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of parabolic singular integral operators with rough kernels.
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1 Introduction
Let a1,..., an be fixed real numbers, ai ≥ 1. For fixed x Î ℝn, the function

F (x,ρ) =
∑n

i=1
xi2

ρ2αi
is a decreasing function in r >0. We denote the unique solution of

the equation F(x, r) = 1 by r(x). Fabes and Rivière [1] showed that r(x) is a metric on

ℝn, and (ℝn, r) is called the mixed homogeneity space related to {αi}ni=1 .

For l >0, let Aλ =

⎛⎜⎝λα1 0
. . .

0 λαn

⎞⎟⎠ . Suppose that Ω(x) is a real valued and measurable

function defined on ℝn. We say is Ω(x) is homogeneous of degree zero with respect to

Al, if for any l >0 and x Î ℝn

�(Aλx) = �(x) . (1:1)

Moreover, Ω(x) satisfies the following condition∫
Sn−1

�
(
x′) J (x′) dσ (

x′) = 0, (1:2)

where J(x’) is a function defined on the unit sphere Sn-1 in ℝn, which will be defined

in Section 2.

In 1966, Fabes and Rivière [1] proved that if Ω Î C1(Sn-1) satisfying (1.1) and (1.2),

then the parabolic singular integral operator TΩ is bounded on Lp(ℝn) for 1 < p <∞,

where TΩ is defined by

T�f (x) = p.v.
∫
Rn

�
(
y
)

ρ
(
y
)α f

(
x − y

)
dy and α =

n∑
i=1

αi.

Chen et al. Journal of Inequalities and Applications 2012, 2012:121
http://www.journalofinequalitiesandapplications.com/content/2012/1/121

© 2012 Chen et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

mailto:yanpingch@126.com
mailto:yanpingch@126.com
http://creativecommons.org/licenses/by/2.0


In 1976, Nagel et al. [2] improved the above result. They showed TΩ is still bounded

on Lp(ℝn) for 1 < p <∞ if replacing Ω Î C1(Sn-1) by a weaker condition Ω Î L log+ L

(Sn-1). Recently, Chen et al. [3] improve Theorem A, the result is

Theorem A. If Ω Î H1(Sn-1) satisfies (1.1) and (1.2); then the operator TΩ is bounded

on Lp(ℝn) for 1 < p <∞.

For a suitable function j on [0, 1), and Γ = {(y, j(r(y)): y Î ℝn}. Define the singular

integral operator Tj,Ω in ℝn+1 along Γ by

(
Tφ,�f

)
(x, xn+1) = p.v.

∫
Rn

f
(
x − y, xn+1 − φ

(
ρ

(
y
)) �

(
y
)

ρ
(
y
)α dy,

where (x, xn+1) Î ℝn × ℝ = ℝn+1.

On the other hand, we note that if a1 = ... = an = 1, then r(x) = |x|, a = n and (ℝn,

r) = (ℝn, |·|). In this case, Tj,Ω is just the classical singular integral operator along sur-

faces of revolution, which was studied by the authors of [4-7].

The purpose of this article is to investigate the Lp boundedness of the parabolic sin-

gular integral operator Tj,Ω along Γ when Ω Î Fb (Sn-1). For a b > 0, Fb (Sn-1) denotes

the set of all Ω which are integrable over Sn-1 and satisfies

sup
ξ∈Sn−1

∫
Sn−1

|�(θ) |
(
ln

1
|θ · ξ |

)1+β

dθ < ∞. (1:3)

Condition (1.3) was introduced by Grafakos and Stefanov [8]. The examples in [8]

show that there is the following relationship between Fb (Sn-1) and H1(Sn-1):⋂
β>0

Fβ

(
Sn−1) � H1 (

Sn−1) � ⋃
β>0

Fβ

(
Sn−1) .

We shall state our main results as follows:

Theorem 1 Let m Î N. Suppose that j is a polynomial of degree m and

dαiφ (t)
dtαi

|t=0 = 0 , where α′
i s are the all positive integers which is less than m in {a1,...,

an}. In addition, let Ω Î Fb (Sn-1) for some b >0 and satisfies (1.1) and (1.2), then Tj,Ω

is bounded on Lp(ℝn+1) for p ∈
(
2 + 2β

1 + 2β
, 2 + 2β

)
.

