Hyers-Ulam stability of derivations on proper Jordan CQ*-algebras

Choonkil Park ${ }^{1}$, Golamreza Zamani Eskandani ${ }^{2}$, Hamid Vaezi ${ }^{2}$ and Dong Yun Shin ${ }^{3 *}$

* Correspondence: dyshin@uos.ac. kr
${ }^{3}$ Department of Mathematics, University of Seoul, Seoul 130-743, Korea
Full list of author information is available at the end of the article

Abstract

Eskandani and Vaezi proved the Hyers-Ulam stability of derivations on proper Jordan CQ*-algebras associated with the following Pexiderized Jensen type functional equation

$$
k f\left(\frac{x+y}{k}\right)=f_{0}(x)+f_{1}(y)
$$

by using direct method. Using fixed point method, we prove the Hyers-Ulam stability of derivations on proper Jordan CQ*-algebras. Moreover, we investigate the
Pexiderized Jensen type functional inequality in proper Jordan $C Q^{*}$-algebras.
Mathematics Subject Classification 2010: Primary, 17B40; 39B52; 47N50; 47L60; 46B03; 47H10.
Keywords: Hyers-Ulam stability, proper Jordan CQ*-algebra, Jordan derivation, fixed point method

1. Introduction and preliminaries

In 1940, Ulam [1] asked the first question on the stability problem. In 1941, Hyers [2] solved the problem of Ulam. This result was generalized by Aoki [3] for additive mappings and by Rassias [4] for linear mappings by considering an unbounded Cauchy difference. In 1994, a generalization of Rassias' Theorem was obtained by Găvruta [5]. Since then, several stability problems for various functional equations have been investigated by numerous mathematicians (see [6-25], M Eshaghi Gordji, unpublished work).

The Jensen equation is $2 f\left(\frac{x+y}{2}\right)=f(x)+f(y)$, where f is a mapping between linear spaces. It is easy to see that a mapping $f: X \rightarrow Y$ between linear spaces with $f(0)=0$ satisfies the Jensen equation if and only if it is additive [26]. Stability of the Jensen equation has been studied at first by Kominek [27].

We recall some basic facts concerning quasi *-algebras.
Definition 1.1. Let A be a linear space and let A_{0} be a ${ }^{*}$-algebra contained in A as a subspace. We say that A is a quasi "-algebra over A_{0} if
(i) the right and left multiplications of an element of A and an element of A_{0} are defined and linear;
(ii) $x_{1}\left(x_{2} a\right)=\left(x_{1} x_{2}\right) a,(a x 1) x 2=a\left(x_{1} x_{2}\right)$ and $x_{1}\left(a x_{2}\right)=\left(x_{1} a\right) x_{2}$ for all $x_{1}, x_{2} \in A_{0}$ and all $a \in A$;
(iii) an involution *, which extends the involution of A_{0}, is defined in A with the property $(a b)^{*}=b^{*} a^{*}$ whenever the multiplication is defined.

Quasi *-algebras [28,29] arise in natural way as completions of locally convex *-algebras whose multiplication is not jointly continuous; in this case one has to deal with topological quasi *-algebras.
A quasi *-algebra $\left(A, A_{o}\right)$ is said to be a locally convex quasi *-algebra if in A a locally convex topology τ is defined such that
(i) the involution is continuous and the multiplications are separately continuous;
(ii) A_{o} is dense in $A[\tau]$.

Throughout this article, we suppose that a locally convex quasi *-algebra $\left(A, A_{0}\right)$ is complete. For an overview on partial *-algebra and related topics we refer to [30].
In a series of articles [31-35] many authors have considered a special class of quasi *algebras, called proper $C Q^{*}$-algebras, which arise as completions of C^{*}-algebras. They can be introduced in the following way:
Let A be a Banach module over the C^{*}-algebra A_{0} with involution * and C^{*}-norm $\|$. $\|_{0}$ such that $A_{0} \subset A$. We say that $\left(A, A_{0}\right)$ is a proper $C Q^{*}$-algebra if
(i) A_{0} is dense in A with respect to its norm $\|\cdot\|$;
(ii) $(a b)^{*}=b^{*} a^{*}$ whenever the multiplication is defined;
(iii) \| $y\left\|_{0}=\sup _{a \in A},\right\| a\|\leq 1\| a y \|$ for all $y \in A_{0}$.

Definition 1.2. A proper $C Q^{*}$-algebra (A, A_{0}), endowed with the Jordan product

$$
z \circ x=\frac{z x+x z}{2}
$$

for all $x \in A$ and all $z \in A_{0}$, is called a proper Jordan $C Q^{*}$-algebra.
Definition 1.3. Let $\left(A, A_{0}\right)$ be proper Jordan $C Q^{*}$-algebras.
A \mathbb{C}-linear mapping $\delta: A_{0} \rightarrow A$ is called a Jordan derivation if

$$
\delta(x \circ y)=x \circ \delta(y)+\delta(x) \circ \gamma
$$

for all $x, y \in A_{0}$.
Park and Rassias [36] investigated homomorphisms and derivations on proper JCQ*triples.
Throughout this article, assume that k is a fixed positive integer.
Eskandani and Vaezi [37] proved the Hyers-Ulam stability of derivations on proper Jordan $C Q^{*}$-algebras associated with the following Pexiderized Jensen type functional equation

$$
k f\left(\frac{x+y}{k}\right)=f_{0}(x)+f_{1}(y)
$$

by using direct method.
In this article, using fixed point method, we prove the Hyers-Ulam stability of derivations on proper Jordan $C Q^{*}$-algebras.

