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Abstract

Eskandani and Vaezi proved the Hyers-Ulam stability of derivations on proper Jordan
CQ*-algebras associated with the following Pexiderized Jensen type functional
equation

kf
(x + y

k

)
= f0(x) + f1(y)

by using direct method. Using fixed point method, we prove the Hyers-Ulam stability
of derivations on proper Jordan CQ*-algebras. Moreover, we investigate the
Pexiderized Jensen type functional inequality in proper Jordan CQ*-algebras.
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1. Introduction and preliminaries
In 1940, Ulam [1] asked the first question on the stability problem. In 1941, Hyers [2]

solved the problem of Ulam. This result was generalized by Aoki [3] for additive map-

pings and by Rassias [4] for linear mappings by considering an unbounded Cauchy dif-

ference. In 1994, a generalization of Rassias’ Theorem was obtained by Găvruta [5].

Since then, several stability problems for various functional equations have been inves-

tigated by numerous mathematicians (see [6-25], M Eshaghi Gordji, unpublished

work).

The Jensen equation is 2f
( x+y

2

)
= f (x) + f (y), where f is a mapping between linear

spaces. It is easy to see that a mapping f : X ® Y between linear spaces with f(0) = 0

satisfies the Jensen equation if and only if it is additive [26]. Stability of the Jensen

equation has been studied at first by Kominek [27].

We recall some basic facts concerning quasi *-algebras.

Definition 1.1. Let A be a linear space and let A0 be a *-algebra contained in A as a

subspace. We say that A is a quasi *-algebra over A0 if

(i) the right and left multiplications of an element of A and an element of A0 are

defined and linear;

(ii) x1(x2a) = (x1x2)a, (ax1)x2 = a(x1x2) and x1(ax2) = (x1a)x2 for all x1, x2 Î A0 and

all a Î A;
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(iii) an involution *, which extends the involution of A0, is defined in A with the

property (ab)* = b*a* whenever the multiplication is defined.

Quasi *-algebras [28,29] arise in natural way as completions of locally convex *-alge-

bras whose multiplication is not jointly continuous; in this case one has to deal with

topological quasi *-algebras.

A quasi *-algebra (A, Ao) is said to be a locally convex quasi *-algebra if in A a locally

convex topology τ is defined such that

(i) the involution is continuous and the multiplications are separately continuous;

(ii) Ao is dense in A[τ].

Throughout this article, we suppose that a locally convex quasi *-algebra (A, A0) is

complete. For an overview on partial *-algebra and related topics we refer to [30].

In a series of articles [31-35] many authors have considered a special class of quasi

*algebras, called proper CQ*-algebras, which arise as completions of C*-algebras. They

can be introduced in the following way:

Let A be a Banach module over the C*-algebra A0 with involution * and C*-norm || .

||0 such that A0 ⊂ A. We say that (A, A0) is a proper CQ*-algebra if

(i) A0 is dense in A with respect to its norm || · ||;

(ii) (ab)* = b*a* whenever the multiplication is defined;

(iii) || y ||0= supa Î A, || a ||≤1 || ay || for all y Î A0.

Definition 1.2. A proper CQ*-algebra (A, A0), endowed with the Jordan product

z ◦ x =
zx + xz

2

for all x Î A and all z Î A0, is called a proper Jordan CQ*-algebra.

Definition 1.3. Let (A, A0) be proper Jordan CQ*-algebras.

A ℂ-linear mapping δ: A0 ® A is called a Jordan derivation if

δ(x ◦ y) = x ◦ δ(y) + δ(x) ◦ y

for all x, y Î A0.

Park and Rassias [36] investigated homomorphisms and derivations on proper JCQ*-

triples.

Throughout this article, assume that k is a fixed positive integer.

Eskandani and Vaezi [37] proved the Hyers-Ulam stability of derivations on proper

Jordan CQ*-algebras associated with the following Pexiderized Jensen type functional

equation

kf
(x + y

k

)
= f0(x) + f1(y)

by using direct method.

In this article, using fixed point method, we prove the Hyers-Ulam stability of deriva-

tions on proper Jordan CQ*-algebras.

