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Abstract

In this article, we prove strong and weak convergence theorems of modified
proximal point algorithms for finding a common element of the zero point of
maximal monotone operators, the set of solutions of generalized mixed equilibrium
problems, the set of solutions of variational inequality problems and the fixed point
set of relatively nonexpansive mappings in a Banach space under difference
conditions. Our results modify and improve previous result of Li and Song.
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1. Introduction
Let E be a Banach space with norm || · ||, C be a nonempty closed convex subset of E

and let E* denote the dual of E. Let B be a monotone operator of C into E*. The varia-

tional inequality problem is to find a point x Î C such that

〈Bx, y − x〉 ≥ 0 for all y ∈ C. (1:1)

The set of solutions of the variational inequality problem is denoted by V I(C, B).

Such a problem is connected with the convex minimization problem, the complemen-

tarity problem, the problem of finding a point u Î E satisfying 0 = Bu and so on. An

operator B of C into E* is said to be inverse-strongly monotone, if there exists a positive

real number a such that

〈x − y,Bx − By〉 ≥ α
∥∥Bx − By

∥∥2 (1:2)

for all x, y Î C. In such a case, B is said to be a-inverse-strongly monotone. If an

operator B of C into E* is a-inverse-strongly monotone, then B is Lipschitz continuous,

that is
∥∥Bx − By

∥∥ ≤ 1
α

∥∥x − y
∥∥ for all x, y Î C.

A point x Î C is a fixed point of a mapping S: C ® C if Sx = x, by F(S) denote the

set of fixed points of S; that is, F(S) = {x Î C: Sx = x}. A point p in C is said to be an

asymptotic fixed point of S (see [1]) if C contains a sequence {xn} which converges
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weakly to p such that limn®∞ ||xn - Sxn|| = 0. The set of asymptotic fixed points of S

will be denoted by F̂(S) . A mapping S from C into itself is said to be relatively nonex-

pansive [2-4] if F̂(S) = F(S)and j(p, Sx) ≤ j(p, x) for all x Î C and p Î F(S). The

asymptotic behavior of a relatively nonexpansive mapping was studied in [5,6]. A map-

ping S is said to be j-nonexpansive, if j(Sx, Sy) ≤ j(x, y) for x, y ÎC. A mapping S is

said to be quasi j-nonexpansive if F(S) �=� 0 and j(p, Sx) ≤ j(p, x) for x Î C and p Î F

(S).

Let E be a Banach space with norm || · ||, C be a nonempty closed convex subset of

E and let E* be the dual of E. Let Θ: C × C ® ℝ be a bifunction, �: C ® ℝ be a real-

valued function, and B: C ® E* be a nonlinear mapping. The generalized mixed equili-

brium problem, which is to find x Î C such that

�(x, y) + 〈Bx, y − x〉 + ϕ(y) − ϕ(x) ≥ 0, ∀y ∈ C. (1:3)

The solutions set to (1.3) is denoted by Ω, i.e.,

� = {x ∈ C : �(x, y) + 〈Bx, y − x〉 + ϕ(y) − ϕ(x) ≥ 0, ∀y ∈ C}. (1:4)

If B = 0, the problem (1.3) reduce into the mixed equilibrium problem for Θ, denoted

by MEP(Θ, �), which is to find x Î C such that

�(x, y) + ϕ(y) − ϕ(x) ≥ 0, ∀y ∈ C. (1:5)

If Θ ≡ 0, the problem (1.3) reduce into the mixed variational inequality of Browder

type, denoted by V I(C, B, �), is to find x Î C such that

〈Bx, y − x〉 + ϕ(y) − ϕ(x) ≥ 0, ∀y ∈ C. (1:6)

If B = 0 and � = 0 the problem (1.3) reduce into the equilibrium problem for Θ,

denoted by EP(Θ), is to find x Î C such that

�(x, y) ≥ 0, ∀y ∈ C. (1:7)

The above formulation (1.7) was shown in [7] to cover monotone inclusion pro-

blems, saddle point problems, variational inequality problems, minimization problems,

optimization problems, variational inequality problems, vector equilibrium problems,

Nash equilibria in noncooperative games. In addition, there are several other problems,

for example, the complementarity problem, fixed point problem and optimization pro-

blem, which can also be written in the form of an EP(Θ). In other words, the EP(Θ) is

an unifying model for several problems arising in physics, engineering, science, optimi-

zation, economics, etc. In the last two decades, many articles have appeared in the lit-

erature on the existence of solutions of EP(Θ); see, for example [7-10] and references

therein. Some solution methods have been proposed to solve the EP(Θ) (see, for exam-

ple, [8,10-15] and references therein). In 2005, Combettes and Hirstoaga [11] intro-

duced an iterative scheme of finding the best approximation to the initial data when

EP(Θ) is nonempty and they also proved a strong convergence theorem.

In 2004, in Hilbert space H, Iiduka et al. [16] proved that the sequence {xn} defined

by: x1 = x Î C and

xn+1 = PC(xn − λnBxn), (1:8)

Wattanawitoon and Kumam Journal of Inequalities and Applications 2012, 2012:118
http://www.journalofinequalitiesandapplications.com/content/2012/1/118

Page 2 of 21



where PC is the metric projection of H onto C and {ln} is a sequence of positive real

numbers, converges weakly to some element of V I(C, B).

In 2008, Iiduka and Takahashi [17] introduced the following iterative scheme for

finding a solution of the variational inequality problem for an inverse-strongly mono-

tone operator B that satisfies the following conditions in a 2-uniformly convex and

uniformly smooth Banach space E:

(C1) B is inverse-strongly monotone,

(C2) VI(C, B) �=� 0,
(C3) ||Ay|| ≤ || Ay - Au|| for all y Î C and u Î V I(C, B).

Let x1 = x Î C and

xn+1 = �CJ−1(Jxn − λnBxn) (1:9)

for every n = 1, 2, 3, ..., where ΠC is the generalized metric projection from E onto C,

J is the duality mapping from E into E* and {ln} is a sequence of positive real numbers.

They proved that the sequence {xn} generated by (1.9) converges weakly to some ele-

ment of V I(C, B).

Consider the problem of finding:

v ∈ E such that 0 ∈ A(v), (1:10)

where A is an operator from E into E*. Such v Î E is called a zero point of A. When

A is a maximal monotone operator, a well-know methods for solving (1.10) in a Hil-

bert space H is the proximal point algorithm: x1 = x Î H and,

xn+1 = Jrn xn, n = 1, 2, 3, . . . , (1:11)

where {rn} ⊂ (0, ∞) and Jrn = (I + rnA)−1 , then Rockafellar [18] proved that the

sequence {xn} converges weakly to an element of A-1(0). Such a problem contains

numerous problems in economics, optimization, and physics and is connected with a

variational inequality problem. It is well known that the variational inequalities are

equivalent to the fixed point problems.

In 2000, Kamimura and Takahashi [19] proved the following strong convergence the-

orem in Hilbert spaces, by the following algorithm

xn+1 = αnx + (1 − αn)Jrn xn, n = 1, 2, 3, . . . , (1:12)

where Jr = (I + rA)-1 J, then the sequence {xn} converges strongly to PA−10(x), where

PA−10 is the projection from H onto A-1(0). These results were extended to more gen-

eral Banach spaces see [20,21].

