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Abstract

We consider the differential equation f’’ + Af’ + Bf = 0 where A(z) and B(z) ≢ 0 are
mero-morphic functions. Assume that A(z) belongs to the Edrei-Fuchs class and B(z)
has a deficient value ∞, if f ≢ 0 is a meromorphic solution of the equation, then f
must have infinite order.
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1 Introduction and main results
In this article, we shall consider the second order linear differential equation

f ′′ + A(z)f ′ + B(z)f = 0, (1:1)

where A(z) and B(z) ≢ 0 are meromorphic functions. We use the standard notations

of value distribution theory of meromorphic function (see [1,2]). In particular, for a

meromorphic function f(z), we use the notation r(f) and μ(f) to denote its order and

lower order, respectively and for a closed domain D in C, we use

n(D, f = a) = n(D, 1
f−a ) , if a ≠ ∞; and n(D, f = a) = n(D, f), if a = ∞ to denote the

number of zeros for f - a in D, with due count of multiplicities.

It is well known that if A(z) is entire and B(z) is transcendental entire and f1, f2 are

two linearly independent solutions of Equation (1.1), then at least one of f1, f2 must

have infinite order. However, there are some equations of the form (1.1) that possess a

solution f ≢ 0 of finite order; for example, f(z) = ez satisfies f’’ + e-z f’ - (e-z + 1)f = 0.

Thus, the main problem is that what conditions on A(z) and B(z) can guarantee that

every solution f ≢ 0 of the Equation (1.1) has infinite order? There has been much

work on this subject (cf. [3-8]). Furthermore, we also mention that if A(z) is entire

with finite order having a finite deficient value, and B(z) is transcendental entire with

μ(B) < 1
2 , then every solution f ≢ 0 of the Equation (1.1) has infinite order [8].

It seems that there are few work done on the Equation (1.1), where A(z) and B(z) are

mero-morphic functions. It would be interesting to get some relations between the

Equation (1.1) and some deep results in value distribution theory of meromorphic

functions. To this end, we note that when the zeros and poles of a meromorphic
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function distributed near some curves, Edrei and Fuchs proved that the number of

deficient values can not be infinite. To relate the result of Edrei and Fuchs with the

Equation (1.1), we first make some preparations.

In this following we use the notation Ω(θ1, θ2, r) = {z: θ1 < arg z <θ2, |z| <r} and

�̄(θ1, θ2, r) = {z : θ1 ≤ arg z ≤ θ2, |z| ≤ r} .
Definition. Let f (z) be a meromorphic function in the finite complex plane C of

order 0 <r(f) < ∞. A ray arg z = θ staring from the origin is called a zero-pole accumu-

lation ray of f (z), if for any given real number ε > 0, the following equality holds

lim
r→∞

log n{�̄(θ − ε, θ + ε, r), f = 0} + log n{�̄(θ − ε, θ + ε, r), f = ∞}
log r

= ρ(f ). (1:2)

The following result which is a weaker form of the Edrei-Fuchs Theorem [9,10] will

be used later.

Theorem A. [[11], Theorem 3.10] Let f(z) be a meromorphic function in the com-

plex plane C of order 0 <r(f) < + ∞. Assume that f(z) has q zero-pole accumulation

rays and p deficient values other than 0 and ∞, then p ≤ q.

For simplicity, we shall call the inequality p ≤ q in Theorem A the Edrei-Fuchs

inequality. It is easy to see that the Edrei-Fuchs inequality is sharp. In the following,

we shall say that a meromorphic function f(z) Î EF, called it Edrei-Fuchs Class, if f(z)

satisfies the conditions of Theorem A with p = q ≥ 1, that is, f(z) is of finite and posi-

tive order and has p zero-pole accumulation rays and p non-zero finite deficient values.

The main result in this article is based on the class EF. Now, we are able to state our

result as follows.

Theorem. Let A(z) Î EF be a meromorphic function and let B(z) be a transcendental

meromorphic function having a deficient value ∞. If f ≢ 0 is a meromorphic solution of

Equation (1.1), then r(f) = ∞.