Moreover, we investigate the Pexiderized Jensen type functional inequality in proper

Jordan CQ*-algebras.

2. Derivations on proper Jordan CQ*-algebras
Throughout this section, assume that (A, A0) is a proper Jordan CQ*-algebra with C*-

norm || · ||A0 and norm || · ||A.
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Theorem 2.1. Let � : A0 × A0 ® [0, + ∞) be a function such that

lim
n→∞

1
4n

ϕ(2nx, 2ny) = 0 (2:1)

for all x, y Î A0 . Suppose that f, f0, f1 : A0 ® A are mappings with f(0) = 0 and

||μf (x) − f0(y) − f1(z)||A ≤
∥∥∥kf

(μx + y + z
k

)∥∥∥
A

(2:2)

||f (x ◦ y) + x ◦ f1(y) + f0(x) ◦ y||A ≤ ϕ(x, y) (2:3)

for all μ ∈ T1 : {μ ∈ C : |μ| = 1} and all x, y, z Î A0. Then the mapping f : A0 ® A

is a Jordan derivation. Moreover,

f (x) = f0(0) − f0(x) = f1(0) − f1(x)

for all x Î A0.

Proof. Letting x = yz = 0 in (2.2), we get f0(0) + f1(0) = 0.

Letting µ = 1, y = -x and z = 0 in (2.2), we get

f (x) = f0(−x) + f1(0) = f0(−x) − f0(0) (2:4)

for all x Î A0. Similarly, we have

f (x) = f1(-x) + f0(0) = f1(-x) − f1(0) (2:5)

for all x Î A0. By (2.2), we have

||f (x + y) − f (x) − f (y)||A = ||f (x + y) − (f0(−x) + f1(0)) − (f1(−y) + f0(0))||A
= ||f (x + y) − f0(−x) − f1(−y)||A = 0

for all x, y Î A0. So the mapping f : A0 ® A is additive. Letting y = -µx and z = 0 in

(2.2), we get

μf (x) = f0(−μx) + f1(0) = f (μx)

for all x Î A0. By the same reasoning as in the proof of [[38], Theorem 2.1], the

mapping f : A0 ® A is ℂ-linear. By (2.1) and (2.3), we have

||f (x ◦ y) − x ◦ f (y) − f (x) ◦ y||A
= lim

n→∞
1
4n

||f (2nx ◦ 2ny) − 2nx ◦ (f1(−2ny) − f1(0)) − (f0(−2nx) − f0(0)) ◦ 2ny||A

= lim
n→∞

1
4n

||f (2nx ◦ 2ny) − 2nx ◦ f1(−2ny) − f0(−2nx) ◦ 2ny||A

≤ lim
n→∞

ϕ(−2nx,−2ny)
4n

= 0

for all x, y Î A0. So

f (x ◦ y) = x ◦ f (y) + f (x) ◦ y

for all x, y Î A0. Therefore, the mapping f : A0 ® A is a Jordan derivation.

Since f(-x) = -f(x) for all x Î A0, it follows from (2.4) that

f (x) = −f (−x) = −(f0(x) − f0(0)) = f0(0) − f0(x)
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for all x Î A0. It follows from (2.5) that

f (x) = −f ( − x) = −(f1(x) − f1(0)) = f1(0) − f1(x)

for all x Î A0. This completes the proof.

□
Corollary 2.2. Let θ, r0, r1 be nonnegative real numbers with r0 + r1 <2, and let f, f0,

f1 : A0 ® A be mappings satisfying f (0) = 0, (2.2) and

||f (x ◦ y) + x ◦ f1(y) + f0(x) ◦ y||A ≤ θ ||x||r0A0
||y||r1A0

for all x, y Î A0. Then the mapping f : A0 ® A is a Jordan derivation. Moreover,

f (x) = f0(0) − f0(x) = f1(0) − f1(x)

for all x Î A0.

Proof. The proof follows from Theorem 2.1.