In 2003, Kohsaka and Takahashi [21] introduced the following iterative sequence for

a maximal monotone operator A in a smooth and uniformly convex Banach space: x1
= x Î E and

xn+1 = J−1(αnJx + (1 − αn)J(Jrn xn)), n = 1, 2, 3, . . . , (1:13)

where J is the duality mapping from E into E* and Jr = (I + rA)-1J.
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In 2004, Kamimura et al. [22] considered the algorithm (1.14) in a uniformly smooth

and uniformly convex Banach space E, namely

xn+1 = J−1(αnJxn + (1 − αn)J(Jrn xn)), n = 1, 2, 3, . . . . (1:14)

They proved that the algorithm (1.14) converges weakly to some element of A-10.

In 2008, Li and Song [23] proved a strong convergence theorem in a Banach space,

by the following algorithm: x1 = x Î E and

yn = J−1(βnJ(xn) + (1 − βn)J(Jrnxn)),

xn+1 = J−1(αnJx + (1 − αn)J(yn)),
(1:15)

with the coefficient sequences {an}, {bn} ⊂ [0, 1] and {rn} ⊂ (0, ∞) satisfying limn® ∞

an = 0,
∑∞

n=1
αn = ∞ , limn®∞bn = 0, and limn®∞rn = ∞, where J is the duality map-

ping from E into E* and Jr = (I + rA)-1 J. Then they proved that the sequence {xn} con-

verges strongly to ΠCx, where ΠC is the generalized projection from E onto C.

In this article, motivated and inspired by Kamimura et al. [22], Li and Song [23],

Iiduka and Takahashi [17], Zhang [24] and Inoue et al. [25], we introduce the new

hybrid algorithm (3.1) below. Under appropriate difference conditions, we will prove

that the sequence {xn} generated by algorithms (3.1) converges strongly to the point∏
�∩VI(C,A)∩A−1(0)∩F(S)x0 and converges weakly to the point

limn→∞
∏

�∩VI(C,A)∩A−1(0)∩F(S)xn . The results presented in this article extend and

improve the corresponding ones announced by Kamimura et al. [22], Li and Song [23]

and some authors in the literature.

2. Preliminaries

A Banach space E is said to be strictly convex if
∥∥ x+y

2

∥∥ < 1 for all x, y Î E with ||x|| =

||y|| = 1 and x ≠ y. Let U = {x Î E: ||x|| = 1} be the unit sphere of E. Then the Banach

space E is said to be smooth provided

lim
t→0

∥∥x + ty
∥∥ − ‖x‖
t

exists for each x, y Î U. It is also said to be uniformly smooth if the limit is attained

uniformly for x, y Î E. The modulus of convexity of E is the function δ: [0, 2] ® [0, 1]

defined by

δ(ε) = inf
{
1 −

∥∥∥x + y
2

∥∥∥ : x, y ∈ E, ‖x‖ =
∥∥y∥∥ = 1,

∥∥x − y
∥∥ ≥ ε

}
. (2:1)

A Banach space E is uniformly convex if and only if δ(ε) >0 for all ε Î (0, 2]. Let p be

a fixed real number with p ≥ 2. A Banach space E is said to be p-uniformly convex if

there exists a constant c >0 such that δ(ε) ≥ cεp for all ε Î [0, 2] (see [26,27] for more

details). Observe that every p-uniform convex is uniformly convex. One should note

that no a Banach space is p-uniform convex for 1 < p <2. It is well known that a Hil-

bert space is 2-uniformly convex and uniformly smooth. For each p >1, the generalized

duality mapping Jp : E → 2E
∗
is defined by
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Jp(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ||x||p, ||x∗|| = ||x||p−1} (2:2)

for all x Î E. In particular, J = J2 is called the normalized duality mapping. If E is a

Hilbert space, then J = I, where I is the identity mapping. It is also known that if E is

uniformly smooth, then J is uniformly norm-to-norm continuous on each bounded

subset of E.

We know the following (see [28]):

(1) if E is smooth, then J is single-valued;

(2) if E is strictly convex, then J is one-to-one and 〈x - y, x* - y*〉 >0 holds for all (x,

x*), (y, y*) Î J with x ≠ y;

(3) if E is reflexive, then J is surjective;

(4) if E is uniformly convex, then it is reflexive;

(5) if E* is uniformly convex, then J is uniformly norm-to-norm continuous on each

bounded subset of E.

The duality J from a smooth Banach space E into E* is said to be weakly sequentially

continuous [29] if xn ⇀ x implies Jxn ⇀* Jx, where ⇀* implies the weak* convergence.

Lemma 2.1. [30,31]If E be a 2-uniformly convex Banach space. Then, for all x, y Î E

we have

∥∥x − y
∥∥ ≤ 2

c2
∥∥Jx − Jy

∥∥ ,
where J is the normalized duality mapping of E and 0 < c ≤ 1.

The best constant
1
c
in Lemma is called the 2-uniformly convex constant of E (see

[26]).

Lemma 2.2. [30,32]If E be a p-uniformly convex Banach space and let p be a given

real number with p ≥ 2. Then for all x, y Î E, Jx Î Jp(x) and Jy Î Jp(y)

〈x − y, Jx − Jy〉 ≥ cp

2p−2p

∥∥x − y
∥∥p,

where Jp is the generalized duality mapping of E and
1
c
is the p-uniformly convexity

constant of E.

Lemma 2.3. (Xu [31]) Let E be a uniformly convex Banach space. Then for each r >0,

there exists a strictly increasing, continuous and convex function g: [0, ∞) ® [0, ∞) such

that g(0) = 0 and∥∥λx + (1 − λy)
∥∥2 ≤ λ‖x‖2 + (1 − λ)

∥∥y∥∥2 − λ(1 − λ)g(
∥∥x − y

∥∥) (2:3)

for all x, y Î{z Î E: ||z|| ≤ r} and l Î [0, 1].

Let E be a smooth, strictly convex and reflexive Banach space and let C be a none-

mpty closed convex subset of E. Throughout this article, we denote by j the function

defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉 +
∥∥y∥∥2, for x, y ∈ E. (2:4)

Following Alber [33], the generalized projection ΠC: E ® C is a map that assigns to

an arbitrary point x Î E the minimum point of the functional j(x, y), that is,
∏

Cx = x̄ ,
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where x̄ is the solution to the minimization problem

φ(x̄, x) = inf
y∈C

φ(y, x) (2:5)

existence and uniqueness of the operator ΠC follows from the properties of the func-

tional j(x, y) and strict monotonicity of the mapping J. It is obvious from the defini-

tion of function j that (see [33])(∥∥y∥∥ − ‖x‖)2 ≤ φ(y, x) ≤ (∥∥y∥∥ + ‖x‖)2
, ∀x, y ∈ E. (2:6)

If E is a Hilbert space, then j(x, y) = ||x - y||2.