Moreover, we investigate the Pexiderized Jensen type functional inequality in proper Jordan CQ*-algebras.

2. Derivations on proper Jordan C^{*}-algebras

Throughout this section, assume that $\left(A, A_{0}\right)$ is a proper Jordan $C Q^{*}$-algebra with C^{*} norm $\|\cdot\| \|_{\text {A0 }}$ and norm $\|\cdot\| \|_{A}$

Theorem 2.1. Let $\phi: A_{0} \times A_{0} \rightarrow[0,+\infty)$ be a function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{4^{n}} \varphi\left(2^{n} x, 2^{n} y\right)=0 \tag{2.1}
\end{equation*}
$$

for all $x, y \in A_{0}$. Suppose that $f, f_{0}, f_{1}: A_{0} \rightarrow A$ are mappings with $f(0)=0$ and

$$
\begin{align*}
& \left\|\mu f(x)-f_{0}(y)-f_{1}(z)\right\|_{A} \leq\left\|k f\left(\frac{\mu x+y+z}{k}\right)\right\|_{A} \tag{2.2}\\
& \left\|f(x \circ y)+x \circ f_{1}(y)+f_{0}(x) \circ y\right\|_{A} \leq \varphi(x, y) \tag{2.3}
\end{align*}
$$

for all $\mu \in \mathbb{T}^{1}:\{\mu \in \mathbb{C}:|\mu|=1\}$ and all $x, y, z \in A_{0}$. Then the mapping $f: A_{0} \rightarrow A$ is a Jordan derivation. Moreover,

$$
f(x)=f_{0}(0)-f_{0}(x)=f_{1}(0)-f_{1}(x)
$$

for all $x \in A_{0}$.
Proof. Letting $x=y z=0$ in (2.2), we get $f_{0}(0)+f_{1}(0)=0$.
Letting $\mu=1, y=-x$ and $z=0$ in (2.2), we get

$$
\begin{equation*}
f(x)=f_{0}(-x)+f_{1}(0)=f_{0}(-x)-f_{0}(0) \tag{2.4}
\end{equation*}
$$

for all $x \in A_{0}$. Similarly, we have

$$
\begin{equation*}
f(x)=f_{1}(-x)+f_{0}(0)=f_{1}(-x)-f_{1}(0) \tag{2.5}
\end{equation*}
$$

for all $x \in A_{0}$. By (2.2), we have

$$
\begin{aligned}
\|f(x+y)-f(x)-f(y)\|_{A} & =\left\|f(x+y)-\left(f_{0}(-x)+f_{1}(0)\right)-\left(f_{1}(-y)+f_{0}(0)\right)\right\|_{A} \\
& =\left\|f(x+y)-f_{0}(-x)-f_{1}(-y)\right\|_{A}=0
\end{aligned}
$$

for all $x, y \in A_{0}$. So the mapping $f: A_{0} \rightarrow A$ is additive. Letting $y=-\mu x$ and $z=0$ in (2.2), we get

$$
\mu f(x)=f_{0}(-\mu x)+f_{1}(0)=f(\mu x)
$$

for all $x \in A_{0}$. By the same reasoning as in the proof of [[38], Theorem 2.1], the mapping $f: A_{0} \rightarrow A$ is \mathbb{C}-linear. By (2.1) and (2.3), we have

$$
\begin{aligned}
& \|f(x \circ y)-x \circ f(y)-f(x) \circ y\|_{A} \\
& =\lim _{n \rightarrow \infty} \frac{1}{4^{n}}\left\|f\left(2^{n} x \circ 2^{n} y\right)-2^{n} x \circ\left(f_{1}\left(-2^{n} y\right)-f_{1}(0)\right)-\left(f_{0}\left(-2^{n} x\right)-f_{0}(0)\right) \circ 2^{n} y\right\|_{A} \\
& =\lim _{n \rightarrow \infty} \frac{1}{4^{n}}\left\|f\left(2^{n} x \circ 2^{n} y\right)-2^{n} x \circ f_{1}\left(-2^{n} y\right)-f_{0}\left(-2^{n} x\right) \circ 2^{n} y\right\|_{A} \\
& \leq \lim _{n \rightarrow \infty} \frac{\varphi\left(-2^{n} x,-2^{n} y\right)}{4^{n}}=0
\end{aligned}
$$

for all $x, y \in A_{0}$. So

$$
f(x \circ y)=x \circ f(y)+f(x) \circ y
$$

for all $x, y \in A_{0}$. Therefore, the mapping $f: A_{0} \rightarrow A$ is a Jordan derivation.
Since $f(-x)=-f(x)$ for all $x \in A_{0}$, it follows from (2.4) that