□
Corollary 2.3. Let θ, r0, r1 be nonnegative real numbers with r < 2 and let f, f0, f1 : A0

® A be mappings satisfying f(0) = 0, (2.2) and

||f (x ◦ y) + x ◦ f1(y) + f0(x) ◦ y||A ≤ θ(||x||rA0
+ ||y||rA0

)

for all x, y Î A0. Then the mapping f : A0 ® A is a Jordan derivation. Moreover,

f (x) = f0(0) − f0(x) = f1(0) − f1(x)

for all x Î A.

3. Hyers-Ulam stability of derivations on proper Jordan CQ*-algebras
We now introduce one of fundamental results of fixed point theory. For the proof,

refer to [39,40]. For an extensive theory of fixed point theorems and other nonlinear

methods, the reader is referred to the book of Hyers et al. [8].

Let X be a set. A function d : X × X ® [0, ∞] is called a generalized metric on X if

and only if d satisfies:

(GM1) d(x, y) = 0 if and only if x = y;

(GM2) d(x, y) = d(y, x) for all x, y Î X;

(GM3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z Î X.

Note that the distinction between the generalized metric and the usual metric is that

the range of the former is permitted to include the infinity.

Let (X, d) be a generalized metric space. An operator T : X ® X satisfies a Lipschitz

condition with Lipschitz constant L if there exists a constant L ≥ 0 such that

d(Tx, Ty) ≤ Ld(x, y)

for all x, y Î X. If the Lipschitz constant L is less than 1, then the operator T is

called a strictly contractive operator.

We recall the following theorem by Diaz and Margolis [39].

Theorem 3.1. Suppose that we are given a complete generalized metric space (Ω, d)

and a strictly contractive function T : Ω ® Ω with Lipschitz constant L. Then for each
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given x Î Ω, either

d(Tmx, Tm+1x) = ∞ for all m ≥ 0,

or other exists a natural number m0 such that

★ d(Tmx, Tm+1x) <∞ for all m ≥ m0;

★ the sequence {Tmx} is convergent to a fixed point y* of T;

★ y* is the unique fixed point of T in

� = {y ∈ � : d(Tm0x, y) < ∞};

★ d(y, y∗) ≤ 1
1 − L

d(y,Ty)for all y Î Λ.

Now we prove the Hyers-Ulam stability of derivations on proper Jordan CQ*-alge-

bras by using fixed point method.

Theorem 3.2. Let f, f0, f1 : A0 ® A be mappings with f(0) = 0 for which there exists a

function ϕ : A2
0 → [0, ∞)with �(0, 0) = 0 such that

∥∥∥kf
(μx + μy

k

)
− μf0(x) − μf1(y)

∥∥∥
A

≤ ϕ(x, y), (3:1)

∥∥∥kf
(x ◦ y

k

)
− x ◦ f1(y) − f0(x) ◦ y

∥∥∥
A

≤ ϕ(x, y) (3:2)

for all μ ∈ T1and all x, y Î A0. If there exists an L < 1 such that

ϕ(x, y) ≤ 2Lϕ( x2 ,
y
2)for all x, y Î A0, then there exists a unique Jordan derivation δ : A0

® A such that

||f (x) − δ(x)||A ≤ 1
2k − 2kL

ϕ(kx, kx),

||f0(x) − f0(0) − δ(x)||A ≤ 1
2 − 2L

ϕ(x, x)
(3:3)

for all x Î A0. Moreover, f0(x) - f0(0) = f1(x) - f1(0) for all x Î A0.

Proof. Letting x = y = 0 and µ = 1 in (3.1), we get f0(0) + f1(0) = 0.

Letting y = 0 and µ = 1 in (3.1), we get

kf
( x
k

)
= f0(x) + f1(0) = f0(x) − f0(0) (3:4)

for all x Î A0. Similarly, we get

kf
( y
k

)
= f1(y) + f0(0) = f1(y) − f1(0) (3:5)

for all y Î A0. Using (3.4) and (3.5), we get

f0(x) − f0(0) = f1(x) − f1(0)

for all x Î A0.
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Let H : A0 ® A be a mapping defined by

H(x) := f0(x) − f0(0) = f1(x) − f1(0) = kf
( x
k

)

for all x Î A0. Then we have

||H(μx + μy) − μH(x) − μH(y)||A ≤ ϕ(x, y) (3:6)

for all μ ∈ T1 and x, y Î A0.