If E is a reflexive, strictly convex and smooth Banach space, then for x, y Î E, j(x, y)
= 0 if and only if x = y. It is sufficient to show that if j(x, y) = 0 then x = y. From

(2.6), we have ||x|| = ||y||. This implies that 〈x, Jy〉 = ||x||2 = ||Jy||2. From the defini-

tion of J, one has Jx = Jy. Therefore, we have x = y (see [28,34] for more details).

Lemma 2.4. (Kamimura and Takahashi [20]) Let E be a uniformly convex and

smooth real Banach space and let {xn}, {yn} be two sequences of E. If j(xn, yn) ® 0 and

either {xn} or {yn} is bounded, then ||xn - yn|| ® 0.

Lemma 2.5. (Alber [33]) Let C be a nonempty closed convex subset of a smooth

Banach space E and x Î E. Then, x0 = ΠCx if and only if

〈x0 − y, Jx − Jx0〉 ≥ 0, ∀y ∈ C.

Lemma 2.6. (Alber [33]) Let E be a reflexive, strictly convex and smooth Banach

space, let C be a nonempty closed convex subset of E and let x Î E. Then

φ(y, �Cx) + φ(�Cx, x) ≤ φ(y, x), ∀y ∈ C.

Let E be a strictly convex, smooth and reflexive Banach space, let J be the duality

mapping from E into E*. Then J-1 is also single-valued, one-to-one, and surjective, and

it is the duality mapping from E* into E. Define a function V: E × E* ® ℝ as follows

(see [21]):

V(x, x∗) = ‖x‖2 − 2〈x, x∗〉 +
∥∥x∗∥∥2 (2:7)

for all x Î Ex Î E and x* Î E*. Then, it is obvious that V (x, x*) = j(x, J-1(x*)) and V

(x, J(y)) = j(x, y).
Lemma 2.7. (Kohsaka and Takahashi [[21], Lemma 3.2]) Let E be a strictly convex,

smooth and reflexive Banach space, and let V be as in (2.7). Then

V(x, x∗) + 2〈J−1(x∗) − x, y∗〉 ≤ V(x, x∗ + y∗) (2:8)

for all x Î E and x*, y* Î E*.

Let E be a reflexive, strictly convex and smooth Banach space. Let C be a closed con-

vex subset of E. Because j(x, y) is strictly convex and coercive in the first variable, we

know that the minimization problem infyÎC j(x, y) has a unique solution. The operator

ΠCx: = arg minyÎC j(x, y) is said to be the generalized projection of x on C.

A set-valued mapping A: E ® E* with domain D(A) =
{
x ∈ E : A(x) �=� 0}

and range

R(A) = {x* Î E*: x* Î A(x), x Î D(A)} is said to be monotone if 〈x - y, x* - y*〉 ≥ 0 for

all x* Î A(x), y* Î A(y). We denote the set {s Î E: 0 Î Ax} by A-10. A is maximal

monotone if its graph G(A) is not properly contained in the graph of any other
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monotone operator. If A is maximal monotone, then the solution set A-10 is closed and

convex.

Let E be a reflexive, strictly convex and smooth Banach space, it is knows that A is a

maximal monotone if and only if R(J + rA) = E* for all r >0.

Define the resolvent of A by Jrx = xr. In other words, Jr = (J + rA)-1J for all r >0. Jr is

a single-valued mapping from E to D(A). Also, A-1(0) = F(Jr) for all r >0, where F(Jr) is

the set of all fixed points of Jr. Define, for r >0, the Yosida approximation of A by Ar =

(J - JJr)/r. We know that Arx Î A(Jrx) for all r >0 and x Î E.

Lemma 2.8. (Kohsaka and Takahashi [[21], Lemma 3.1]) Let E be a smooth, strictly

convex and reflexive Banach space, let A ⊂ E × E* be a maximal monotone operator

with A−10 �=� 0, let r >0 and let Jr = (J + rT)-1J. Then

φ(x, Jry) + φ(Jry, y) ≤ φ(x, y)

for all x Î A-10 and y Î E.

Let B be an inverse-strongly monotone mapping of C into E* which is said to be

hemicontinuous if for all x, y Î C, the mapping F of [0, 1] into E*, defined by F(t) = B

(tx + (1 - t)y), is continuous with respect to the weak* topology of E*. We define by

NC(v) the normal cone for C at a point v Î C, that is,

NC(v) = {x∗ ∈ E∗ : 〈v − y, x∗〉 ≥ 0, ∀y ∈ C}. (2:9)

Theorem 2.9. (Rockafellar [18]) Let C be a nonempty, closed convex subset of a

Banach space E and B a monotone, hemicontinuous operator of C into E*. Let T ⊂ E ×

E* be an operator defined as follows:

Tv =
{
Bv +NC(v), v ∈ C;
� 0, otherwise.

(2:10)

Then T is maximal monotone and T-10 = V I(C, B).

Lemma 2.10. (Tan and Xu [35]) Let {an} and {bn} be two sequence of nonnegative

real numbers satisfying the inequality

an+1 = an + bn for all n ≥ 0.

If
∑∞

n=1 bn < ∞ , then limn®∞ an exists.

Lemma 2.11. (Xu [36]) Let {sn} be a sequence of nonnegative real numbers satisfying

sn+1 = (1 − αn)sn + αntn + rn n ≥ 1,

where {an}, {tn}, and {rn} satisfy {an} ⊂ [0, 1],
∑∞

n=1
αn = ∞ , lim supn®∞ tn ≤ 0 and

rn ≥ 0,
∑∞

n=1 rn < ∞ . Then limn®∞ sn = 0.

For solving the mixed equilibrium problem, let us assume that the bifunction Θ: C ×

C ® ℝ and �: C ® ℝ is convex and lower semi-continuous satisfies the following con-

ditions:

(A1) Θ(x, x) = 0 for all x Î C;

(A2) Θ is monotone, i.e., Θ(x, y) + Θ(y, x) ≤ 0 for all x, y Î C;
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(A3) for each x, y, z Î C,

lim sup
t↓0

�(tz + (1 − t)x, y) ≤ �(x, y);

(A4) for each x Î C, y ↦ Θ(x, y) is convex and lower semi-continuous.

Lemma 2.12. (Blum and Oettli [7]) Let C be a closed convex subset of a uniformly

smooth, strictly convex and reflexive Banach space E and let Θ be a bifunction of C ×

C into ℝ satisfying (A1)-(A4). Let r >0 and x Î E. Then, there exists z Î C such that

�(z, y) +
1
r
〈y − z, z − x〉 ≥ 0 for all y ∈ C.

Lemma 2.13. (Takahashi and Zembayashi [37]) Let C be a closed convex subset of a

uniformly smooth, strictly convex and reflexive Banach space E and let Θ be a bifunc-

tion from C × C to ℝ satisfying (A1)-(A4). For all r >0 and x Î E, define a mapping Tr:

E ® C as follows:

Trx =
{
z ∈ C : �(z, y) +

1
r
〈y − z, Jz − Jx〉 ≥ 0,∀y ∈ C

}
(2:11)

for all x Î E. Then, the followings hold:

(1) Tr is single-valued;

(2) Tr is a firmly nonexpansive-type mapping, i.e., for all x, y Î E,

〈Trx − Try, JTrx − JTry〉 ≤ 〈Trx − Try, Jx − Jy〉;

(3) F(Tr) = EP(Θ);

(4) EP(Θ) is closed and convex.