As our result depends largely on the EF class, we give some examples below from

which we can see the EF class contains many familiar functions.

Example 1. The first example can be constructed as follows.

A(z) =
aez + b
cez + d

, a, b, c, d ∈ C\{0}, ad − bc �= 0.

Clearly, r(A) = 1, and ez has two deficient values 0 and ∞. So A(z) has p = 2 defi-

cient values a/c and b/d. On the other hand, for every complex number b Î C \ {0}

and given constant ε > 0, all the zeros, except for finitely many number of them, of

ez - b are in the angular region �1 = {z : π
2 − ε < arg z < π

2 + ε} and

�2 = {z : −π
2 − ε < arg z < −π

2 + ε} . Hence, A(z) has q = 2 zero-pole accumulation

rays arg z = −π
2 ,

π
2 . So p = q = 2 and A(z) Î EF.

Clearly, if A Î EF, then 1/A Î EF and aA Î EF for a Î C \ {0}. Similarly, for any

a Î C \ {0}, we get

A(αz) =
aeαz + b
ceαz + d

∈ EF, a, b, c, d ∈ C\{0}, ad − bc �= 0.

In this case, A(az) has q = 2 zero-pole accumulation rays

arg z = −π
2 − arg α, π

2 − arg α . Especially, we have
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tan z =
1
−i

e2iz − 1
e2iz + 1

∈ EF,
ez − 1
ez + 1

∈ EF.

Remark 1. Let A(z) in (1.1) be defined as

A(z) =
aeP(z) + b

ceP(z) + d
, a, b, c, d ∈ C\{0}, ad − bc �= 0,

where P(z) is a non-constant polynomial. In this case of the degree of P(z) is bigger

than 1, then A(z) ∉ EF. But, we can see in the proof of the main theorem that if B(z) is

a meromorphic function having deficient value ∞ and f ≢ 0 is a meromorphic solution

of Equation (1.1), then r(f) = ∞.

A little bit more complicated example can be constructed as follows.

Example 2. Let p be a positive integer and set

A∗(z) =

J1
p

(
2z

p
2
p

)

J− 1
p

(
2z

p
2
p

) ,

where

J1
p

⎛
⎝2z p2

p

⎞
⎠ =

1

p
1
p z

1
2

∞∑
k=0

(−1)kzpk+1

p2kk!�( 1p + k + 1)
;

J−1
p

⎛
⎝2z p2

p

⎞
⎠ =

1

z
1
2

∞∑
k=0

(−1)kzpk

p2kk!�(− 1
p + k + 1)

.

Then we know that (see [[12], Chap 7]), ρ(A∗) = p
2 , A*(z) has p deficient values

ak =: e
(2k+1)π i

p , (k = 0, 1, . . . , p − 1),

and p Borel directions

θk =:
2kπ
p

, (k = 0, 1, . . . , p − 1).

Hence, we can take two distinct complex numbers b, c, such that b, c ≠ ak, ∞ for all

k = 0, 1, ..., p-1 and let

A(z) =
A∗(z) − b
A∗(z) − c

.

It can be seen that A(z) has p deficient values ak−b
ak−c and p zero-pole accumulation

rays θk, k = 0, 1, ..., p - 1. Hence A(z) Î EF.

In the end of this section, we give two easy examples of the Equation (1.1) which

satisfy our theorem.

Wu et al. Journal of Inequalities and Applications 2012, 2012:117
http://www.journalofinequalitiesandapplications.com/content/2012/1/117

Page 3 of 13



Example 3. Let f (z) = esin z, then r(f) = ∞ and f(z) satisfies the following equation

f ′′ + (tan z)f ′ − (cos2z)f = 0.

Example 4. Let f (z) = ee
z+z , then r(f) = ∞ and f(z) satisfies the following equation

f ′′ +
(
ez − 1
ez + 1

)
f ′ − (e2z + 4ez)f = 0.

Furthermore, we also point out that if A(z) Î EF and B(z) has no deficient value ∞,

our theorem is in general false. The counterexample can be constructed as follows.

Example 5. Let f(z) = ez, then r(f) = 1 and f(z) satisfies the following equation

f ′′ +
(
ez − 1
ez + 1

)
f ′ − 2ez

ez + 1
f = 0.

