New proofs of Schur-concavity for a class of symmetric functions

Huan-Nan Shi', Jian Zhang and Chun Gu

* Correspondence shihuannan@yahoo.com.cn Department of Electronic Information, Teacher's College, Beijing Union University, Beijing 100011, P.R. China

Abstract

By properties of the Schur-convex function, Schur-concavity for a class of symmetric functions is simply proved uniform. 2000 Mathematics Subject Classification: Primary 26D15; 05E05; $26 B 25$.

Keywords: majorization, Schur-concavity, inequality, symmetric functions, concave functions

1. Introduction

Throughout the article, \mathbb{R} denotes the set of real numbers, $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ denotes n-tuple (n-dimensional real vectors), the set of vectors can be written as

$$
\begin{aligned}
& \mathbb{R}^{n}=\left\{x=\left(x_{1}, \ldots, x_{n}\right): x_{i} \in \mathbb{R}, i=1, \ldots, n\right\}, \\
& \mathbb{R}_{+}^{n}=\left\{x=\left(x_{1}, \ldots, x_{n}\right): x_{i}>0, i=1, \ldots, n\right\} .
\end{aligned}
$$

In particular, the notations \mathbb{R} and \mathbb{R}_{+}denote \mathbb{R}^{1} and \mathbb{R}_{+}^{1} respectively.
For convenience, we introduce some definitions as follows.
Definition 1. [1,2] Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)\left\llcorner\mathbb{R}^{n}\right.$.
(i) $\boldsymbol{x} \geq \boldsymbol{y}$ means $x_{i} \geq y_{i}$ for all $i=1,2, \ldots, n$.
(ii) Let $\Omega \subset \mathbb{R}^{n}, \phi: \Omega \rightarrow \mathbb{R}$ is said to be increasing if $\boldsymbol{x} \geq \boldsymbol{y}$ implies $\phi(\boldsymbol{x}) \geq \phi(\boldsymbol{y})$. ϕ is said to be decreasing if and only if $-\phi$ is increasing.

Definition 2. [1,2] Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$.
(i) \boldsymbol{x} is said to be majorized by \boldsymbol{y} (in symbols $\boldsymbol{x}<\boldsymbol{y}$) if $\sum_{i=1}^{k} x_{[i]} \leq \sum_{i=1}^{k} y_{[i]}$ for $k=$ $1,2, \ldots, n-1$ and $\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} y_{i}$, where $x_{[1]} \geq \cdots \geq x_{[n]}$ and $y_{[1]} \geq \cdots \geq y_{[n]}$ are rearrangements of \boldsymbol{x} and \boldsymbol{y} in a descending order.
(ii) Let $\Omega \subset \mathbb{R}^{n}, \phi: \Omega \rightarrow \mathbb{R}$ is said to be a Schur-convex function on Ω if $x<y$ on Ω implies $\phi(x) \leq \phi(y) . \phi$ is said to be a Schur-concave function on Ω if and only if $-\phi$ is Schur-convex function on Ω.

Definition 3. $[1,2]$ Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$.
(i) $\Omega \subseteq \mathbb{R}^{n}$ is said to be a convex set if $\boldsymbol{x}, \boldsymbol{y} \in \Omega, 0 \leq \alpha \leq 1$ implies $\alpha \boldsymbol{x}+(1-\alpha) \boldsymbol{y}=$ $\left(\alpha x_{1}+(1-\alpha) y_{1}, \ldots, \alpha x_{n}+(1-\alpha) y_{n}\right) \in \Omega$.
(ii) Let $\Omega \subset \mathbb{R}^{n}$ be convex set. A function $\phi: \Omega \rightarrow \mathbb{R}$ is said to be a convex function on Ω if

$$
\varphi(\alpha x+(1-\alpha) y) \leq \alpha \varphi(x)+(1-\alpha) \varphi(y)
$$

for all $\boldsymbol{x}, \boldsymbol{y} \in \Omega$, and all $\alpha \in[0,1] . \phi$ is said to be a concave function on Ω if and only if $-\phi$ is convex function on Ω.
Recall that the following so-called Schur's condition is very useful for determining whether or not a given function is Schur-convex or Schur-concave.
Theorem A. [[1], p. 5] Let $\Omega \subset \mathbb{R}^{n}$ is symmetric and has a nonempty interior convex set. Ω^{0} is the interior of Ω. $\phi: \Omega \rightarrow \mathbb{R}$ is continuous on Ω and differentiable in Ω^{0}. Then ϕ is the Schur-convex (Schur-concave) function, if and only if ϕ is symmetric on Ω and

$$
\begin{equation*}
\left(x_{1}-x_{2}\right)\left(\frac{\partial \varphi}{\partial x_{1}}-\frac{\partial \varphi}{\partial x_{2}}\right) \geq 0(\leq 0) \tag{1}
\end{equation*}
$$

holds for any $\boldsymbol{x} \in \Omega^{0}$.
In recent years, by using Theorem A, many researchers have studied the Schur-convexity of some of symmetric functions.