Corollary 1 Let m Î N. Suppose that j is a polynomial and
dαiφ (t)
dtαi

|t=0 = 0 , where

α′
i s are the all positive integers which is less than m in {a1,..., an}. In addition, let

� ∈ ∩β>0Fβ

(
Sn−1

)
and satisfies (1.1) and (1.2), then Tj, Ω is bounded on Lp(ℝn+1) for

1 <p < ∞.

2 Notations and lemmas
In this section, we give some notations and lemmas which will be used in the proof of

Theorem 1. For any x Î ℝn, set

x1 = ρα1 cos ϕ1 · · · cos ϕn−2 cos ϕn−1

x2 = ρα2 cos ϕ1 · · · cos ϕn−2 sin ϕn−1

. . . . . . . . . . . . . . . . . . . . . . . .

xn−1 = ραn−1 cos ϕ1 sin ϕ2

xn = ραn sin ϕ1.
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Then dx = ra-1J (�1,..., �n-1)drds, where α =
n∑
i=1

αi , ds is the element of area of Sn-1

and ra-1J(�1,..., �n-1) is the Jacobian of the above transform. In [1], it was shown there

exists a constant L ≥ 1 such that 1 ≤ J(�1,..., �n-1) ≤ L and J(�1,..., �n-1) Î C∞((0, 2π)n-2

× (0, π)). So, it is easy to see that J is also a C∞ function in the variable y’ Î Sn-1. For

simplicity, we denote still it by J(y’).

In order to prove our theorems, we need the following lemmas:

Lemma 2.1. ([9]) Let d Î N. Suppose that g (t): ℝ+ ↦ ℝd satisfies

γ ′ (t) = M
(

γ (t)
t

)
for a fixed matrix M, and assume g(t) doesn’t lie in an affine hyper-

plane. Then

2∫
1
eiγ (t)·ηdt ≤ C|η|1/d.

Lemma 2.2. ([9]) Suppose that λ′
jsand α′

j s are fixed real numbers, j(t) is a polyno-

mial and � (t) = (λ1tα1 , . . . ,λntαn ,φ (t)) is a function from ℝ+ to ℝn+1. For suitable f,

the maximal function associated to the homogeneous curve Γ is defined by

M�

(
f
)
(x) = sup

h

1
h

h∫
0

|f (x − � (t)) |dt, h > 0. (2:1)

Then for 1 < p ≤ ∞, there is a constant C >0, independent of λ′
js , the coefficient of j

(t) and f, such that

||M�

(
f
) ||Lp ≤ C||f ||Lp . (2:2)

Lemma 2.3. Let L : ℝn+1 ® ℝn be a linear transformation. Suppose that {sk}kÎℤ is a

sequence of uniformly bounded measures on ℝd satisfying

|̂σk (ξ) | ≤ Cmin
{
|A2kLξ |, (ln (|A2kLξ |))−1−β

}
(2:3)

for ξ Î ℝn+1 and k Î ℤ. For any 1 < p0 <∞ and A >0∥∥∥∥∥∥
(∑

k∈Z
|σk ∗ gk|2

)1/2
∥∥∥∥∥∥
Lp0

≤ A

∥∥∥∥∥∥
(∑

k∈Z
|gk|2

)1/2
∥∥∥∥∥∥
Lp0

(2:4)

holds for arbitrary functions {gk}kÎℤ on ℝn+1. Then for p ∈
(
2 + 2β

1 + 2β
, 2 + 2β

)
there

exists a constant Cp = C(p, n) which is independent of L such that∥∥∥∥∑
k∈Z

σk ∗ f

∥∥∥∥
Lp

≤ Cp
∥∥f∥∥Lp (2:5)

and ∥∥∥∥∥∥
(∑

k∈Z
|σk ∗ f |2

)1/2
∥∥∥∥∥∥
Lp

≤ C||f ||Lp (2:6)

for every f Î Lp(ℝn+1).