$$
f(x)=-f(-x)=-\left(f_{0}(x)-f_{0}(0)\right)=f_{0}(0)-f_{0}(x)
$$

for all $x \in A_{0}$. It follows from (2.5) that

$$
f(x)=-f(-x)=-\left(f_{1}(x)-f_{1}(0)\right)=f_{1}(0)-f_{1}(x)
$$

for all $x \in A_{0}$. This completes the proof.
-
Corollary 2.2. Let θ, r_{0}, r_{1} be nonnegative real numbers with $r_{0}+r_{1}<2$, and let f, f_{0}, $f_{1}: A_{0} \rightarrow A$ be mappings satisfying $f(0)=0$, (2.2) and

$$
\left\|f(x \circ y)+x \circ f_{1}(y)+f_{0}(x) \circ y\right\|_{A} \leq \theta\|x\|_{A_{0}}^{r_{0}}\|y\|_{A_{0}}^{r_{1}}
$$

for all $x, y \in A_{0}$. Then the mapping $f: A_{0} \rightarrow A$ is a Jordan derivation. Moreover,

$$
f(x)=f_{0}(0)-f_{0}(x)=f_{1}(0)-f_{1}(x)
$$

for all $x \in A_{0}$.
Proof. The proof follows from Theorem 2.1.
-
Corollary 2.3. Let θ, r_{0}, r_{1} be nonnegative real numbers with $r<2$ and let $f, f_{0}, f_{1}: A_{0}$ $\rightarrow A$ be mappings satisfying $f(0)=0,(2.2)$ and

$$
\left\|f(x \circ y)+x \circ f_{1}(y)+f_{0}(x) \circ y\right\|_{A} \leq \theta\left(\|x\|_{A_{0}}^{r}+\|y\|_{A_{0}}^{r}\right)
$$

for all $x, y \in A_{0}$. Then the mapping $f: A_{0} \rightarrow A$ is a Jordan derivation. Moreover,

$$
f(x)=f_{0}(0)-f_{0}(x)=f_{1}(0)-f_{1}(x)
$$

for all $x \in A$.

3. Hyers-Ulam stability of derivations on proper Jordan CQ*-algebras

We now introduce one of fundamental results of fixed point theory. For the proof, refer to $[39,40]$. For an extensive theory of fixed point theorems and other nonlinear methods, the reader is referred to the book of Hyers et al. [8].

Let X be a set. A function $d: X \times X \rightarrow[0, \infty]$ is called a generalized metric on X if and only if d satisfies:

$$
\begin{aligned}
& \left(G M_{1}\right) d(x, y)=0 \text { if and only if } x=y \\
& \left(G M_{2}\right) d(x, y)=d(y, x) \text { for all } x, y \in X \\
& \left(G M_{3}\right) d(x, z) \leq d(x, y)+d(y, z) \text { for all } x, y, z \in X .
\end{aligned}
$$

Note that the distinction between the generalized metric and the usual metric is that the range of the former is permitted to include the infinity.

Let (X, d) be a generalized metric space. An operator $T: X \rightarrow X$ satisfies a Lipschitz condition with Lipschitz constant L if there exists a constant $L \geq 0$ such that

$$
d(T x, T y) \leq L d(x, y)
$$

for all $x, y \in X$. If the Lipschitz constant L is less than 1 , then the operator T is called a strictly contractive operator.
We recall the following theorem by Diaz and Margolis [39].
Theorem 3.1. Suppose that we are given a complete generalized metric space (Ω, d) and a strictly contractive function $T: \Omega \rightarrow \Omega$ with Lipschitz constant L. Then for each
given $x \in \Omega$, either

$$
d\left(T^{m} x, T^{m+1} x\right)=\infty \quad \text { for all } m \geq 0,
$$

or other exists a natural number m_{0} such that

$$
\begin{aligned}
& \star d\left(T^{m} x, T^{m+1} x\right)<\infty \text { for all } m \geq m_{0} ; \\
& \star \text { the sequence }\left\{T^{m} x\right\} \text { is convergent to a fixed point } y^{*} \text { of } T \text {; } \\
& \star y^{*} \text { is the unique fixed point of } T \text { in } \\
& \quad \Lambda=\left\{y \in \Omega: d\left(T^{m_{0}} x, y\right)<\infty\right\} ;
\end{aligned}
$$

$$
\star d\left(y, y^{*}\right) \leq \frac{1}{1-L} d(y, \text { Tyy)for all } y \in \Lambda \text {. }
$$