Lemma 2.14. (Takahashi and Zembayashi [37]) Let C be a closed convex subset of a

smooth, strictly convex, and reflexive Banach space E, let Θ be a bifunction from C ×C

to ℝ satisfying (A1)-(A4) and let r >0. Then, for x Î E and q Î F(Tr),

φ(q, Trx) + φ(Trx, x) ≤ φ(q, x).

Lemma 2.15. (Zhang [24]) Let C be a closed convex subset of a smooth, strictly con-

vex and reflexive Banach space E. Let B: C ® E* be a continuous and monotone map-

ping, �: C ® ℝ is convex and lower semi-continuous and Θ be a bifunction from C × C

to ℝ satisfying (A1)-(A4). For r >0 and x Î E, then there exists u Î C such that

�(u, y) + 〈Bu, y − u〉 + ϕ(y) − ϕ(u) +
1
r
〈y − u, Ju − Jx〉 ≥ 0, ∀y ∈ C.

Define a mapping Kr: C ® C as follows:

Kr(x) =
{
u ∈ C : �(u, y) + 〈Bu, y − u〉 + ϕ(y) − ϕ(u) +

1
r
〈y − u, Ju − Jx〉 ≥ 0,∀y ∈ C

}
(2:12)

for all x Î E. Then, the followings hold:

(i) Kr is single-valued;
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(ii) Kr is firmly nonexpansive, i.e., for all x, y Î E, 〈Krx - Kry, JKrx - JKry〉 ≤ 〈Krx

-Kry, Jx -Jy〉;

(iii) F(Kr) = Ω;

(iv) Ω is closed and convex;

(v) j(p, Krz) + j(Krz, z) ≤ j(p, z) ∀p Î F(Kr), z Î E.

Remark 2.16. (Zhang [24]) It follows from Lemma 2.13 that the mapping Kr: C ® C

defined by (2.12) is a relatively nonexpansive mapping. Thus, it is quasi-j-
nonexpansive.

Lemma 2.17. (Xu [31] and Zalinescu [32]) Let E be a uniformly convex Banach space

and let r >0. Then there exists a strictly increasing, continuous and convex function g:

[0, ∞) ® [0, ∞) such that g(0) = 0 and∥∥tx + (1 − t)y
∥∥2 ≤ t‖x‖2 + (1 − t)

∥∥y∥∥2 − t(1 − t)g(
∥∥x − y

∥∥) (2:13)

for all x, y Î Br(0) and t Î [0, 1], where Br(0) = {z Î E: ||z|| ≤ r}.

3. Strong convergence theorem
In this section, we prove a strong convergence theorem for finding a common element

of the set of solutions of mixed equilibrium problems, the set of solution of the varia-

tional inequality problem, the fixed point set of relatively nonexpansive mappings and

the zero point of a maximal monotone operators in a Banach space by using the

shrinking hybrid projection method.

Theorem 3.1. Let E be a 2-uniformly convex and uniformly smooth Banach space, let

C be a nonempty closed convex subset of E. Let Θ be a bifunction from C × C to ℝ

satisfying (A1)-(A4) let �: C ® ℝ be a proper lower semicontinuous and convex func-

tion, let T: E ® E* be a maximal monotone operator satisfying D(T) ⊂ C. Let Jr = (J +

rT)-1J for r >0, let B: C ® E* be a continuous and monotone mappings and S be a rela-

tively nonexpansive mappings from C into itself, with

F := � ∩ VI(C,A) ∩ T−1(0) ∩ F(S) �= � 0 . Assume that A an operator of C into E* that

satisfies the conditions (C1)-(C3). Let {xn} be a sequence generated by x1 = x ÎC and,⎧⎪⎪⎨
⎪⎪⎩
un = Krnxn,
zn = �CJ−1(J − λnA)un,
yn = J−1(βnJxn + (1 − βn)JSJrn zn),
xn+1 = �CJ−1(αnJx + (1 − αn)Jyn),

(3:1)

for all n Î N, where ΠC is the generalized projection from E onto C, J is the duality

mapping on E. The coefficient sequences {ln} ⊂ [a, b] for some a, b with

0 < a < b <
c2α
2

,
1
c
is the 2-uniformly convexity constant of E and {an} ⊂ [0, 1], {bn} ⊂

(0, 1] {rn} ⊂ (0, ∞) satisfying

(i) limn®∞ an = 0,
∑∞

n=1
αn = ∞ ,

(ii) lim supn®∞ bn <1,

(iii) lim infn®∞ rn >0.
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Then the sequence {xn} converges strongly to ΠFx0.

Proof. Let H(un, y) = Θ(un, y) + 〈Bun, y -un〉 + �(y) - �(un), y Î C and

Krn = {un ∈ C : H(un, y) + 1
rn

〈y − un, Jun − Jxn〉 ≥ 0, ∀y ∈ C} . We first show that {xn}

is bounded. Put vn = J-1(J - lnA)un and wn = Jrn zn for all n ≥ 0. Let p Î F: = Ω ∩ V I

(C, A) ∩ T-1(0) ∩ F(S) and un = Krnxn . Since S, Jrn and Krn are relatively nonexpansive

mappings, we get

φ(p, un) = φ(p, Krnxn) ≤ φ(p, xn) (3:2)

and Lemma 2.7, the convexity of the function V in the second variable, we obtain

φ(p, zn) = φ(p, �Cvn)

≤ φ(p, vn) = φ(p, J−1(Jun − λnAun))

≤ V(p, Jun − λnAun + λnAun) − 2〈J−1(Jun − λnAun) − p,λnAun〉
= V(p, Jun) − 2λn〈vn − p,Aun〉
= φ(p, un) − 2λn〈un − p,Aun〉 + 2〈vn − un,−λnAun〉.

(3:3)

Since p Î V I(C, A) and A is a-inverse-strongly monotone, we have

−2λn〈un − p,Aun〉 = −2λn〈un − p,Aun − Ap〉 − 2λn〈un − p,Ap〉
≤ −2αλn

∥∥Aun − Ap
∥∥2, (3:4)

and by Lemma 2.1, we obtain

2〈vn − un,−λnAun〉 = 2〈J−1(Jun − λnAun) − un,−λnAun〉
≤ 2

∥∥J−1(Jun − λnAun) − un
∥∥ ‖λnAun‖

≤ 4
c2

‖Jun − λnAun − Jun‖ ‖λnAun‖

=
4
c2

λ2
n‖Aun‖2

≤ 4
c2

λ2
n

∥∥Aun − Ap
∥∥2.

(3:5)

Substituting (3.4) and (3.5) into (3.3), we get

φ(p, zn) ≤ φ(p, un) − 2αλn
∥∥Aun − Ap

∥∥2 +
4
c2

λ2
n

∥∥Aun − Ap
∥∥2

≤ φ(p, un) + 2λn

(
2
c2

λn − α

)∥∥Aun − Ap
∥∥2

≤ φ(p, un)

≤ φ(p, xn).