In this case, B(z) = − 2ez
ez+1 has only two deficient values 0 and -2, because 0 and -2

are Picard values of B(z).

The article is organized as the following: in Section 2, we shall give and prove some

lemmas. In Section 3, we give the proof of Theorem. In Section 4, we give some

further results.

2 Lemmas
In this article, for a measurable set E ⊂ [0, ∞), we define the Lebesgue measure of E by

m(E) and the logarithmic measure of E ⊂ [1, ∞) by ml(E) =
∫
E

dt
t . We also define the

upper and lower logarithmic density of E ⊂ [1, ∞), respectively, by

logdensE = lim
r→∞

ml(E ∩ [0, r])
log r

, and log densE = lim
r→∞

ml(E ∩ [0, r])
log r

.

We need serval lemmas to prove our theorem.

Lemma 2.1.[13] Let w(z) be a transcendental meromorphic function of finite order,

then there exits a set E ⊂ [0, ∞) that has finite linear measure, such that for all z satis-

fying |z| ∉ E and for all integers k, j (k >j), we have∣∣w(k)(z)/w(j)(z)
∣∣ ≤ |z|(k−j)(ρ(w)+ε). (2:1)

Lemma 2.2.[11] Let A(z) be a meromorphic function with r(A) < +∞. Then, for any

given real constants c > 0 and H >r(A), there exists a set E ⊂ (0, ∞) such that

log densE ≥ 1 − ρ(A)
H , where

E = {t|T(tec,A) ≤ ekT(t,A)}, (2:2)

and k = cH.

Lemma 2.3.[7] Let T(r) > 1 be a nonconstant increasing function in (0, +∞) of finite

order r, i.e.

lim
r→∞

log T(r)
log r

= ρ < ∞.
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For any h such that 0 ≤ h <r, if r > 0, and h = 0 if r = 0, define

E(η) = {r ≥ 1 : rη < T(r)}. (2:3)

Then logdensE(η) > 0 .

Lemma 2.4. Let A(z) be a meromorphic function of order 0 <r(A) < ∞ having r
finite deficient values, a1, a2, ..., ap(p ≥ 1) and let B(z) be a meromorphic function with

finite order having a deficient value ∞. Suppose that b > 1 and 0 <h <r(A) are two

constants. Then there exists a sequence {tn} such that

lim
n→∞

tηn
T(tn,A)

= 0. (2:4)

Moreover, for every sufficiently large n, there is a set Fn ⊂ [tn, (b+1)tn] with

m(Fn) ≤ (β−1)tn
4

such that, for all R Î [tn, btn] \ Fn, the arguments θ sets Ev(R),(v = 1,

2, ..., p) and E∞(R) satisfying the following inequalities

m(Ev(R)) =: m

({
θ ∈ [0, 2π) | log 1∣∣A(Reiθ ) − av

∣∣ ≥ δ0

4
T(R,A)

})
≥ M1 > 0,(2:5)

and

m(E∞(R)) =: m
({

θ ∈ [0, 2π) | log ∣∣B(Reiθ )∣∣ ≥ δ1

4
T(R, B)

})
≥ M2 > 0 (2:6)

where M1, M2 are two positive constants depending only on A, B, δ0 = min
1≤v≤p

δ(av,A) ,

δ1 = δ(∞, B), b and h.
Proof. For any given constant h and for h <h1 <r(A), applying Lemma 2.3 to A(z)

with T(r, A), we see that

h := logdensE(η1) := logdens{r ≥ 1 : rη1 < T(r,A)} > 0. (2:7)

Let b > 1 be given and let c = log 2(b+2), H0 = 1
hρ(A) + 1 > ρ(A) . Applying Lemma

2.2 to A(z), we deduce that there exists a set E = E(b, h) ⊂ (0, ∞) such that

logdensE ≥ 1 − ρ(A)
H0

, (2:8)

where E = {t | T((2β + 4)t,A) ≤ (2β + 4)H0T(t,A)} . Set E1 = E(h1) ∩ E. Then by sim-

ple computation we get

logdensE1 ≥ logdensE(η1) − ρ(A)
H0

> 0.

