obtain

lim sup
n

Sn,kn (ω)

≤ lim sup
n

1
kn

⎛
⎝n+kn−1∑

j=n

log
[
1 + (s − 1) P

(
Xj ∈ Bj

)]
log s

⎞
⎠ +

L (ω)

log s

≤ lim sup
n

1
kn

⎛
⎝n+kn−1∑

j=n

(s − 1) P
(
Xj ∈ Bj

)
log s

⎞
⎠ +

L (ω)

log s

≤ c
(
s − 1
log s

)
+
L (ω)

log s
, ω ∈ A (s)

(2:11)

(2.11) and the inequality 1 − 1
s

< log s (s > 1) imply

lim sup
n

Sn,kn (ω) ≤ c · s + sL (ω)

s − 1
, ω ∈ A (s) (2:12)

Let D be a set of countable real numbers dense in the interval (1, +∞), and let A* =

∩sÎD A(s), g(s, x) = cs + sx/(s - 1), then we have by (2.12)

lim sup
n

Sn,kn (ω) ≤ g (s,L (ω)) , ω ∈ A∗, s ∈ D (2:13)

Let c > 0, it easy to see that if L (ω) > 0, a.e., then, for fixed ω, g (s,L (ω)) as a

function of s attains its smallest value g
(
1 +

√L (ω) /c,L (ω)
)
= 2

√
cL (ω) + L (ω) + c

on the interval (1, +∞), and g(s, 0) is increasing on the interval (1, +∞) and lims®1+ g

(s, 0) = 0. For each ω Î A* ∩ A(1), if L (ω) �= ∞ , take �n(ω) Î D, n = 1, 2,..., such that

κn (ω) → 1 +
√L (ω) /c . We have by the continuity of g (s,L (ω)) with respect to s,
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lim
n→+∞ g (κn (ω) ,L (ω)) =

(√L (ω) +
√
c
)2
, (2:14)

By (2.13), we obtain

lim sup
n

Sn,kn ≤ g (κn (ω) , L (ω)) , n = 1, 2, . . . (2:15)

(2.14) and (2.15) imply

lim sup
n

Sn,kn (ω) ≤ (√L (ω) +
√
c
)2
, ω ∈ A∗ ∩ A (1) (2:16)

If L (ω) = ∞ , (2.16) holds trivially. Since P (A* ∩ A(1)) = 1, (2.2) holds by (2.16),

when c > 0.

When c = 0, we have by letting s = e in (2.11),

lim sup
n

Sn,kn (ω) ≤ L (ω) , ω ∈ A (e) (2:17)

since P (A(e)) = 1, (2.2) also holds by (2.17) when c = 0. □
Theorem 2. Let (Xn)nÎN, Ln (ω) , L (ω) , (Bn)nÎN, Sn,kn (ω) be defined as in Theorem

1 and assume

c′ = lim inf
n

1
kn

n+kn−1∑
j=n

P
(
Xj ∈ Bj

)
, (2:18)

then, if 0 ≤ L (ω) ≤ c′a.e., then

lim inf
n

Sn,kn (ω) ≥ c′ − 2
√
c′L (ω) , a.e. (2:19)

Proof. Let 0 <s < 1, dividing the two sides of (2.8) by log s, we have

lim inf
n

1
kn

⎛
⎝n+kn−1∑

j=n

1Bj

(
Xj

) −
n+kn−1∑
j=n

log
[
1 + (s − 1) P

(
Xj ∈ Bj

)]
log s

+
logLn (ω)

log s

⎞
⎠ ≥ 0, ω ∈ A (s) (2:20)

By (1.2), (2.20) and the property lim infn(an - bn) ≥ d ⇒ lim infn(an - cn) ≥ lim infn(bn
- cn) + d, one gets

lim inf
n

1
kn

⎛
⎝n+kn−1∑

j=n

1Bj

(
Xj

) −
n+kn−1∑
j=n

log
[
1 + (s − 1) P

(
Xj ∈ Bj

)]
log s

⎞
⎠ ≥ L (ω)

log s
, ω ∈ A (s) (2:21)

By (2.21) and the property of the inferior above and the inequality log(1+ x) ≤ x(-1

<x ≤ 0), we obtain

lim inf
n

Sn,kn (ω)

≥ lim inf
n

1
kn

⎛
⎝n+kn−1∑

j=n

log
[
1 + (s − 1)P

(
Xj ∈ Bj

)]
log s

⎞
⎠ +

L (ω)

log s

≥ lim
n

inf
1
kn

⎛
⎝n+kn−1∑

j=n

(s − 1) P
(
Xj ∈ Bj

)
log s

⎞
⎠ +

L (ω)

log s

≥ c′
(
s − 1
log s

)
+
L (ω)

log s
, ω ∈ A (s)

(2:22)
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(2.22) and the inequality 1 − 1
s

< log s and log s < s - 1 (0 <s < 1) imply

lim inf
n

Sn,kn (ω) ≥ c′ · s + L (ω)

s − 1
, ω ∈ A (s) ∩ A (1) (2:23)