(3:6)

By Lemmas 2.7, 2.8 and (3.6), we have

φ(p, yn) = φ(p, J−1(βnJxn + (1 − βn)JSwn))

= V(p, βnJxn + (1 − βn)JSwn)

≤ V(p, βnJxn) + (1 − βn)V(p, JSwn)

= βnφ(p, xn) + (1 − βn)φ(p, Swn)

≤ βnφ(p, xn) + (1 − βn)φ(p, wn)

≤ βnφ(p, xn) + (1 − βn)(φ(p, zn) − φ(wn, zn))

≤ βnφ(p, xn) + (1 − βn)φ(p, zn)

≤ βnφ(p, xn) + (1 − βn)φ(p, xn)

= φ(p, xn),

(3:7)
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it follows that

φ(p, xn+1) = φ(p, �CJ
−1(αnJx1 + (1 − αn)Jyn))

≤ φ(p, J−1(αnJx1 + (1 − αn)Jyn))

= V(p, αnJx1 + (1 − αn)Jyn)

≤ αnV(p, Jx1) + (1 − αn)V(p, Jyn)

= αnφ(p, x1) + (1 − αn)φ(p, yn)

≤ αnφ(p, x1) + (1 − αn)φ(p, xn)

(3:8)

for all n Î N. Hence, by induction, we have that j(p, xn) ≤ j(p, x1) for all n Î N.

Since (||xn|| - ||p||)
2 ≤ j(p, xn). It implies that {xn} is bounded and {yn}, {zn}, {wn} are

also bounded.

From (3.6)-(3.8), we have

φ(p, xn+1) ≤ αnφ(p, x1) + (1 − αn)[βnφ(p, xn) + (1 − βn)(φ(p, xn) − φ(wn, zn))]

≤ αnφ(p, x1) + (1 − αn)φ(p, xn) − (1 − αn)(1 − βn)φ(wn, zn)

and then

(1 − αn)(1 − βn)φ(wn, zn) ≤ αnφ(p, x1) + (1 − αn)φ(p, xn) − φ(p, xn+1)

for all n Î N. Since limn-∞ an = 0, lim supn®∞ bn <1, it follows that limn®∞ j(wn, zn)

= 0. Applying Lemma 2.4, we have

lim
n→∞ ‖wn − zn‖ = lim

n→∞
∥∥Jrn zn − zn

∥∥ = 0. (3:9)

Since J is uniformly norm-to-norm continuous on bounded sets, we obtain

lim
n→∞ ‖Jwn − Jzn‖ = lim

n→∞
∥∥JJrn zn − Jzn

∥∥ = 0. (3:10)

By (3.2), (3.6)-(3.8) again, we note that

φ(p, xn+1) ≤ αnφ(p, x1)+

(1 − αn)
{
βnφ(p, xn) + (1 − βn)

[
φ(p, xn) − 2λn

(
α − 2

c2
λn

)∥∥Aun − Ap
∥∥2]}

≤ αnφ(p, x1) + (1 − αn)φ(p, xn) − (1 − αn)(1 − βn)2λn

(
α − 2

c2
λn

)∥∥Aun − Ap
∥∥2

and hence

2λn

(
α − 2

c2
λn

)∥∥Aun − Ap
∥∥2 ≤ 1

(1 − αn)(1 − βn)
(αnφ(p, x1)+(1−αn)φ(p, xn)−φ(p, xn+1))

for all n Î N. Since 0 < a < b <
c2α
2

, limn®∞ an = 0, lim supn®∞ bn < 1, we have

lim
n→∞

∥∥Aun − Ap
∥∥ = 0. (3:11)
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From Lemmas 2.6, 2.7 and (3.5), we get

φ(un, zn) = φ(un,�Cvn) ≤ φ(un, vn)

= φ(un, J−1(Jun − λnAun))

= V(un, Jun − λnAun)

≤ V(un, (Jun − λnAun) + λnAun)

− 2〈J−1(Jun − λnAun) − un, λnAun〉
= φ(un, un) + 2〈vn − un, −λnAun〉
= 2〈vn − un, −λnAun〉
≤ 4

c2
λ2
n

∥∥Aun − Ap
∥∥2.

From Lemma 2.4 and (3.11), we have

lim
n→∞ ‖un − zn‖ = 0. (3:12)

Since J is uniformly norm-to-norm continuous on bounded sets, we obtain

lim
n→∞ ‖Jun − Jzn‖ = 0. (3:13)

From Lemmas 2.6, 2.7 and (3.5), we obtain

φ(xn, zn) = φ(xn, �CJ
−1(Jun − λnAun))

≤ φ(xn, J−1(Jun − λnAun))

= V(xn, Jun − λnAun)

≤ V(xn, (Jun − λnAun) + λnAun) − 2〈J−1(Jun − λnAun) − un, λnAun〉
= φ(xn, un) + 2〈J−1(Jun − λnAun) − un, −λnAun〉
= φ(xn, xn) + 2〈J−1(Jun − λnAun) − un, −λnAun〉
=

4
c2

∥∥Aun − Ap
∥∥2

for all n Î N. Since limn®∞||Aun - Ap ||2 = 0, we have limn®∞ j(xn, zn) = 0.

Applying Lemma 2.4, we get

lim
n→∞ ‖xn − zn‖ = 0. (3:14)

Since J is uniformly norm-to-norm continuous on bounded set, we obtain

lim
n→∞ ‖Jxn − Jzn‖ = 0. (3:15)

So, by the triangle inequality, we get

‖xn − un‖ ≤ ‖xn − zn‖ + ‖zn − un‖ .

By (3.12) and (3.14), we also have

lim
n→∞ ‖xn − un‖ = 0. (3:16)

Wattanawitoon and Kumam Journal of Inequalities and Applications 2012, 2012:118
http://www.journalofinequalitiesandapplications.com/content/2012/1/118

Page 12 of 21



From (3.1), we obtain

φ(yn, zn) = φ(xn, J−1(βnJxn + (1 − βn)JSwn))

= V(xn, βnJxn + (1 − βn)JSwn)

≤ βnV(xn, Jxn) + (1 − βn)V(xn, JSwn)

= βnφ(xn, xn) + (1 − βn)φ(xn, Swn)

≤ βnφ(xn, xn) + (1 − βn)φ(xn, wn)

= (1 − βn)φ(xn, zn)

for all n Î N. Since limn®∞ j(xn, zn) = 0, we have limn®∞ j(yn, zn) = 0. Applying

Lemma 2.4, we get

lim
n→∞

∥∥yn − zn
∥∥ = 0. (3:17)

Since J is uniformly norm-to-norm continuous on bounded set, we obtain

lim
n→∞

∥∥Jyn − Jzn
∥∥ = 0. (3:18)

From∥∥xn − yn
∥∥ ≤ ‖xn − zn‖ +

∥∥zn − yn
∥∥ ,

we have

lim
n→∞

∥∥xn − yn
∥∥ = 0. (3:19)