Hence, we can choose a sequence {tn} such that tn Î E1 and (2.4) holds.

Now we consider all the zeros and poles of A(z) - av in |z| ≤ (b + 1)tn, (v = 1, 2, ... p)

x(v)1 , x(v)2 , . . . , x(v)vn ; y1, y2, . . . , yln

where vn = n((b + 1)tn, A - av), and ln = n((b + 1)tn, A). At the same time, we let

ξ1, ξ2, . . . , ξsn ; η1, η2, . . . , ηqn
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be all the zeros and poles of B(z) in |z| ≤ (b + 1)tn, respectively, where

sn = n((β + 1)tn, 1B) and qn = n((b + 1)tn, B). By the Boutroux-Cartan theorem, if |z| =

r Î [tn, btn] and z ∉ (g(1))n we have

vn∏
j=1

∣∣∣z − x(v)j

∣∣∣ > (L
e

)vn
,

ln∏
j=1

∣∣z − yj
∣∣ > (L

e

)ln
; (2:9)

sn∏
j=1

∣∣z − ξj
∣∣ > (L

e

)sn
,

qn∏
j=1

∣∣z − ηj
∣∣ > (L

e

)qn
, (2:10)

where (g(1))n ⊂ {z: |z| ≤ (b + 1)tn} are some disks with the sum of total radius not

exceeding 2L where L = (β−1)tn
16

. For every integer n, let Fn = {|z|: z Î (g(1))n} then

m(Fn) ≤ (β−1)tn
4

. Hence, for all R Î [tn, btn] \ Fn, we easily see that

{z: |z| = R} ∩
(
γ (1)
)
n
=� 0.

It follows from (2.9) and the Poisson-Jensen formula, for every 1 ≤ v ≤ p, we have

log
1∣∣A(Reiθ ) − av

∣∣ ≤

1
2π

2π∫
0

log+
∣∣∣∣ 1
A((β + 1)tneiϕ) − av

∣∣∣∣ ((β + 1)tn)
2 − R2

((β + 1)tn)
2 − 2(β + 1)tnR cos(θ − ϕ) + R2

dϕ

+
vn∑
j=1

log

∣∣∣∣∣
((β + 1)tn)

2 − x̄vj Re
iθ

(β + 1)tn(Reiθ − xvj )

∣∣∣∣∣ +
ln∑
j=1

log

∣∣∣∣∣((β + 1)tn)
2 − ȳjReiθ

(β + 1)tn(Reiθ − yj)

∣∣∣∣∣ .
So, for all n ≥ N0, we get

log
1∣∣A(Reiθ ) − av

∣∣ ≤ (β + 1)tn + R
(β + 1)tn − R

m
(
(β + 1)tn,

1
A − av

)
+ (vn + ln) log

(2β + 1)etn
L

≤ (2β + 1)m
(

(β + 1) tn,
1

A − av

)

+ (vn + ln) log
16e(2β + 1)

β − 1
(2β + 1)m

(
(β + 1)tn,

1
A − av

)

+

(
N((β + 2)tn,A = av)

log β+2
β+1

+
N((β + 2)tn,A)

log β+2
β+1

)
log

16e(2β + 1)
β − 1

≤ (2β + 1)T
(
(β + 1)tn,

1
A − av

)

+
{
T
(
(β + 2)tn,

1
A − av

)
+ T((β + 2)tn, A)

} log 16e(2β+1)
β−1

log β+2
β+1

≤
⎧⎨
⎩(2β + 1) +

2 log 16e(2β+1)
β−1

log β+2
β+1

⎫⎬
⎭ T((2β + 4)tn, A)

≤ (2β + 4)H0

⎧⎨
⎩(2β + 1) +

2 log 16e(2β+1)
β−1

log β+2
β+1

⎫⎬
⎭T(tn, A).
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Denote δ0 = min
1≤v≤p