Chu et al. [3] defined the following symmetric functions

$$
\begin{equation*}
F_{n}(x, k)=\prod_{1 \leq i_{1}<\ldots<i_{k} \leq n} \frac{\sum_{j=1}^{k} x_{i_{j}}}{\sum_{j=1}^{k}\left(1+x_{i_{j}}\right)}, k=1, \ldots, n, \tag{2}
\end{equation*}
$$

and established the following results by using Theorem A.
Theorem B. For $k=1, \ldots, n, F_{n}(\boldsymbol{x}, k)$ is an Schur-concave function on \mathbb{R}_{+}^{n}.
Jiang [4] are discussed the following symmetric functions

$$
\begin{equation*}
H_{k}^{*}(x)=\prod_{1 \leq i_{1}<\ldots<i_{k} \leq n} \sum_{j=1}^{k} x_{i_{j}}^{1 / k}, k=1, \ldots, n \tag{3}
\end{equation*}
$$

and established the following results by using Theorem A.
Theorem C. For $k=1, \ldots, n, H_{k}^{*}(x)$ is an Schur-concave function on \mathbb{R}_{+}^{n}.
Xia and Chu [5] investigated the following symmetric functions

$$
\begin{equation*}
\phi_{n}(x, k)=\prod_{1 \leq i_{1}<\ldots<i_{k} \leq n} \sum_{j=1}^{k} \frac{x_{i_{j}}}{1+x_{i_{j}}}, k=1, \ldots, n, \tag{4}
\end{equation*}
$$

and established the following results by using Theorem A.
Theorem D. For $k=1, \ldots, n, F_{n}(\boldsymbol{x}, k)$ is an Schur-concave function on \mathbb{R}_{+}^{n}.
In this note, by properties of the Schur-convex function, we simply prove Theorems B, C and D uniform.

2. New proofs three theorems

To prove the above three theorems, we need the following lemmas.
Lemma 1. [[1], p. 67], [2]If ϕ is symmetric and convex (concave) on symmetric convex set Ω, then ϕ is Schur-convex (Schur-concave) on Ω.

Lemma 2. [[1], p. 73],[2]Let $\Omega \subset \mathbb{R}^{n}, \phi: \Omega \rightarrow \mathbb{R}_{+}$. Then $\ln \phi$ is Schur-convex (Schurconcave) if and only if ϕ is Schur-convex (Schur-concave).

Lemma 3. [[1], p. 446], [2]Let $\Omega \subset \mathbb{R}^{n}$ be open convex set, $\phi: \Omega \rightarrow \mathbb{R}$. For $\boldsymbol{x}, \boldsymbol{y} \in \Omega$, defined one variable function $g(t)=\phi(t \boldsymbol{x}+(1-t) \boldsymbol{y})$ on interval $(0,1)$. Then ϕ is convex (concave) on Ω if and only if g is convex (concave) on $(0,1)$ for all $\boldsymbol{x}, \boldsymbol{y} L \Omega$.
Lemma 4. Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{m}\right)$ and $\boldsymbol{y}=\left(y_{1}, \ldots, y_{m}\right) \in \mathbb{R}^{m}$. Then the following functions are concave on $(0,1)$.
(i) $f(t)=\ln \sum_{j=1}^{m}\left(t x_{j}+(1-t) y_{j}\right)-\ln \sum_{j=1}^{m}\left(1+t x_{j}+(1-t) y_{j}\right)$,
(ii) $g(t)=\ln \sum_{j=1}^{m}\left(t x_{j}+(1-t) y_{j}\right)^{1 / m}$,
(iii) $h(t)=\frac{1}{m} \ln \psi(t)$, where

$$
\psi(t)=\sum_{j=1}^{m} \frac{t x_{j}+(1-t) y_{j}}{1+t x_{j}+(1-t) y_{j}}
$$

Proof. (i) Directly calculating yields

$$
f^{\prime}(t)=\sum_{j=1}^{m}\left(x_{j}-y_{j}\right)\left[\frac{1}{t x_{j}+(1-t) y_{j}}-\frac{1}{1+t x_{j}+(1-t) y_{j}}\right]
$$

and

$$
\begin{aligned}
f^{\prime \prime}(t) & =-\sum_{j=1}^{m}\left(x_{j}-y_{j}\right)^{2}\left[\frac{1}{\left(t x_{j}+(1-t) y_{j}\right)^{2}}-\frac{1}{\left(1+t x_{j}+(1-t) y_{j}\right)^{2}}\right] \\
& =-\sum_{j=1}^{m}\left(x_{j}-y_{j}\right)^{2} \frac{1+2 t x_{j}+2(1-t) y_{j}}{\left(t x_{j}+(1-t) y_{j}\right)^{2}\left(1+t x_{j}+(1-t) y_{j}\right)^{2}} .
\end{aligned}
$$