Since J is uniformly norm-to-norm continuous on bounded set, we obtain

lim
n→∞

∥∥Jxn − Jyn
∥∥ = 0. (3:20)

From Lemma 2.17 and (3.7), we have

φ(p, yn) = φ(p, J−1(βnJxn + (1 − βn)JSwn))

=
∥∥p∥∥2 − 2〈pβnJxn + (1 − βn)JSwn〉 +

∥∥βJxn + (1 − βn)JSwn
∥∥2

≤ ∥∥p∥∥2 − 2βn〈p, Jxn〉 − 2(1 − βn)〈p, JSwn〉 + βn‖xn‖2 + (1 − βn)‖Swn‖2
− βn(1 − βn)g (‖Jxn − JSwn‖)

= βnφ(p, xn) + (1 − βn)φ(p, Swn) − βn(1 − βn)g (‖Jxn − JSwn‖)
≤ βnφ(p, xn) + (1 − βn)φ(p, xn) − βn(1 − βn)g (‖Jxn − JSwn‖)
= φ(p, xn) − βn(1 − βn)g (‖Jxn − JSwn‖) .

(3:21)

This implies that

βn(1 − βn)g(‖Jxn − JSwn‖) ≤ φ(p, xn) − φ(p, yn). (3:22)

On the other hand, we have

φ(p, xn) − φ(p, yn) = ‖xn‖2 − ∥∥yn∥∥2 − 2〈p, Jxn − Jyn〉
=

∥∥xn − yn
∥∥ (‖xn‖ +

∥∥yn∥∥)
+ 2

∥∥p∥∥ ∥∥Jxn − Jyn
∥∥ . (3:23)

Noticing (3.19) and (3.20), we obtain

φ(p, xn) − φ(p, yn) → 0, as n → ∞. (3:24)
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Since lim supn®∞ bn <1 and (3.24), it follows from (3.22) that

g (‖Jxn − JSwn‖) → 0, as n → ∞. (3:25)

If follows from the property of g that

lim
n→∞ ‖Jxn − JSwn‖ = 0. (3:26)

Since J is uniformly norm-to-norm continuous on bounded set, we see that

lim
n→∞ ‖xn − Swn‖ = 0. (3:27)

Since

‖zn − Swn‖ ≤ ‖zn − xn‖ + ‖xn − Swn‖ ,

from (3.14) and (3.27), we obtain that

lim
n→∞ ‖zn − Swn‖ = 0. (3:28)

By (3.9) and (3.14), we obtain

lim
n→∞ ‖wn − xn‖ = 0. (3:29)

Also, by (3.9) and (3.28), we obtain

lim
n→∞ ‖wn − Swn‖ = 0. (3:30)

Since {xn} is bounded, there exists a subsequence {xni} of {xn} such that xni ⇀ u ∈ C .

It follows from (3.29), we have wni ⇀ u as i ® ∞ and S be a relatively nonexpansive,

we have that u ∈ F̂(S) = F(S) .

Next, we show that u Î T-10. Indeed, since lim infn®∞ rn >0, it follows from (3.10)

that

lim
n→∞ ||Arnzn|| = lim

n→ ∞
1
rn

||Jzn − Jwn|| = 0. (3:31)

If (z, z*) Î T, then it holds from the monotonicity of A that

〈z − zni , z
∗ − Arni

zni〉 ≥ 0

for all i Î N. Letting i ® ∞, we get 〈 z - u, z*〉 ≥ 0. Then, the maximality of T

implies u Î T-10.

Next, we show that u Î V I(C, A). Let B ⊂ E × E* be an operator as follows:

Bv =
{
Av +NC(v), v ∈ C;
� 0, otherwise

By Theorem 2.9, B is maximal monotone and B-10 = V I(C, A). Let (v, w) Î G(B).

Since w Î Bv = Av + NC(v), we get w - Av Î NC(v). From zn Î C, we have

〈v − zn,w − Av〉 ≥ 0. (3:32)
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On the other hand, since zn = ΠC J-1 (Jun - lnAun). Then by Lemma 2.5, we have

〈v − zn, Jzn − (Jun − λnAun)〉 ≥ 0,

thus 〈
v − zn,

Jun − Jzn
λn

− Auxn

〉
≤ 0. (3:33)

It follows from (3.32) and (3.33) that

〈v − zn,w〉 ≥ 〈v − zn,Av〉

≥ 〈v − zn, Av〉 +
〈
v − zn,

Jun − Jzn
λn

− Aun

〉

= 〈v − zn, Av − Aun〉 +
〈
v − zn,

Jun − Jzn
λn

〉

= 〈v − zn, Av − Azn〉 + 〈v − zn, Azn − Aun〉 +
〈
v − zn,

Jun − Jzn
λn

〉

≥ −‖ v − zn‖ ‖zn − un‖
α

− ‖v − zn‖ ‖Jun − Jzn‖
a

≥ −M
(‖zn − un‖

α
+

‖Jun − Jzn‖
a

)
,

where M = supn≥1{||v - zn||}. From (3.12) and (3.13), we obtain 〈v - u, w〉 ≥ 0. By the

maximality of B, we have u Î B-10 and hence u Î V I(C, A).

Next, we show that u Î Ω. From (3.16) and J is uniformly norm-to-norm continuous

on bounded set, we obtain

lim
n→∞ ‖Jun − Jxn‖ = 0. (3:34)

From the assumption lim infn®∞ rn > a, we get

lim
n→∞

‖Jun − Jxn‖
rn

= 0.

Noticing that un = Krnxn , we have

H(un, y) +
1
rn

〈y − un, Jun − Jxn〉 ≥ 0, ∀y ∈ C.

Hence,

H(uni , y) +
1
rni

〈y − uni , Juni − Jxni〉 ≥ 0, ∀y ∈ C.

From the (A2), we note that

∥∥y − uni
∥∥ ∥∥Juni − Jxni

∥∥
rni

≥ 1
rni

〈y−uni , Juni−Jxni 〉 ≥ −H(uni , y) ≥ H(y, uni), ∀y ∈ C.

Taking the limit as n ® ∞ in above inequality and from (A4) and uni ⇀ u , we have

H(y, u) ≤ 0, ∀y Î C. For 0 < t <1 and y Î C, define yt = ty + (1 - t)u. Noticing that y,

u Î C, we obtains yt Î C, which yields that H(yt, u) ≤ 0. It follows from (A1) that
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0 = H(yt, yt) ≤ tH(yt, y) + (1 − t)H(yt, x̂) ≤ tH(yt, y).

That is, H(yt, y) ≥ 0.

Let t ↓ 0, from (A3), we obtain H(u, y) ≥ 0, ∀y Î C. This implies that u Î Ω. Hence

u Î F: = Ω ∩ V I(C, B) ∩ T-1(0).

Finally, we show that u = ΠFx. Indeed from xn = �Cnx and Lemma 2.5, we have

〈Jx − Jxn, xn − z〉 ≥ 0, ∀z ∈ Cn.