Let D’ be a set of countable real numbers dense in the interval (0, 1), and let

A∗ = ∩s∈D′A (s) , h(s, x) = c’s + x/(s - 1), then we have by (2.23)

lim inf
n

Sn,kn (ω) ≥ h (s,L (ω)) , ω ∈ A∗, s ∈ D′
(2:24)

Let c’ > 0, it easy to see that if 0 < L (ω) < c′ , a.e., then, for fixed ω, h (s,L (ω)) as a

function of s attains its maximum value h
(
1 − √L (ω) /c′,L (ω)

)
= c′ − 2

√
c′L (ω) , on

the interval (0, 1), and h(s, 0) is increasing on the interval (0, 1) and lims®1+ h(s, 0) =

c’. For each ω Î A*∩A(1), if L (ω) �= ∞ , take ln(ω) Î D’, n = 1, 2,..., such that

ln (ω) → 1 − √L (ω) /c′ . We have by the continuity of h (s,L (ω)) with respect to s,

lim
n→+∞ h (ln (ω) ,L (ω)) = c′ − 2

√
c′L (ω), (2:25)

By (2.24), we obtain

lim inf
n

Sn,kn ≥ h (ln (ω) ,L (ω)) , n = 1, 2, . . . (2:26)

(2.25) and (2.26) imply

lim inf
n

Sn,kn (ω) ≥ c′ − 2
√
c′L (ω), ω ∈ A∗ ∩ A (1) (2:27)

If L (ω) = ∞ , (2.27) holds trivially. Since P (A* ∩ A(1)) = 1, (2.19) holds by (2.27),

when c’ > 0. (2.19) also holds trivially when c’ = 0. □
Remark 2. In case L (ω) > c′ ≥ 0 , a.e., we cannot get a better lower bound of

lim infnSn,kn (ω) . This motivates the following problem: under the conditions of Theo-

rem 2, how to get a better lower bound of lim infnSn,kn (ω) in case of L (ω) > c′ ≥ 0,

a.e.?

Definition 2. (Generalized empirical distribution function) Let (Xn)nÎN be identically

distribution with common distribution function F , for each m, n Î N, let

Fm,n (x) =
1
n

m+n−1∑
k=m

1(Xk≤x).

Fm, n = the observed frequency of values that are ≤ x from time m to m + n - 1. The

F1,n is the usual empirical distribution function, hence the name given above.

In particular, let B = (-∞, x], x Î R in Theorems 1 and 2, we can get a strong limit

theorem for the generalized empirical distribution function.

Corollary 1. Let (Xn)nÎN be i.i.d. random variables with common distribution func-

tion F, let Bn = (-∞, x], n = 1, 2,..., then

lim
n

Fn,n+kn−1 (x) = F (x) , a.e.

Corollary 2. Let (Xn)nÎN be independent random variables and (Bn)nÎN be as Theo-

rem 1, then
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lim
n

1
kn

n+kn−1∑
j=n

[
1Bj

(
Xj

) − P
(
Xj ∈ Bj

)]
= 0, a.e. (2:28)

Proof. Note that P (Xj Î Bj) ≤ 1, j = 1, 2,... and in this case, 0 ≤ c, c’ ≤ 1, L (ω) = 0 a.

e., we have by (2.11)

lim sup
n

1
kn

⎛
⎝n+kn−1∑

j=n

1Bj

(
Xj

) −
n+kn−1∑
j=n

log
[
1 + (s − 1) P

(
Xj ∈ Bj

)]
log s

⎞
⎠ ≤ 0, ω ∈ A (s) (2:29)

by (2.29) and the property of the superior above and the inequality 0 ≤ log(1+x) ≤ x

(x > 0), we obtain

lim sup
n

1
kn

n+kn−1∑
j=n

[
1Bj

(
Xj

) − P
(
Xj ∈ Bj

)]

≤ lim sup
n

1
kn

⎛
⎝n+kn−1∑

j=n

log
[
1 + (s − 1) P

(
Xj ∈ Bj

)]
log s

− P
(
Xj ∈ Bj

)⎞⎠

≤ lim sup
n

1
kn

⎛
⎝n+kn−1∑

j=n

(s − 1)P
(
Xj ∈ Bj

)
log s

− P
(
Xj ∈ Bj

)⎞⎠
≤

(
s − 1
log s

− 1
)
, ω ∈ A (s)

(2:30)

Analogously as in the proof of Theorem 1, we obtain

lim sup
n

1
kn

n+kn−1∑
j=n

[
1Bj

(
Xj

) − P
(
Xj ∈ Bj

)] ≤ 0, a.e. (2:31)

Similarly, we have lim infn 1
kn

∑n+kn−1
j=n

[
1Bj

(
Xj

) − P
(
Xj ∈ Bj

)] ≥ 0 , a.e. hence (2.28)

follows immediately. □

Remark 3. Let Bn = B, Corollary 2 implies that
lim Sn,kn

kn
= P (X1 ∈ B) which gives

the strong law of large numbers for the delayed arithmatic means.
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