Since $f^{\prime}(t) \leq 0, f(t)$ is concave on $(0,1)$.
(ii) Directly calculating yields

$$
g^{\prime}(t)=\frac{\frac{1}{m} \sum_{j=1}^{m}\left(x_{j}-y_{j}\right)^{\frac{1}{m}-1}}{\sum_{j=1}^{m}\left(t x_{j}+(1-t) y_{j}\right)^{1 / m}}
$$

and

$$
g^{\prime \prime}(t)=-\frac{\left[\frac{1}{m} \sum_{j=1}^{m}\left(x_{j}-y_{j}\right)^{\frac{1}{m}-1}\right]^{2}}{\sum_{j=1}^{m}\left(t x_{j}+(1-t) y_{j}\right)^{2 / m}}
$$

Since $g^{\prime \prime}(t) \leq 0, f(t)$ is concave on $(0,1)$
(iii) By computing,

$$
\begin{gathered}
h^{\prime}(t)=\frac{1}{m} \frac{\psi^{\prime}(t)}{\psi(t)} \\
h^{\prime \prime}(t)=\frac{1}{m} \frac{\psi^{\prime \prime}(t) \psi(t)-\left(\psi^{\prime}(t)\right)^{2}}{\psi^{2}(t)}
\end{gathered}
$$

where

$$
\psi^{\prime}(t)=\sum_{j=1}^{m} \frac{x_{j}-y_{j}}{\left(1+t x_{j}+(1-t) y_{j}\right)^{2}}
$$

and

$$
\psi^{\prime \prime}(t)=-\sum_{j=1}^{m} \frac{2\left(x_{j}-y_{j}\right)^{2}}{\left(1+t x_{j}+(1-t) y_{j}\right)^{3}} .
$$

Thus,

$$
\begin{aligned}
\psi^{\prime \prime}(t) \psi(t)-\left(\psi^{\prime}(t)\right)^{2} & =-\sum_{j=1}^{m} \frac{2\left(x_{j}-y_{j}\right)^{2}}{\left(1+t x_{j}+(1-t) y_{j}\right)^{3}} \sum_{j=1}^{m} \frac{t x_{j}+(1-t) y_{j}}{1+t x_{j}+(1-t) y_{j}} \\
& -\left[\sum_{j=1}^{m} \frac{x_{j}-y_{j}}{\left(1+t x_{j}+(1-t) y_{j}\right)^{2}}\right]^{2} \leq 0,
\end{aligned}
$$

and then h " $(t) \leq 0$, so $f(t)$ is concave on $(0,1)$.
The proof of Lemma 4 is completed.
Proof of Theorem A: For any $1 \leq i_{1}<\cdots<i_{k} \leq n$, by Lemma 3 and Lemma $4(i)$, it follows that $\ln \sum_{j=1}^{k} x_{i_{j}}-\ln \sum_{j=1}^{k}\left(1+x_{i_{j}}\right) \quad$ is concave on \mathbb{R}_{+}^{n}, and then $\ln F_{n}(x, k)=\prod_{1 \leq i_{1}<\cdots<i_{k} \leq n}\left(\ln \sum_{j=1}^{k} x_{i_{j}}-\ln \sum_{j=1}^{k}\left(1+x_{i_{j}}\right)\right) \quad$ is concave on \mathbb{R}_{+}^{n}.
Furthermore, it is clear that $\ln F_{n}(x, k)$ is symmetric on \mathbb{R}_{+}^{n}, by Lemma 1 , it follows that $\ln F_{n}(\boldsymbol{x}, k)$ is concave on \mathbb{R}_{+}^{n}, and then from Lemma 2 we conclude that $F_{n}(\boldsymbol{x}, k)$ is also concave on \mathbb{R}_{+}^{n}.

The proof of Theorem A is completed.
Similar to the proof of Theorem A, by Lemma 4 (ii) and Lemma 4 (iii), we can prove Theorems B and C, respectively. Omitted detailed process.

Acknowledgements

Shi was supported in part by the Scientific Research Common Program of Beijing Municipal Commission of Education (KM201111417006). This article was typeset by using $\mathcal{A M S}$ - LATEX.

Authors' contributions
All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 24 May 2011 Accepted: 17 January 2012 Published: 17 January 2012

References

1. Marshall, AW, Olkin, I: Inequalities:theory of majorization and its application. Academies Press, New York (1979)
2. Wang, B-Y: Foundations of majorization inequalities. Beijing Normal Univ. Press, Beijing, China, (Chinese) (1990)
3. Chu, Y-M, Xia, W-F, Zhao, T-H: Some properties for a class of symmetric functions and applications. J Math Inequal. 5(1):1-11 (2011)
4. Jiang, W-D: Some properties of dual form of the Hamy's symmetric function. J Math Inequal. 1(1):117-125 (2007)
5. Xia, W-F, Chu, Y-M: Schur-convexity for a class of symmetric functions and its applications. J Inequal Appl 15 (2009). vol. 2009, Article ID 493759
[^0]
[^0]: doi:10.1186/1029-242X-2012-12
 Cite this article as: Shi et al.: New proofs of Schur-concavity for a class of symmetric functions. Journal of Inequalities and Applications 2012 2012:12.