Since F ⊂ Cn, we also have〈
Jx − Jxn, xn − p

〉 ≥ 0, ∀p ∈ F. (3:35)

Taking limit n ® ∞, we obtain〈
Jx − Ju, u − p

〉 ≥ 0, ∀p ∈ F.

By again Lemma 2.5, we can conclude that u = ΠFx0. This completes the proof. □
Corollary 3.2. Let E be a 2-uniformly convex and uniformly smooth Banach space, let

C be a nonempty closed convex subset of E. Let T: E ® E* be a maximal monotone

operator satisfying D(T) ⊂ C. Let Jr = (J + rT)-1 J for r >0, let A be an a-inverse-strongly
monotone operator of C into E* and S be a relatively nonexpansive mappings from C

into itself, with F := VI(C,A) ∩ T−1(0) ∩ F(S) �=� 0 . Assume that A an operator of C

into E* that satisfies the conditions (C1)-(C3). Let {xn} be a sequence generated by x1 =

x Î C and,⎧⎨
⎩
zn = �CJ−1(Jxn − λnAxn),
yn = J−1(βnJxn + (1 − βn) JSJrn zn),
xn+1 = �CJ−1(αnJx1 + (1 − αn)Jyn),

(3:36)

for all n Î N, where ΠC is the generalized projection from E onto C, J is the duality

mapping on E. The coefficient sequence {an} ⊂ [0, 1], {bn} ⊂ (0, 1], {rn} ⊂ (0, ∞) satisfy-

ing limn®∞ an = 0,
∑∞

n=1
αn = ∞ , lim supn®∞ bn < 1, lim infn®∞ rn > 0 and {ln} ⊂

[a, b] for some a, b with 0 < a < b <
c2α
2

,
1
c
is the 2-uniformly convexity constant of E.

Then the sequence {xn} converges strongly to ΠFx0.

4. Weak convergence theorem
We next prove a weak convergence theorem under difference condition on data. First

we prove the generalized projection sequence {ΠFx0} of {xn} is strongly convergent.

Theorem 4.1. Let E be a 2-uniformly convex and uniformly smooth Banach space, let

C be a nonempty closed convex subset of E. Let Θ be a bifunction from C × C to ℝ

satisfying (A1)-(A4) let �: C ® ℝ be a proper lower semicontinuous and convex func-

tion, let T: E ® E* be a maximal monotone operator satisfying D(T) ⊂ C. Let Jr = (J +

rT)-1 J for r >0 and let A be an a-inverse-strongly monotone operator of C into E*, let

B: C ® E* be a continuous and monotone mappings and S be a relatively nonexpansive

mapping. from C into itself, with F := � ∩ VI(C,A) ∩ T−1(0) ∩ F(S) �= � 0 . Assume that A

an operator of C into E* that satisfies the conditions (C1)-(C3). Let {xn} be a sequence

generated by x1 = x Î C and,
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⎧⎪⎪⎨
⎪⎪⎩
un = Krnxn,
zn = �CJ−1(Jun − λnAun),
yn = J−1(βnJxn + (1 − βn)JSJrn zn),
xn+1 = �CJ−1(αnJx1 + (1 − αn)Jyn),

(4:1)

for all n Î N, where ΠC is the generalized projection from E onto C, J is the duality

mapping on E. The coefficient sequence {an} ⊂ [0, 1], {bn} ⊂ (0, 1], {rn} ⊂ (0, ∞) satisfy-

ing
∑∞

n=1
αn < ∞ , lim supn®∞ bn < 1, lim infn®∞ rn > 0 and {ln} ⊂ [a, b] for some a,

b with 0 < a < b <
c2α
2

,
1
c
is the 2-uniformly convexity constant of E. Then the

sequence {ΠF xn} converges strongly to an element v of F , which is a unique element of

F satisfying

lim
n→∞ φ(v, xn) = min

y∈F
lim
n→∞ φ(y, xn).

Proof. Let H(un, y) = Θ(un, y) + 〈Bun, y - un〉 + �(y) - �(un), y Î C and

Krn = {un ∈ C : H(un, y) + 1
rn

〈y − un, Jun − Jxn〉 ≥ 0. ∀y ∈ C } . We first show that {xn} is

bounded. Let p Î F: = Ω ∩ V I(C, A) ∩ T-1(0) ∩ F (S) and un = Krnxn . Put vn = J-1(Jun -

lnAun) and wn = Jrn zn for all n ≥ 0. Since Jrn , Krn and S are relatively nonexpansive

mappings. By (3.8), we have that, for all n Î N

φ(p, xn+1) ≤ αnφ(p, x1) + (1 − αn)φ(p, xn). (4:2)

From
∑∞

n=1
αn < ∞ and Lemma 2.10, we deduce that limn®∞j(p, xn) exists. This

implies that {j(p, xn)} is bounded. So {xn} is bounded.

Define a function g: F ® [0, ∞) as follows:

g(p) = lim
n→∞ φ(p, xn), ∀p ∈ F.

Then, by the same argument as in proof of [[22], Theorem 3.1], we obtain g is a con-

tinuous convex function and if ||zn|| ® ∞ then g(zn) ® ∞. Hence, by [[28], Theorem

1.3.11], there exists a point v Î F such that

g(v) = min
y∈F

g(y)(:= l). (4:3)

Put tn = ΠF xn for all n ≥ 0. We next prove that tn ® v as n ® ∞. Suppose on the

contrary that there exists ε0 >0 such that, for each n Î N, there is n’ ≥ n satisfying ||

wn’ - v|| ≥ �0. Since v Î F, we have

φ(tn, xn) = φ(�Fxn, xn) ≤ φ(v, �Fxn) + φ(�Fxn, xn) ≤ φ(v, xn) (4:4)

for all n ≥ 0. This implies that

lim sup
n→∞

φ(tn, xn) ≤ lim
n→∞ φ(v, xn) = l. (4:5)

Since (||v|| - ||ΠF xn||)
2 ≤ j(v, wn) ≤ j(v, xn) for all n ≥ 0 and {xn} is bounded, we

get {wn} is also bounded. By Lemma 2.3, there exists a stricly increasing, continuous

and convex function K: [0, ∞) ® [0, ∞) such that K(0) = 0 and
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∥∥∥wn + v
2

∥∥∥2 ≤ 1
2

‖tn‖2 + 1
2

‖v‖2 − 1
4
K(‖tn − v‖), (4:6)

for all n ≥ 0. Now, choose s satisfying 0 < σ <
1
4
K(ε0) . Hence, there exists n0 Î N

such that

φ(tn, xn) ≤ l + σ ,φ(v, xn) ≤ l + σ , (4:7)

for all n ≥ 0. Thus there exists k ≥ n0 satisfying the following:

φ(tk, xk) ≤ l + σ ,φ(v, xk) ≤ l + σ , ‖tk − v‖ ≥ ε0. (4:8)

From (4.2), (4.6) and (4.8), we obtain

φ

(
tk + v
2

, xn+k

)
≤ φ

(
tk + v
2

, xk

)