Chen et al. Journal of Inequalities and Applications 2012, 2012:121
http://www.journalofinequalitiesandapplications.com/content/2012/1/121

Page 3 of 9



Proof. The main idea of the proof is taken from [7,8], we assume that Lξ = (ξ1,..., ξn)

= ζ for ξ = (ξ1,..., ξn, ξn+1) Î ℝn+1. Choose a ψ ∈ C∞
0 (R) such that 0· ≤ ψ ≤ 1, supp(ψ)

⊆ (1/4, 4), and

∑
j∈Z

[
ψ

(
2jt

)]2 ≡ 1 (2:7)

For each j, we define Fj in ℝn by

�̂j (ζ ) = ψ
(
2jρ (ζ )

)
f̂ (ζ )

for ξ = (ξ1,..., ξn+1) Î ℝn+1. If we set

Tf =
∑
k∈Z

σk ∗ f , (2:8)

and let δ represent the Dirac delta on ℝ, then by (2.7), for any Schwartz function f,

Tf =
∑
j∈Z

Tjf ,

where

Tjf =
∑
k∈Z

(
�j+k ⊗ δ

) ∗ σk ∗ (
�j+k ⊗ δ

) ∗ f .

By using (2.4) and Littlewood-Paley theory (as in [3]), one obtains that for any 1 < p0
<∞,

||Tjf ||Lp0(Rn+1) ≤ Cp0 ||f ||Lp0(Rn+1). (2:9)

On the other hand, by using Plancherel’s theorem and (2.3), If j >0, using the esti-

mate |σ̂k (ξ) | ≤ C|A2kζ | we have

∥∥Tj(f )∥∥L2(Rn+1) ≤
∑
k

∫
2−j−k−1≤ρ(ζ )≤2−j−k+1

|̂f (ξ)|2|A2kζ |2dξ

=
∑
k

∫
2−j−k−1≤ρ(ζ )≤2−j−k+1

|̂f (ξ)|2

(
22kα1ρ(ζ )2α1 (ζ ′

1)
2 + . . . + 22kαnρ(ζ )2αn(ζ ′

n
)2

)
dξ

≤ 2−2jmin{αj}
∑
k

∫
2−j−k−1≤ρ(ζ )≤2−j−k+1

|̂f (ξ)|2

(
(ζ ′

1)
2 + . . . + (ζ ′

n
)2

)
dξ

≤ 2−2j
∑
k

∫
2−j−k−1≤ρ(ζ )≤2−j−k+1

|̂f (ξ)|2dξ

= C2−2j||f ||L2(Rn+1).

(2:10)
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Similar to the proof of (2.10), using Plancherel’s theorem and (2.3), if j <0 we get

||Tjf ||L2(Rn+1) ≤ C
(
1 + |j|)−(1+β)||f ||L2(Rn+1). (2:11)

In short

||Tjf ||L2(Rn+1) ≤ C
(
1 + |j|)−(1+β)||f ||L2(Rn+1), for j ∈ Z. (2:12)

By interpolating between (2.9) and (2.12), we obtain

||Tjf ||Lp(Rn+1) ≤ C
(
1 + |j|)−(1+β)||f ||Lp(Rn+1). (2:13)

for

p ∈
(
2 + 2β

1 + 2β
, 2 + 2β

)
and some b >0. Thus, (2.5) follows from (2.13). One may then use a randomization

argument to derive (2.6). Lemma 2.1 is proved.

3 Proof of Theorem 1
The main idea of the proof of Theorem 1 is taken from [10]and [11]. Let Ω satisfies

(1.1), (1.2), and (1.3) for some b >0. Let F(y) = (y, j(r(y))), where φ (t) =
∑m

j=0 ajt
j , m Î

N. Let Dk = {y Î ℝn : 2k <r(y) ≤ 2k+1} and define the family of measures sk on ℝn+1 by∫
Rn+1

f
(
y, yn+1

)
dσk =

∫
Dk

f
(
y,φ

(
ρ

(
y
))) �

(
y
)

ρ
(
y
)α dy, (3:1)

and s* f(x) = supkÎℤ(|sk| * | f | (x).