Now we prove the Hyers-Ulam stability of derivations on proper Jordan CQ*-algebras by using fixed point method.
Theorem 3.2. Let $f_{,} f_{0}, f_{1}: A_{0} \rightarrow A$ be mappings with $f(0)=0$ for which there exists a function $\varphi: A_{0}^{2} \rightarrow[0, \infty)$ with $\phi(0,0)=0$ such that

$$
\begin{align*}
& \left\|k f\left(\frac{\mu x+\mu y}{k}\right)-\mu f_{0}(x)-\mu f_{1}(y)\right\|_{A} \leq \varphi(x, y), \tag{3.1}\\
& \left\|k f\left(\frac{x \circ y}{k}\right)-x \circ f_{1}(y)-f_{0}(x) \circ \gamma\right\|_{A} \leq \varphi(x, y) \tag{3.2}
\end{align*}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x, y \in A_{0}$. If there exists an $L<1$ such that $\varphi(x, y) \leq 2 L \varphi\left(\frac{x}{2}, \frac{y}{2}\right)$ for all $x, y \in A_{0}$, then there exists a unique Jordan derivation $\delta: A_{0}$ $\rightarrow A$ such that

$$
\begin{align*}
& \|f(x)-\delta(x)\|_{A} \leq \frac{1}{2 k-2 k L} \varphi(k x, k x), \tag{3.3}\\
& \left\|f_{0}(x)-f_{0}(0)-\delta(x)\right\|_{A} \leq \frac{1}{2-2 L} \varphi(x, x)
\end{align*}
$$

for all $x \in A_{0}$. Moreover, $f_{0}(x)-f_{0}(0)=f_{1}(x)-f_{1}(0)$ for all $x \in A_{0}$.
Proof. Letting $x=y=0$ and $\mu=1$ in (3.1), we get $f_{0}(0)+f_{1}(0)=0$.
Letting $y=0$ and $\mu=1$ in (3.1), we get

$$
\begin{equation*}
k f\left(\frac{x}{k}\right)=f_{0}(x)+f_{1}(0)=f_{0}(x)-f_{0}(0) \tag{3.4}
\end{equation*}
$$

for all $x \in A_{0}$. Similarly, we get

$$
\begin{equation*}
k f\left(\frac{y}{k}\right)=f_{1}(y)+f_{0}(0)=f_{1}(y)-f_{1}(0) \tag{3.5}
\end{equation*}
$$

for all $y \in A_{0}$. Using (3.4) and (3.5), we get

$$
f_{0}(x)-f_{0}(0)=f_{1}(x)-f_{1}(0)
$$

for all $x \in A_{0}$.

Let $H: A 0 \rightarrow A$ be a mapping defined by

$$
H(x):=f_{0}(x)-f_{0}(0)=f_{1}(x)-f_{1}(0)=k f\left(\frac{x}{k}\right)
$$

for all $x \in A_{0}$. Then we have

$$
\begin{equation*}
\|H(\mu x+\mu y)-\mu H(x)-\mu H(y)\|_{A} \leq \varphi(x, y) \tag{3.6}
\end{equation*}
$$

for all $\mu \in \mathbb{T}^{1}$ and $x, y \in A_{0}$.
Consider the set

$$
X:=\left\{g: A_{0} \rightarrow A\right\}
$$

and introduce the generalized metric on X :

$$
d(g, h)=\inf \left\{C \in \mathbb{R}_{+}:\|g(x)-h(x)\|_{A} \leq C \varphi(x, x), \forall x \in A_{0}\right\}
$$

It is easy to show that (X, d) is complete (see [[41], Lemma 2.1]).
Now we consider the linear mapping $J: X \rightarrow X$ such that

$$
J g(x):=\frac{1}{2} g(2 x)
$$

for all $x \in A$.
By [[41], Theorem 3.1],

$$
d(J g, J h) \leq L d(g, h)
$$

for all $g, h \in X$.
Letting $\mu=1$ and $y=x$ in (3.6), we get

$$
\begin{equation*}
\|H(2 x)-2 H(x)\| \leq \varphi(x, x) \tag{3.7}
\end{equation*}
$$

and so

$$
\left\|H(x)-\frac{1}{2} H(2 x)\right\| \leq \frac{1}{2} \varphi(x, x)
$$

for all $x \in A_{0}$. Hence $d(H, J H) \leq \frac{1}{2}$.
By Theorem 3.1, there exists a mapping $\delta: A_{0} \rightarrow A$ such that
(1) δ is a fixed point of J, i.e.,

$$
\begin{equation*}
\delta(2 x)=2 \delta(x) \tag{3.8}
\end{equation*}
$$

for all $x \in A_{0}$. The mapping δ is a unique fixed point of J in the set

$$
Y=\{g \in X: d(f, g)<\infty\}
$$

This implies that δ is a unique mapping satisfying (3.8) such that there exists $C \in(0$, $\infty)$ satisfying

$$
\|H(x)-\delta(x)\|_{A} \leq C \varphi(x, x)
$$

for all $x \in A_{0}$.
(2) $d\left(J^{n} H, \delta\right) \rightarrow 0$ as $n \rightarrow \infty$. This implies the equality

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{H\left(2^{n} x\right)}{2^{n}}=\delta(x) \tag{3.9}
\end{equation*}
$$

for all $x \in A_{0}$.
(3) $d(H, \delta) \leq \frac{1}{1-L} d(H, J H)$, which implies the inequality

$$
d(H, \delta) \leq \frac{1}{2-2 L} .
$$

This implies that the inequality (3.3) holds.
It follows from (3.6) and (3.9) that

$$
\begin{aligned}
& \|\delta(\mu x+\mu y)-\mu \delta(x)-\mu \delta(y)\|_{A} \\
& =\lim _{n \rightarrow \infty} \frac{1}{2^{n}}\left\|H\left(2^{n} \mu x+2^{n} \mu y\right)-\mu H\left(2^{n} x\right)-\mu H\left(2^{n} y\right)\right\|_{A} \\
& \leq \lim _{n \rightarrow \infty} \frac{1}{2^{n}} \varphi\left(2^{n} x, 2^{n} y\right)=0
\end{aligned}
$$

for $\mu \in \mathbb{T}^{1}$ and all $x, y \in A_{0}$. So

$$
\delta(\mu x+\mu y)=\mu \delta(x)+\mu \delta(y)
$$

for $\mu \in \mathbb{T}^{1}$ and all $x, y \in A_{0}$. By the same reasoning as in the proof of [[38], Theorem 2.1], the mapping $\delta: A_{0} \rightarrow A$ is C -linear.