δ(av,A) and

Ev(R) = {θ ∈ [0, 2π) | log 1∣∣A(Reiθ ) − av
∣∣ ≥ δ0

4
T(R,A)}.

There exists a constant N1 >N0 such that for all n >N1, we have

δ0

2
T(R,A) <

1
2π

2π∫
0

log
1∣∣A(Reiθ ) − av

∣∣dθ
≤ 1

2π

∫
Ev(R)

log
1∣∣A(Reiθ ) − av

∣∣dθ +
δ0

4
T(R,A).

Hence,

δ0

4
T(R,A) ≤ 1

2π

∫
Ev(R)

log
1∣∣A(Reiθ ) − av

∣∣dθ

≤ 1
2π

(2β + 4)H0

⎧⎨
⎩(2β + 1) +

2 log 16e(2β+1)
β−1

log β+2
β+1

⎫⎬
⎭ T(R, A)m(Ev(R)).

So

M1 =
δ0

4

⎧⎨
⎩ 1
2π

(2β + 4)H0

⎡
⎣(2β + 1) +

2 log 16e(2β+1)
β−1

log β+2
β+1

⎤
⎦
⎫⎬
⎭

−1

≤ m(Ev(R)). (2:11)

This gives (2.5). Similarly, set δ1 = δ(∞, B) and

E∞(R) = {θ ∈ [0, 2π) | log ∣∣B(Reiθ )∣∣ ≥ δ1

4
T(R, B)}. (2:12)

From (2.10), (2.12) and the Poisson-Jensen formula, we get

M2 =
δ1

4

⎧⎨
⎩ 1
2π

(2β + 4)H0

⎡
⎣(2β + 1) +

2 log 16e(2β+1)
β−1

log β+2
β+1

⎤
⎦
⎫⎬
⎭

−1

≤ m(E∞(R)). (2:13)

This gives (2.6) and the proof of Lemma 2.4 is completed.

Lemma 2.5. [[11], Lemma 3.13] Let f (z) be a meromorphic function of order 0 <r(f)
< ∞ satisfying

lim
r→∞

log n{�̄(−θ , θ , r), f = X}
log r

≤ λ < ρ(f ), X = 0, ∞, 0 < θ ≤ π .

Suppose for any given constant ε, 0 <ε <θ, there exists a sequence {Rn} such that

m(En) =: m

{
z : log

1∣∣f (z) − a
∣∣ ≥ Nn, |z| = Rn, −θ + ε ≤ arg z ≤ θ − ε

}
≥ αRn,

where α ≥ ε
2 is a constant and a ≠ 0, ∞ is a complex number and Nn > 0 is a real

number such that for any given constant h0 > 0, and Rn1 ≤ Rn ≤ Rn2, Rn1 ® ∞,
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lim
n→∞

⎧⎪⎨
⎪⎩
(
Rn2

Rn1

)6+2(λ+η0)+
3π

θ Rλ+2η0
n2 logRn2

⎫⎪⎬
⎪⎭N−1

n = 0. (2:14)

Furthermore, if

z ∈ �̄(−θ + ε, θ − ε,Rn1,Rn2) = {z : Rn1 ≤ |z| ≤ Rn2, −θ + ε ≤ arg z ≤ θ − ε} and z ∉ (g
(2))n, then

log
1∣∣f (z) − a
∣∣ ≥ H(α, ε, θ)

L(θ) log Rn2
Rn1

+ J(α, ε, θ)

(
Rn1

Rn2

)6+3π

θ Nn
(2:15)

holds for every sufficiently large n where (g(2))n are some disks with the sum of total

radius not exceeding 1
8εRn1,H(α, ε, θ) > 0 and 0 <J(a, ε, θ) < +∞ are two constants

depending only on a, ε, θ, and 0 <L(θ) < +∞ is a constants depending only on θ.

In the following, we will give the basic property of EF class which is key to the proof

of our theorem.