=

∥∥∥∥ tk + v
2

∥∥∥∥2 − 2
〈
tk + v
2

, Jxk

〉
+ ‖xk‖2

≤ 1
2

‖tk‖2 + 1
2

‖v‖2 − 1
4
K(‖tk − v‖) − 〈tk + v, Jxk〉 + ‖xk‖2

=
1
2

φ(tk, xk) +
1
2

φ(v, xk) − 1
4
K(‖tk − v‖)

≤ l + σ − 1
4
K(ε0),

(4:9)

for all n ≥ 0. Hence

l ≤ lim
n→∞ φ

(
tk + v
2

, xn

)
= lim

n→∞ φ

(
tk + v
2

, xn+k

)
≤ l + σ − 1

4
K(ε0) < l + σ − σ = l. (4:10)

This is a contradiction. So, {wn} converges strongly to v Î F: = Ω ∩ V I(C, A) ∩T-1(0)

∩ F(S). Consequently, v Î F is the unique element of F such that

lim
n→∞ φ(v, xn) = min

y∈F
lim
n→∞ φ(y, xn). (4:11)

This completes the proof. □
Theorem 4.2. Let E be a 2-uniformly convex and uniformly smooth Banach space, let

C be a nonempty closed convex subset of E. Let T: E ® E* be a maximal monotone

operator satisfying D(T) ⊂ C. Let Jr = (J + rT)-1 J for r >0, let A be an a-inverse-strongly
monotone operator of C into E* and S be a relatively nonexpansive mappings from C

into itself, with F := VI(C,A) ∩ T−1(0) ∩ F(S) �=� 0 . Assume that A an operator of C

into E* that satisfies the conditions (C1)-(C3). Let {xn} be a sequence generated by x1 =

x Î C and,⎧⎨
⎩
zn = �CJ−1(Jxn − λnAxn),
yn = J−1(βnJxn + (1 − βn)JSJrn zn),
xn+1 = �CJ−1(αnJx1 + (1 − αn)Jyn),

(4:12)

for all n Î N, where ΠC is the generalized projection from E onto C, J is the duality

mapping on E. The coefficient sequence {an} ⊂ [0, 1], {bn} ⊂ (0, 1], {rn} ⊂ (0, ∞) satisfy-

ing
∑∞

n=1
αn < ∞ , lim supn®∞bn < 1, lim infn®∞rn > 0 and {ln} ⊂ [a, b] for some a, b
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with 0 < a < b <
c2α
2

,
1
c
is the 2-uniformly convexity constant of E. Then the sequence

{ΠFxn} converges strongly to an element v of F, which is a unique element of F satisfying

lim
n→∞ φ(v, xn) = min

y∈F
lim
n→∞ φ(y, xn).

Now, we prove a weak convergence theorem for the algorithm (4.13) below under

different condition on data.

Theorem 4.3. Let E be a 2-uniformly convex and uniformly smooth Banach space, let

C be a nonempty closed convex subset of E. Let Θ be a bifunction from C × C to ℝ

satisfying (A1)-(A4) let �: C ® ℝ be a proper lower semicontinuous and convex func-

tion, let T: E ® E* be a maximal monotone operator satisfying D(T) ⊂ C. Let Jr = (J +

rT)-1 J for r >0 and let A be an a-inverse-strongly monotone operator of C into E*, let

B: C ® E* be a continuous and monotone mappings and S be a relatively nonexpansive

mappings from C into itself, with F := � ∩ VI(C,A) ∩ T−1(0) ∩ F(S) �= � 0 . Assume that

A an operator of C into E* that satisfies the conditions (C1)-(C3). Let {xn} be a sequence

generated by x1 = x Î C and,⎧⎪⎪⎨
⎪⎪⎩
un = Krnxn,
zn = �CJ−1(Jun − λnAun),
yn = J−1(βnJxn + (1 − βn)JSJrn zn),
xn+1 = �CJ−1(αnJx1 + (1 − αn)Jyn),

(4:13)

for all n Î N, where ΠC is the generalized projection from E onto C, J is the duality

mapping on E. The coefficient sequence {an} ⊂ [0, 1], {bn} ⊂ (0, 1], {rn} ⊂ (0, ∞) satisfy-

ing
∑∞

n=1
αn < ∞ , lim supn®∞bn < 1, lim infn®∞rn > 0 and {ln} ⊂ [a, b] for some a, b

with 0 < a < b <
c2α
2

,
1
c
is the 2-uniformly convexity constant of E. Then the sequence

{xn} converges weakly to an element v of F , where v = limn®∞ΠFxn.

Proof. As in Proof of Theorem 3.1, we have {xn} is bounded, there exists a subse-

quence {xni} of {xn} such that xni ⇀ u ∈ C and hence u Î F: = Ω ∩ V I(C, A)∩T-1

(0)∩F(S). By Theorem 4.1 the {ΠFxn} converges strongly to a point v Î F which is a

unique element of F such that

lim
n→∞ φ(v, xn) = min

y∈F
lim
n→∞ φ(y, xn). (4:14)

By the uniform smoothness of E, we also have limn→∞
∥∥J∏Fxni − Jv

∥∥ = 0 .

Finally, we prove u = v. From Lemma 2.5 and u Î F, we have

〈�Fxni − u, Jxni − J�Fxni〉 ≥ 0

Since J is weakly sequentially continuous, uni ⇀ u and un - xn ® 0, then

〈v − u, Ju − Jv〉 ≥ 0.

On the other hand, since J is monotone, we have

〈v − u, Ju − Jv〉 ≤ 0.
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Hence,

〈v − u, Ju − Jv〉 = 0.

Since E is strict convexity, it follows that u = v. Therefore the sequence {xn} con-

verges weakly to v = limn®∞ ΠF xn. This completes the proof. □
Theorem 4.4. Let E be a 2-uniformly convex and uniformly smooth Banach space, let

C be a nonempty closed convex subset of E. Let T: E ® E* be a maximal monotone

operator satisfying D(T) ⊂ C. Let Jr = (J + rT)-1 J for r >0, let A be an a-inverse-strongly
monotone operator of C into E* and S be a relatively nonexpansive mappings from C

into itself, with F := VI(C,A) ∩ T−1(0) ∩ F(S) �=� 0 . Assume that A an operator of C

into E* that satisfies the conditions (C1)-(C3). Let {xn} be a sequence generated by x1 =

x Î C and,⎧⎨
⎩
zn = �CJ−1(Jxn − λnAxn),
yn = J−1(βnJxn + (1 − βn)JSJrn zn),
xn+1 = �CJ−1(αnJx1 + (1 − αn)Jyn),

(4:15)

for all n Î N, where ΠC is the generalized projection from E onto C, J is the duality

mapping on E. The coefficient sequence {an} ⊂ [0, 1], {bn} ⊂ (0, 1], {rn} ⊂ (0, ∞) satisfy-

ing
∑∞

n=1
αn < ∞ , lim supn®∞bn < 1, lim infn®∞rn > 0 and {ln} ⊂ [a, b] for some a, b

with 0 < a < b <
c2α
2

,
1
c
is the 2-uniformly convexity constant of E. Then the sequence

{xn} converges weakly to an element v of F, where v = limn®∞ΠFxn.
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