It follows from $\varphi(x, y) \leq 2 L \varphi\left(\frac{x}{2}, \frac{y}{2}\right)$ that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{4^{n}} \varphi\left(2^{n} x, 2^{n} y\right) \leq \frac{1}{2^{n}} \varphi\left(2^{n} x, 2^{n} y\right)=0 \tag{3.10}
\end{equation*}
$$

for all $x, y \in A_{0}$.
It follows from (3.2) and (3.10) that

$$
\begin{aligned}
& \|\delta(x \circ y)-x \circ \delta(y)-\delta(x) \circ y\|_{A} \\
& \leq \lim _{n \rightarrow \infty} \frac{1}{4^{n}}\left\|k f\left(4^{n}\left(\frac{x \circ y}{k}\right)\right)-2^{n} x \circ\left(f_{1}\left(2^{n} y\right)+f_{0}(0)\right)-\left(f_{0}\left(2^{n} x\right)+f_{1}(0)\right) \circ 2^{n} y\right\|_{A} \\
& \leq \lim _{n \rightarrow \infty} \frac{1}{4^{n}}\left\|k f\left(4^{n}\left(\frac{x \circ y}{k}\right)\right)-2^{n} x \circ f_{1}\left(2^{n} y\right)-f_{0}\left(2^{n} x\right) \circ 2^{n} y\right\|_{A} \\
& \leq \lim _{n \rightarrow \infty} \frac{1}{4^{n}} \varphi\left(2^{n} x, 2^{n} y\right)=0
\end{aligned}
$$

for all $x, y \in A_{0}$. Hence

$$
\delta(x \circ y)=x \circ \delta(y)+\delta(x) \circ y
$$

for all $x, y \in A_{0}$. So $\delta: A_{0} \rightarrow A$ is a Jordan derivation, as desired.
Corollary 3.3. [[37], Theorem 3.1] Let be a nonnegative real number and r_{0}, r_{1} positive real numbers with $\lambda:=r_{0}+r_{1}<1$ and let $f, f_{0}, f_{1}: A_{0} \rightarrow A$ be mappings with $f(0)=$ 0 such that

$$
\begin{align*}
& \left\|k f\left(\frac{\mu x+\mu \gamma}{k}\right)-\mu f_{0}(x)-\mu f_{1}(y)\right\|_{A} \leq \theta\|x\|\left\|_{A_{0}}^{r_{0}}\right\| y \|_{A_{0}}^{r_{1}} \tag{3.11}\\
& \left\|k f\left(\frac{x \circ \gamma}{k}\right)-x \circ f_{1}(y)-f_{0}(x) \circ \gamma\right\|_{A} \leq \theta\|x\|_{A_{0}}^{r_{0}}\|y\|_{A_{0}}^{r_{1}} \tag{3.12}
\end{align*}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x, y \in A_{0}$. Then there exists a unique Jordan derivation $\delta: A_{0}$ $\rightarrow A$ such that

$$
\begin{aligned}
\|f(x)-\delta(x)\|_{A} & \leq \frac{k^{\lambda-1} \theta}{2-2^{\lambda}}\|x\|_{A_{0}}^{\lambda} \\
\left\|f_{0}(x)-f_{0}(0)-\delta(x)\right\|_{A} & \leq \frac{\theta}{2-2^{\lambda}}\|x\|_{A_{0}}^{\lambda}
\end{aligned}
$$

for all $x \in A_{0}$. Moreover, $f_{0}(x)-f_{0}(0)=f_{1}(x)-f_{1}(0)$ for all $x \in A_{0}$.
Proof. The proof follows from Theorem 3.2 by taking

$$
\varphi(x, y):=\theta\|x\|\left\|_{A_{0}}^{r_{0}}\right\| y \|_{A_{0}}^{r_{1}}
$$

for all $x, y \in A$. Letting $L=2^{\lambda-1}$, we get the desired result.
Corollary 3.4. [[37], Theorem 3.4] Let θ, r be a nonnegative real numbers with $0<r$ <1, and let $f, f_{0}, f_{1}: A_{0} \rightarrow A$ be mappings with $f(0)=0$ such that