Consider the set

X := {g : A0 → A}

and introduce the generalized metric on X:

d(g, h) = inf{C ∈ R+ : ||g(x) − h(x)||A ≤ Cϕ(x, x), ∀x ∈ A0}.

It is easy to show that (X, d) is complete (see [[41], Lemma 2.1]).

Now we consider the linear mapping J : X ® X such that

Jg(x) :=
1
2
g(2x)

for all x Î A.

By [[41], Theorem 3.1],

d(Jg, Jh) ≤ Ld(g, h)

for all g, h Î X.

Letting µ = 1 and y = x in (3.6), we get

||H(2x) − 2H(x)|| ≤ ϕ(x, x) (3:7)

and so

||H(x) − 1
2
H(2x)|| ≤ 1

2
ϕ(x, x)

for all x Î A0. Hence d(H, JH) ≤ 1
2.

By Theorem 3.1, there exists a mapping δ : A0 ® A such that

(1) δ is a fixed point of J, i.e.,

δ(2x) = 2δ(x) (3:8)

for all x Î A0. The mapping δ is a unique fixed point of J in the set

Y = {g ∈ X : d(f , g) < ∞}.

This implies that δ is a unique mapping satisfying (3.8) such that there exists C Î (0,

∞) satisfying

||H(x) − δ(x)||A ≤ Cϕ(x, x)

for all x Î A0.

(2) d(JnH, δ) ® 0 as n ® ∞. This implies the equality

lim
n→∞

H(2nx)
2n

= δ(x) (3:9)
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for all x Î A0.

(3) d(H, δ) ≤ 1
1−L d(H, JH), which implies the inequality

d(H, δ) ≤ 1
2 − 2L

.

This implies that the inequality (3.3) holds.

It follows from (3.6) and (3.9) that

||δ(μx + μy) − μδ(x) − μδ(y)||A
= lim

n→∞
1
2n

||H(2nμx + 2nμy) − μH(2nx) − μH(2ny)||A

≤ lim
n→∞

1
2n

ϕ(2nx, 2ny) = 0

for μ ∈ T1 and all x, y Î A0. So

δ(μx + μy) = μδ(x) + μδ(y)

for μ ∈ T1 and all x, y Î A0. By the same reasoning as in the proof of [[38], Theorem

2.1], the mapping δ : A0 ® A is ℂ-linear.

It follows from ϕ(x, y) ≤ 2Lϕ( x2 ,
y
2) that

lim
n→∞

1
4n

ϕ(2nx, 2ny) ≤ 1
2n

ϕ(2nx, 2ny) = 0 (3:10)

for all x, y Î A0.

It follows from (3.2) and (3.10) that

||δ(x ◦ y) − x ◦ δ(y) − δ(x) ◦ y||A
≤ lim

n→∞
1
4n

∥∥∥kf
(
4n

(x ◦ y
k

))
− 2nx ◦ (f1(2ny) + f0(0)) − (f0(2nx) + f1(0)) ◦ 2ny

∥∥∥
A

≤ lim
n→∞

1
4n

∥∥∥kf
(
4n

(x ◦ y
k

))
− 2nx ◦ f1(2ny) − f0(2nx) ◦ 2ny

∥∥∥
A

≤ lim
n→∞

1
4n

ϕ(2nx, 2ny) = 0

for all x, y Î A0. Hence

δ(x ◦ y) = x ◦ δ(y) + δ(x) ◦ y

for all x, y Î A0. So δ : A0 ® A is a Jordan derivation, as desired.