It is easy to see that

||σk|| =
∫
Dk

|� (
y′

) |
ρ
(
y
)α dy =

∫
Sn−1

2k+1∫
2k

| � (
y′
) |J (y′) |dρ

ρ
dσ

(
y′

) ≤ C. (3:2)

In light of (3.2) and Lemma 2.3, it suffices to show that sk satisfies (2.3) and (2.4).

For (ξ, ξn+1) Î ℝn × ℝ, y’ Î Sn-1, and l Î ℤ. Let

Iλ
(
ξ , ξn+1, y′

)
=

2∫
1

ei[Aλρξ ·y′+ξn+1φ(λρ)]dρ.

Set Λ = {ai : ai is the positive integers which is less than m in {a1,..., an} and

� = {1, 2, ...,m} \� . Then
dαiφ (t)
dtαi

|t=0 = 0 , where ai Î Λ, and � is not a subset of

{a1,..., an}. Therefore, we get

Aλρξ · y′ + ξn+1φ (λρ) = ρα1λα1ξ1y′1 + ... + ραnλαnξny′n + ξn+1
∑
j∈�̄

aj(λρ)j.

Without loss of generality, we may assume Λ consists of r distinct numbers and let

� = {i1, i2, ..., im−r} If α′
j s are all distinct, by Lemma 2.1, we get immediately
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|Iλ
(
ξ , ξn+1, y′

) | ≤ (|λα1ξ1y′1| + · · · + |λαnξny′n| + (m − −r) |λξn+1|
)−1/(n+m−r)

≤ (|λα1ξ1y′1 + · · · + λαnξny′n|
)−1/(n+m−r) = |Aλξ · y′|−1/(n+m−r).

(3:3)

If {aj} only consists of s distinct numbers, we suppose that

α1 = α2 = · · · = αl1 ,

αl1+1 = · · · = αl1+l2 ,

. . .

αl1+···+ls−1+1 = · · · = αn,

where s is a positive integer with 1 ≤ s ≤ n, l1, l2,..., ls are positive integers such that

l1 + l2 + ··· + ls = n and α1,αl1+l2 , · · · ,αl1+···+ls−1,αn are distinct. Obviously,

γ (t) =
(
tα1 , tαl1+l2 , . . . , tαl1+···+ls−1 , tαn , ti1 , ti2 , . . . , tim−r

)
does not lie in an affine hyperplane in ℝs+m-r. Then using Lemma 2.1 again, there

exists C >0 such that for any vector h = (h1,..., hn) Î ℝn,

2∫
1

e2i(η1+···+ηl1)t
αl1 +(ηl1+1+···+ηl1+l2)t

αl1+l2 +···+(ηl1+···+ls−1+1+···+ηn)tαn+λξn+1
∑

j∈�̄ tj dt

≤ C
(|η1 + · · · + ηl1 |2 + |ηl1+1 + · · · + ηl1+l2 |2 + · · ·

+|ηl1+···+ls−1+1 + · · · + ηn|2 + (m − r) |λξn+1|2
)−1/2(s+m−r)

≤ C
(|η1 + · · · + ηl1 | + |ηl1+1 + · · · + ηl1+l2 | + · · · + |ηl1+···+ls−1+1 + · · · + ηn|

)−1/(s+m−r)

≤ C

∣∣∣∣∣∣
n∑
j=1

ηj

∣∣∣∣∣∣
−1/(s+m−r)

.

Let ηj = λαjξjy′j , we have

|Iλ
(
ξ , ξn+1, y

) | ≤ (|λα1ξ1y′1| + · · · + |λαnξny′n|
)−1/(s+m−r)

≤ (|λα1ξ1y′1 + · · · + λαnξny′n|
)−1/(s+m−r) = |Aλξ · y′|−1/(s+m−r).