$$
\begin{align*}
& \left\|k f\left(\frac{\mu x+\mu y}{k}\right)-\mu f_{0}(x)-\mu f_{1}(y)\right\|_{A} \leq \theta\left(\|x\|_{A_{0}}^{r}+\|y\|_{A_{0}}^{r}\right), \tag{3.13}\\
& \left\|k f\left(\frac{x o y}{k}\right)-x o f_{1}(y)-f_{0}(x) o \gamma\right\|_{A} \leq \theta\left(\|x\|_{A_{0}}^{r}+\|y\|_{A_{0}}^{r}\right) \tag{3.14}
\end{align*}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x, y \in A_{0}$. Then there exists a unique Jordan derivation $\delta: A_{0}$ $\rightarrow A$ such that

$$
\begin{aligned}
& \|f(x)-\delta(x)\|_{A} \leq \frac{2 k^{r-1} \theta}{2-2^{r}}\|x\|_{A_{0}}^{r} \\
& \left\|f_{0}(x)-f_{0}(0)-\delta(x)\right\|_{A} \leq \frac{2 \theta}{2-2^{r}}\|x\|_{A_{0}}^{r}
\end{aligned}
$$

for all $x \in A_{0}$. Moreover, $f_{0}(x)-f_{0}(0)=f_{1}(x)-f_{1}(0)$ for all $x \in A_{0}$.
Proof. The proof follows from Theorem 3.2 by taking

$$
\varphi(x, y):=\theta\left(\|x\|_{A_{0}}^{r}+\|y\|_{A_{0}}^{r}\right)
$$

for all $x, y \in A$. Letting $L=2^{r-1}$, we get the desired result.
-
Theorem 3.5. Let $f, f_{0}, f_{1}: A_{0} \rightarrow A$ be mappings with $f(0)=f_{0}(0)=f_{1}(0)=0$ for which there exists a function $\varphi: A_{0}^{2} \rightarrow[0, \infty)$ satisfying (3.1) and (3.2). If there exists an $L<1$ such that $\varphi(x, y) \leq \frac{L}{4} \varphi(2 x, 2 y)$ for all $x, y \in A_{0}$, then there exists a unique Jordan derivation $\delta: A_{0} \rightarrow A$ such that

$$
\begin{align*}
\|f(x)-\delta(x)\|_{A} & \leq \frac{L}{4 k-4 k L} \varphi(k x, k x), \tag{3.15}\\
\left\|f_{0}(x)-\delta(x)\right\|_{A} & \leq \frac{L}{4-4 L} \varphi(x, x)
\end{align*}
$$

for all $x \in A_{0}$. Moreover, $f_{0}(x)=f_{1}(x)$ for all $x \in A_{0}$.
Proof. Let (X, d) be the generalized metric space defined in the proof of Theorem 3.2.
Now we consider the linear mapping $J: X \rightarrow X$ such that

$$
J g(x):=2 g\left(\frac{x}{2}\right)
$$

for all $x \in X$.

Let $H(x):=f_{0}(x)=f_{1}(x)=k f\left(\frac{x}{k}\right)$ for all $x \in A_{0}$. It follows from (3.7) that

$$
\left\|H(x)-2 H\left(\frac{x}{2}\right)\right\| \leq \varphi\left(\frac{x}{2}, \frac{x}{2}\right) \leq \frac{L}{4} \varphi(x, y)
$$

for all $x \in A_{0}$. Thus $d(H, J H) \leq \frac{L}{4}$. One can show that there exists a mapping $\delta: A_{0}$ $\rightarrow A$ such that

$$
d(H, \delta) \leq \frac{L}{4-4 L}
$$

Hence we obtain the inequality (3.15).
It follows from $\varphi(x, y) \leq \frac{L}{4} \varphi(2 x, 2 y)$ that

$$
\lim _{n \rightarrow \infty} 4^{n} \varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)=0
$$

for all $x, y \in A_{0}$. So

$$
\begin{aligned}
& \|\delta(x \circ y)-x \circ \delta(y)-\delta(x) \circ \gamma\|_{A} \\
& \leq \lim _{n \rightarrow \infty} 4^{n}\left\|k f\left(4^{n} \frac{x \circ y}{4^{n} k}\right)-\frac{x}{2^{n}} \circ f_{1}\left(\frac{y}{2^{n}}\right)-f_{0}\left(\frac{x}{2^{n}}\right) \circ \frac{y}{2^{n}}\right\|_{A} \\
& \leq \lim _{n \rightarrow \infty} 4^{n} \varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)=0
\end{aligned}
$$

for all $x, y \in A_{0}$. Hence

$$
\delta(x \circ y)=x \circ \delta(y)+\delta(x) \circ \gamma
$$

for all $x, y \in A_{0}$. So $\delta: A_{0} \rightarrow A$ is a Jordan derivation, as desired.
The rest of the proof is similar to the proof of Theorem 3.2.