Lemma 2.6 Let A(z) Î EF, then for any given ε > 0 (sufficiently small) and b > 1,

when n is sufficiently large, there exists a sequence of angular regions

�̄(θkv + 2ε, θkv+1 − 2ε, tn, βtn) , n = 1, 2, 3 ..., v = 1, 2, ... p such that for every 1 ≤ v ≤

p, the following inequalities

log
1∣∣A(z) − av
∣∣ > log

4
d (2:16)

holds for z ∈ �̄(θkv + 2ε, θkv+1 − 2ε, tn, βtn)\
p⋃

v=1

(γv)n , where
p⋃

v=1

(γv)n is defined by

Lemma 2.5 with the sum of total radius not exceeding p
8εtn and tn, btn are defined by

Lemma 2.4 and d = min
1≤v �=v′≤p

{|av − av′ |} and av are deficient values of A(z).

Proof. let b > 1 be fixed and for any given constant ε with,

0 < ε < min
{

ω

2
,
β − 1
2

}
, (2:17)

where ω = min
1≤k≤v

(θk+1 − θk). From (1.2), we get

lim
r→∞

log n{�(θk + ε, θk+1 − ε, r),A = X}
log r

≤ λ < ρ(A), X = 0, ∞.

Now let h0 be fixed such that 0 < η0 < 1
6(ρ(A) − λ) . Applying Lemma 2.4 to A(z)

with h = l + 4h0 and suppose that [tn, btn], Ev(Rn), Fn are defined in Lemma 2.4 which

satisfy the conclusions (2.4) and (2.5) of Lemma 2.4 and

tn ∈ {t | T((2β + 4)t,A) ≤ (2β + 4)H0T(t,A)}. (2:18)

and choose Rn Î [tn, btn] \ Fn for every sufficiently large n.
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Without loss of generality, let 0 < ε < M1
8p , for every 1 ≤ v ≤ p, there exists a set

Ev(Rn) ∩ [θkv + 2ε, θkv+1 − 2ε](1 ≤ kv ≤ p) such that

m(Ev(Rn)
⋂

[θkv + 2ε, θkv+1 − 2ε]) ≥ M1

2p
. (2:19)

Furthermore, we also have

lim
r→∞

log n{�(θkv + ε, θkv+1 − ε, r),A = X}
log r

≤ λ < ρ(A), X = 0, ∞.

Set Nn = 1
4T(Rn, A),α = M1

2p , Rn1 = tn, Rn2 = btn, and using Lemma 2.5 for A(z), we

have

⎧⎪⎨
⎪⎩
(
Rn2

Rn1

)6+2(λ+η0)+
3π

θ Rλ+2η0
n2 logRn2

⎫⎪⎬
⎪⎭N−1

n =
β
6+2(λ+η0)+

3π

θkv βλ+2η0 tλ+2η0
n (logβ + log tn)

1
4T(Rn,A)

≤ 8β
6+2(λ+η0)+

3π

θkv
+λ+2η0 tλ+3η0

n

T(Rn,A)
,n ≥ n1.

Note that,

lim
r→∞

tλ+3η0
n

T(Rn,A)
≤ lim

n→∞
tλ+3η0
n

T(tn,A)
= 0.

Therefore, if we let d = min
1≤v �=v′ ≤p

{|av − av′ |} , it follows from Lemma 2.5 that, for

z ∈ �̄(θkv + 2ε, θkv+1 − 2ε, tn,βtn)\(γv)n we have

log
1∣∣A(z) − a
∣∣ ≥ H(α, ε,β , δ0, θkv)T(Rn, A) > log

4
d (2:20)

where H(α, ε,β , δ0, θkv) > 0 is a constant not depending on n, and
p⋃

v=1

(γv)n are

some disks with the sum of total radius not exceeding p
8εtn . Thus, if z �∈

p⋃
v=1

(γv)n and

z ∈ �̄(θkv + 2ε, θkv+1 − 2ε, tn, βtn), then (2.20) gives (2.16). Obviously, there is a

unique deficient value av corresponding to every angular region

�̄(θkv + 2ε, θkv+1 − 2ε, tn, βtn) for n sufficiently large, otherwise this gives a contradic-

tion to (2.16). The proof of Lemma 2.6 is completed.