(3:3a)

On the other hand, it is easy to see that

|Iλ
(
ξ , ξn+1, y′

) | ≤ 1. (3:4)

From (3.3), (3.3’) and (3.4), we get

|Iλ
(
ξ , ξn+1, y′

) | ≤ C
[
ln

(
1/|η′ · y′|)]1+β

(ln |Aλξ |)1+β
, for |Aλξ | ≥ 2,

where η′ =
Aλξ

|Aλξ | . Thus, by (1.3), we get∫
Sn−1

|Iλ
(
ξ , ξn+1, y′

)
�

(
y′
) |dσ (

y′
) ≤ C(ln |Aλξ |)−(1+β).
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Therefore,

|σ̂k (ξ , ξn+1) |

=

∣∣∣∣∣∣
∫
Dk

ei(ξ ·y+ξn+1φ(ρ(y)))
�

(
y
)

ρ
(
y
)α dy

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫

Sn−1

2k+1∫
2k

ei(ξ ·Aρy′+ξn+1φ(ρ))�
(
y′
)
J
(
y′

) dρ
ρ
dσ

(
y′

)∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
Sn−1

2∫
1

e
i
(
ξ ·A2kρ

y′+ξn+1φ(2kρ)
)
�

(
y′
)
J
(
y′

) dρ
ρ
dσ

(
y′

)∣∣∣∣∣∣
≤ C

∫
Sn−1

|I2k
(
ξ , ξn+1, y′

) ||� (
y′
) |dσ (

y′
)

≤ C(ln |A2kξ |)−(1+β).

(3:5)

On the other hand, by (1.2), we can obtain

|σ̂k (ξ , ξn+1) |

=

∣∣∣∣∣∣
∫
Dk

ei(ξ ·y+ξn+1φ(ρ(y)))
�

(
y
)

ρ
(
y
)α dy

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
2k+1∫
2k

∫
Sn−1

ei(ξ ·Aρ y′+ξn+1φ(ρ))�
(
y′

)
J
(
y′

)
dσ

(
y′

) dρ
ρ

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
2k+1∫
2k

∫
Sn−1

(
ei(ξ ·Aρy′+ξn+1φ(ρ)) − eiξn+1φ(ρ)

)
�

(
y′
)
J
(
y′
)
dσ

(
y′
) dρ

ρ

∣∣∣∣∣∣∣
≤ C

2k+1∫
2k

∫
Sn−1

|ei(ξ ·Aρy′+ξn+1φ(ρ)) − eiξn+1φ(ρ)||� (
y′
) ||J (y′) |dσ (

y′
) dρ

ρ

≤ C

2k+1∫
2k

∫
Sn−1

|ξ · Aρy′||�
(
y′
) ||J (y′) |dσ (

y′
) dρ

ρ

≤ C

2k+1∫
2k

∫
Sn−1

|A2kξ · y′||� (
y′

) ||J (y′) |dσ (
y
) dρ

ρ

≤ C|A2kξ |
2k+1∫
2k

∫
Sn−1

|� (
y′

) ||J (y′) |
∣∣∣∣A2k+1ξ

A2k+1ξ
· y′

∣∣∣∣dσ (
y′

)
dρ

≤ C|A2kξ |.

(3:6)
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Clearly, (3.5) and (3.6) imply (2.3) holds. Finally, we shall show that (2.4) holds.

σ ∗
k

(
f
)
(x)

= sup
k∈R

(|σk| ∗ |f |) (x)

=
∫
Dk

|f (
x − �

(
y
)) | |�

(
y
) |

ρ
(
y
)α dy

=
∫

Sn−1

2k+1∫
2k

|f (
x − �

(
Aρy

′)) ||� (
y′

) |dρ
ρ
dσ

(
y′
)

≤ 1
2k

∫
Sn−1

|� (
y′

) |

⎛⎜⎝ 2k+1∫
2k

|f (
x − �

(
Aρy

′)) |dρ

⎞⎟⎠ dσ
(
y′

)
≤ C

∫
Sn−1

|� (
y′

) |M�

(
f
)
(x) dσ

(
y′

)
.

By Lemma 2.2, we obtain ||MF(f)||p ≤ C||f||p, where C >0 is independent of k, the

coefficient of j(t) and f, since Ω is integrable on Sn-1, thus ||s*(f)||p ≤ C||f||p. This

shows (2.4) holds. This completes the proof of the Theorem 1.
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