Corollary 3.6. [[37], Theorem 3.2] Let θ be a nonnegative real number and r_{0}, r_{1} positive real numbers with $\lambda:=r_{0}+r_{1}>2$ and let $f, f_{0}, f_{1}: A_{0} \rightarrow A$ be mappings satisfy$\operatorname{ing} f(0)=f_{0}(0)=f_{1}(0)=0,(3.11)$ and (3.12). Then there exists a unique Jordan derivation $\delta: A_{0} \rightarrow A$ such that

$$
\begin{aligned}
& \|f(x)-\delta(x)\|_{A} \leq \frac{k^{\lambda-1} \theta}{2^{\lambda}-4}\|x\|_{A_{0}}^{\lambda} \\
& \left\|f_{i}(x)-\delta(x)\right\|_{A} \leq \frac{\theta}{2^{\lambda}-4}\|x\|_{A_{0}}^{\lambda}
\end{aligned}
$$

for all $x \in A_{0}$. Moreover, $f_{0}(x)=f_{1}(x)$ for all $x \in A_{0}$.
Proof. The proof follows from Theorem 3.3 by taking

$$
\varphi(x, y):=\theta\|x\|_{A_{0}}^{r_{0}}\|y\|_{A_{0}}^{r_{1}}
$$

for all $x, y \in A$. Letting $L=2^{2-\lambda}$, we get the desired result.
\square
Corollary 3.7. [[37], Theorem 3.3] Let θ, r be nonnegative real numbers with $r>2$, and let $f, f_{0}, f_{1}: A_{0} \rightarrow A$ be mappings satisfying $f(0)=f_{0}(0)=f_{1}(0)=0$, (3.13) and (3.14). Then there exists a unique Jordan derivation $\delta: A_{0} \rightarrow A$ such that

$$
\begin{aligned}
\|f(x)-\delta(x)\|_{A} & \leq \frac{2 k^{r-1} \theta}{2^{r}-4}\|x\|_{A_{0^{\prime}}}^{r} \\
\left\|f_{0}(x)-\delta(x)\right\|_{A} & \leq \frac{2 \theta}{2^{r}-4}\|x\|_{A_{0}}^{r}
\end{aligned}
$$

for all $x \in A_{0}$. Moreover, $f_{0}(x)=f_{1}(x)$ for all $x \in A_{0}$.
Proof. The proof follows from Theorem 3.3 by taking

$$
\varphi(x, y):=\theta\left(\|x\|_{A_{0}}^{r}+\|y\|_{A_{0}}^{r}\right)
$$

for all $x, y \in A$. Letting $L=2^{2-r}$, we get the desired result.

\square

Acknowledgements

Choonkil Park was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2009-0070788). Dong Yun Shin was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2010-0021792).

Author details

${ }^{1}$ Department of Mathematics, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea ${ }^{2}$ Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran ${ }^{3}$ Department of Mathematics, University of Seoul, Seoul 130-743, Korea

Authors' contributions

All authors conceived of the study, participated in its design and coordination, drafted the manuscript, participated in the sequence alignment, and read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.
Received: 1 December 2011 Accepted: 24 May 2012 Published: 24 May 2012