Remark 2. It can be seen from Lemma 2.6 that if A Î EF, then for any given ε > 0, b > 1,

there exists a sequence of angular regions �̄(θkv + 2ε, θkv+1 − 2ε, tn, βtn) , (v = 1, 2, ... p)

such that in every angular region, A(z) is close to a deficient value in a uniform way except

for those points in some disks with sum of total radii not exceeding p
8εtn . This means that

the measure of the the set of values θ Î [0, 2π] such that the ray arg z = θ meets the

exceptional disks in the angular regions �̄(θkv + 2ε, θkv+1 − 2ε, tn, βtn) , (v = 1, 2, ... p) is

at most p
8ε .
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3 Proof of theorem
Suppose that A(z) has p non-zero finite deficient values, a1, a2, ..., ap with deficiency

δ(av, A) > 0, 1 ≤ v ≤ p and has p zero-pole accumulation rays, 0 ≤ θ1 <θ2 < ... <θp <θ1
+ 2π. From the Equation (1.1), we get

∣∣B(z)∣∣ ≤ ∣∣∣∣ f ′′(z)
f (z)

∣∣∣∣ + ∣∣A(z)∣∣
∣∣∣∣ f ′(z)
f (z)

∣∣∣∣ . (3:1)

If r(B) = ∞, using the standard lemma on the logarithmic derivative in (1.1), we have

T(r, B) ≤ T(r,A) + 2N
(
r,
1
f

)
+ 2N(r, f ) +O(log r).

According to the assumption, r(A) < ∞, we immediately get a contradiction. Hence r
(f) = ∞ in the case r(B) = ∞. Now the rest of proof should be devoted to the case r(B)
< ∞.

It is easy to see that, the Equation (1.1) can not have any nonzero rational solution

by (3.1), (2.6) and A(z) Î EF. So now we assume that f ≢ 0 is a transcendental mero-

morphic solution of Equation (1.1) with r(f) < +∞. We shall seek a contradiction.

Applying Lemma 2.1 to f (z), there exists a set E1 ⊂ [0, ∞] with m(E1) < ∞ such that

| f
(k)(z)
f (z)

| ≤ |z|(2ρ(f )+ε), k = 1, 2, (3:2)

holds for |z| ∉ E1 ∪ [0,1]. It follows from Lemma 2.4 that, there exists a sequence of

closed intervals {[tn, btn]} with tn ® ∞, tn+1 >btn and a set Fn ⊂ [tn, (b + 1)tn] with

m(Fn) ≤ (β−1)tn
4

and a sequence Rn Î [tn, btn] \ Fn such that (2.5) and (2.6) simulta-

neously hold.

Let ω = min
1≤k≤v

(θk+1 − θk) and 0 < ε0 < min
{
M1
8p ,

M2
8p ,

ω
2 ,

β−1
2p

}
. According to Lemma

2.6, we

choose R∗
n ∈ [tn, βtn] \ (Fn ∪ E1 ∪ [0, 1 ]) such that for every n ≥ n0

{z : |z| = R∗
n} ∩
( p⋃

v=1

(γv)n

)
= � 0, (3:3)

where ∪p
v=1(γv)n are some disks with the sum of total radius not exceeding

p
8ε0tn <

β−1
16 tn . Hence, from Lemma 2.6 and (2.16), the following inequalities

log
1∣∣A(R∗

neiϕ) − av
∣∣ > log

4
d
, v = 1, 2, . . . , p (3:4)

holds for n ≥ n1 >n0 and R∗
ne

iϕ ∈ ∪p
v=1�̄
(
θkv + 2ε0, θkv+1 − 2ε0, tn, βtn

)
.

On the other hand, from Lemma 2.4, for the sequence
{
R∗
n

}
, the following equality

m(E∞(R∗
n)) =: m

({
θ ∈ [0, 2π) | log ∣∣B(R∗

ne
iθ)
∣∣ ≥ δ1

4
T(R∗

n, B)
})

≥ M2 > 0 (3:5)

also holds for sufficiently large n. Hence, there exists a set

E∞(R∗
n) ∩ [θkv0 + 2ε0, θkv0+1 − 2ε0] (1 ≤ kv0 ≤ p) such that
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m
(
E∞(R∗

n) ∩ [θkv0 + 2ε0, θkv0+1 − 2ε0]
)

≥ M2

2p
. (3:6)

Now for sufficiently large n, we choose ϕn ∈ E∞
(
R∗
n

)
such that (3.4) and (3.5) hold.