References

1. Ulam, SM: A Collection of the Mathematical Problems. Interscience Publ., New York (1960)
2. Hyers, DH: On the stability of the linear functional equation. Proc Natl Acad Sci USA. 27, 222-224 (1941). doi:10.1073/ pnas.27.4.222
3. Aoki, T: On the stability of the linear transformation in Banach spaces. J Math Soc Japan. 2, 64-66 (1950). doi:10.2969/ jmsj/00210064
4. Rassias, TM: On the stability of the linear mapping in Banach spaces. Proc Am Math Soc. 72, 297-300 (1978). doi:10.1090/S0002-9939-1978-0507327-1
5. Găvruta, P: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J Math Anal Appl. 184, 431-436 (1994). doi:10.1006/jmaa.1994.1211
6. Czerwik, S: Functional Equations and Inequalities in Several Variables. World Scientific, New Jersey (2002)
7. Czerwik, S: Stability of Functional Equations of Ulam-Hyers-Rassias Type. Hadronic Press, Inc., Palm Harbor (2003)
. Hyers, DH, Isac, G, Rassias, TM: Stability of Functional Equations in Several Variables. Birkhäuser, Basel (1998)
8. Hyers, DH, Rassias, TM: Approximate homomorphisms. Aequationes Math. 44, 125-153 (1992). doi:10.1007/BF01830975
9. Jung, S: Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis. Hadronic Press, Palm Harbor (2001)
10. Eshaghi Gordji, M, Ghaemi, MB, Kaboli Gharetapeh, S, Shams, S, Ebadian, A: On the stability of J*-derivations. J Geom Phys. 60, 454-459 (2010). doi:10.1016/j.geomphys.2009.11.004
11. Eshaghi Gordji, M, Najati, A: Approximately J*-homomorphisms: a fixed point approach. J Geom Phys. 60, 809-814 (2010). doi:10.1016/j.geomphys.2010.01.012
12. Baktash, E, Cho, Y, Jalili, M, Saadati, R, Vaezpour, SM: On the stability of cubic mappings and quadratic mappings in random normed spaces. J Inequal Appl 2008, 11 (2008). Article ID 902187
13. Cho, Y, Eshaghi Gordji, M, Zolfaghari, S: Solutions and stability of generalized mixed type QC functional equations in random normed spaces. J Inequal Appl 2010, 16 (2010). Article ID 403101
14. Cho, Y, Kang, J, Saadati, R: Fixed points and stability of additive functional equations on the Banach algebras. J Comput Anal Appl. 14, 1103-1111 (2012)
15. Cho, Y, Park, C, Saadati, R: Functional inequalities in non-Archimedean Banach spaces. Appl Math Lett. 60, 1994-2002 (2010)
16. Cho, Y, Saadati, R: Lattice non-Archimedean random stability of ACQ functional equation. Adv Diff Equ. 2011, 31 (2011). doi:10.1186/1687-1847-2011-31
17. Najati, A, Cho, Y: Generalized Hyers-Ulam stability of the pexiderized Cauchy functional equation in non-Archimedean spaces. Fixed Point Theory Appl 2011, 11 (2011). Article ID 309026. doi:10.1186/1687-1812-2011-11
18. Najati, A, Kang, J, Cho, Y: Local stability of the pexiderized Cauchy and Jensen's equations in fuzzy spaces. J Inequal Appl. 2011, 78 (2011). doi:10.1186/1029-242X-2011-78
19. Park, C, Cho, Y, Kenary, HA: Orthogonal stability of a generalized quadratic functional equation in non-Archimedean spaces. J Computat Anal Appl. 14, 526-535 (2012)
20. Park, C, Rassias, TM: Isomorphisms in unital C*-algebras. Int J Nonlinear Anal Appl. 1, 1-10 (2010)
21. Saadati, R, Cho, Y, Vahidi, J: The stability of the quartic functional equation in various spaces. Comput Math Appl. 60, 1994-2002 (2010). doi:10.1016/j.camwa.2010.07.034
22. Rassias, TM: On a modified Hyers-Ulam sequence. J Math Anal Appl. 158, 106-113 (1991). doi:10.1016/0022-247X(91) 90270-A
23. Rassias, TM: On the stability of functional equations and a problem of Ulam. Acta Appl Math. 62, 23-130 (2000). doi:10.1023/A:1006499223572
24. Rassias, TM, Semrl, P: On the Hyers-Ulam stability of linear mappings. J Math Anal Appl. 173, 325-338 (1993). doi:10.1006/jmaa.1993.1070
25. Parnami, JC, Vasudeva, HL: On Jensen's functional equation. Aequationes Math. 43, 211-218 (1992). doi:10.1007/ BF01835703
26. Kominek, Z: On a local stability of the Jensen functional equation. Demonstratio Math. 22, 499-507 (1989)
27. Lassner, G: Topological algebras and their applications in quantum statistics. Wiss Z Karl-Marx-Univ Leipzig, Math-Natur Reihe. 30, 572-595 (1981)
28. Lassner, G, Lassner, GA: Quasi*-algebras and twisted product. Publ RIMS Kyoto Univ. 25, 279-299 (1989). doi:10.2977/ prims/1195173612
29. Antoine, JP, Inoue, A, Trapani, C: Partial *-Algebras and Their Operator Realizations. Kluwer, Dordrecht (2002)
30. Bagarello, F, Inoue, A, Trapani, C: Some classes of topological quasi *-algebras. Proc Am Math Soc. 129, 2973-2980 (2001). doi:10.1090/S0002-9939-01-06019-1
31. Bagarello, F, Morchio, G: Dynamics of mean-field spin models from basic results in abstract differential equations. J Stat Phys. 66, 849-866 (1992). doi:10.1007/BF01055705
32. Bagarello, F, Trapani, C: States and representations of CQ*-algebras. Ann Inst H Poincaré. 61, 103-133 (1994)
33. Bagarello, F, Trapani, C: CQ*-algebras: Structure properties. Publ Res Inst Math Sci. 32, 85-116 (1996). doi:10.2977/prims/ 1195163181
34. Bagarello, F, Trapani, C: Morphisms of certain Banach C*-modules. Publ Res Inst Math Sci. 36, 681-705 (2000). doi:10.2977/prims/1195139642
35. Park, C, Rassias, TM: Homomorphisms and derivations in proper JCQ*-triples. J Math Anal Appl. 337, 1404-1414 (2008). doi:10.1016/j.jmaa.2007.04.063
36. Eskandani, GZ, Vaezi, H: Hyers-Ulam-Rassias stability of derivations in proper Jordan CQ*-algebras. Discr Contin Dyn Syst. 31, 1469-1477 (2011)
37. Park, C: Homomorphisms between Poisson JC*-algebras. Bull Braz Math Soc. 36, 79-97 (2005). doi:10.1007/s00574-005-0029-z
38. Diaz, JB, Margolis, B: A fixed point theorem of the alternative for contractions on the generalized complete metric space. Bull Am Math Soc. 74, 305-309 (1968). doi:10.1090/S0002-9904-1968-11933-0
39. Rus, IA: Principles and Applications of Fixed Point Theory. Dacia, Cluj-Napoca (1979)
40. Cădariu, L, Radu, V: Fixed points and the stability of Jensen's functional equation. J Inequal Pure Appl Math. 4(1):4 (2003)

doi:10.1186/1029-242X-2012-114

Cite this article as: Park et al.: Hyers-Ulam stability of derivations on proper Jordan $C Q^{*}$-algebras. Journal of Inequalities and Applications 2012 2012:114.

Submit your manuscript to a SpringerOpen ${ }^{\text {© }}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

```
Submit your next manuscript at $ springeropen.com
```