From (3.1) to (3.5) we get

∣∣B(R∗
ne

iϕn)
∣∣ ≤ (R∗

n)
2(ρ(f )+ε0)

(
1 +

d
4
+
∣∣av0 ∣∣
)
.

So

δ1

4
T(R∗

n, B) ≤ 2(ρ(f ) + ε0) logR∗
n + log

(
1 +

d
4
+
∣∣av0 ∣∣
)
. (3:7)

From (3.7), it implies that B(z) is a rational function. This gives a contradiction. The

proof of the theorem is completed.

4 Some further results
Although, Example 5 implies that our theorem is general false for B(z) has no deficient

value ∞.

However, our theorem also holds if we give some conditions on B(z).

Now let B(z) be a transcendental meromorphic function which its form is defined

below

B(z) =
a(z)eP(z) + b(z)
c(z)eQ(z) + d(z)

, (4:1)

where P(z) = azn + ... is a polynomial with degree of n ≥ 1, Q(z) = bzm + ... is also a

polynomial with degree m ≥ 0 (a, b Î C, |a| + |b| ≠ 0); a(z) ≢ 0, b(z), c(z) and d(z)

are entire functions with

max{ρ(a),ρ(b),ρ(c),ρ(d)} < n. (4:2)

Now, we are able to state the theorem as follows.

Theorem 4.1. Let A(z) Î EF be a meromorphic function and let B(z) be a transcen-

dental meromorphic function defined by (4.1) and (4.2) satisfying one of the following

conditions:

(1) m ≠ n;

(2) m = n, arg a ≠ arg b;
(3) m = n, b = ca, c Î (0, 1). If f ≢ 0 is a meromorphic solution of Equation (1.1),

then r(f) = ∞.

Proof of Theorem 4.1. To prove this theorem, we only need to use Remark 2 and

the following Lemma 4.1 and the same methods as the proof of main theorem. Hence,

we shall omit its proofs.

Lemma 4.1.[14] Suppose that P(z) = (ξ + ih)zn + · · · (ξ,h are real numbers, |ξ| + |h|
≠ 0) is a polynomial with degree n ≥ 1, and suppose that a(z) ≢ 0 is an entire function

with r(a) <n. Set g(z) = a(z)eP(z), z = reiθ, δ(P, θ) = ξ cos nθ - h sin nθ. Then for any

given ε > 0, there exits a set H1 ⊂ [0, 2π) that has the linear measure zero, such that

for any θ Î [0, 2π) \ (H1 ∪ H2) there is R = R(θ) > 0 such that for |z| = r >R, we have
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(i) if δ(P, θ) > 0, then

exp{(1 − ε)δ(P, θ)rn} <
∣∣g(reiθ )∣∣ < exp{(1 + ε)δ(P, θ)rn};

(ii) if δ(P, θ) < 0, then

exp{(1 + ε)δ(P, θ)rn} <
∣∣g(reiθ )∣∣ < exp{(1 − ε)δ(P, θ)rn},

where H2 = {θ Î [0, 2π): δ(P, θ) = 0} is a finite set.

It is easy to see that, if a Î C \ {0}, b, c, d Î C and |c| + |d| ≠ 0 in (4.1), we can

obtain the particular situation of Theorem 4.1. But if m = n, b = ca, c Î [1, ∞) in The-

orem 4.1, then the conclusion is in general false (see Example 5). Another counterex-

ample can be constructed as follows.

Example 6. Let f (z) = ez - 1, then f(z) satisfies the following equation

f ′′ −
(
ez − 1
ez + 1

)
f ′ − 2ez

e2z − 1
f = 0.

Furthermore, if P(z) has the degree n = 0 in (4.1), the conclusion is also in general

false. The counterexample can be easily constructed as follows.

Example 7. Let f (z) = ez, then f (z) satisfies the following equation

f ′′ −
(
ez − 1
ez + 1

)
f ′ − 2

ez + 1
f = 0.
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