□
Corollary 3.3. [[37], Theorem 3.1] Let be a nonnegative real number and r0, r1 posi-

tive real numbers with l:= r0 + r1 <1 and let f, f0, f1 : A0 ® A be mappings with f (0) =

0 such that
∥∥∥kf

(μx + μy
k

)
− μf0(x) − μf1(y)

∥∥∥
A

≤ θ ||x||r0A0
||y||r1A0

, (3:11)

∥∥∥kf
(x ◦ y

k

)
− x ◦ f1(y) − f0(x) ◦ y

∥∥∥
A

≤ θ ||x||r0A0
||y||r1A0

(3:12)

for all μ ∈ T1and all x, y Î A0. Then there exists a unique Jordan derivation δ : A0

® A such that
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||f (x) − δ(x)||A ≤ kλ−1θ

2 − 2λ
||x||λA0

,

||f0(x) − f0(0) − δ(x)||A ≤ θ

2 − 2λ
||x||λA0

for all x Î A0. Moreover, f0(x) - f0(0) = f1(x) - f1(0) for all x Î A0.

Proof. The proof follows from Theorem 3.2 by taking

ϕ(x, y) := θ ||x||r0A0
||y||r1A0

for all x, y Î A. Letting L = 2l-1, we get the desired result.

□
Corollary 3.4. [[37], Theorem 3.4] Let θ, r be a nonnegative real numbers with 0 < r

<1, and let f, f0, f1 : A0 ® A be mappings with f (0) = 0 such that
∥∥∥kf

(μx + μy
k

)
− μf0(x) − μf1(y)

∥∥∥
A

≤ θ(||x||rA0
+ ||y||rA0

), (3:13)

∥∥∥kf
(x o y

k

)
− x o f1(y) − f0(x) o y

∥∥∥
A

≤ θ(||x||rA0
+ ||y||rA0

) (3:14)

for all μ ∈ T1and all x, y Î A0. Then there exists a unique Jordan derivation δ : A0

® A such that

||f (x) − δ(x)||A ≤ 2kr−1θ

2 − 2r
||x||rA0

,

||f0(x) − f0(0) − δ(x)||A ≤ 2θ

2 − 2r
||x||rA0

for all x Î A0. Moreover, f0(x) - f0(0) = f1(x) - f1(0) for all x Î A0.

Proof. The proof follows from Theorem 3.2 by taking

ϕ(x, y) := θ(||x||rA0
+ ||y||rA0

)

for all x, y Î A. Letting L = 2r-1, we get the desired result.

□
Theorem 3.5. Let f, f0, f1 : A0 ® A be mappings with f(0) = f0(0) = f1(0) = 0 for which

there exists a function ϕ : A2
0 → [0,∞)satisfying (3.1) and (3.2). If there exists an L <1

such that ϕ(x, y) ≤ L
4ϕ(2x, 2y)for all x, y Î A0, then there exists a unique Jordan deriva-

tionδ: A0 ® A such that

||f (x) − δ(x)||A ≤ L

4k − 4kL
ϕ(kx, kx),

||f0(x) − δ(x)||A ≤ L

4 − 4L
ϕ(x, x)

(3:15)

for all x Î A0. Moreover, f0(x) = f1(x) for all x Î A0.

Proof. Let (X, d) be the generalized metric space defined in the proof of Theorem 3.2.

Now we consider the linear mapping J : X ® X such that

Jg(x) := 2g
( x

2

)

for all x Î X.

Park et al. Journal of Inequalities and Applications 2012, 2012:114
http://www.journalofinequalitiesandapplications.com/content/2012/1/114

Page 8 of 11



Let H(x) := f0(x) = f1(x) = kf ( xk ) for all x Î A0. It follows from (3.7) that

∥∥∥H(x) − 2H
( x

2

)∥∥∥ ≤ ϕ
( x

2
,
x

2

)
≤ L

4
ϕ(x, y)

for all x Î A0. Thus d(H, JH) ≤ L
4. One can show that there exists a mapping δ : A0

® A such that

d(H, δ) ≤ L
4 − 4L

.

Hence we obtain the inequality (3.15).

It follows from ϕ(x, y) ≤ L
4ϕ(2x, 2y) that

lim
n→∞ 4nϕ

( x

2n
,

y

2n

)
= 0

for all x, y Î A0. So

||δ(x ◦ y) − x ◦ δ(y) − δ(x) ◦ y||A
≤ lim

n→∞ 4n
∥∥∥kf

(
4n

x ◦ y
4nk

)
− x

2n
◦ f1

( y
2n

)
− f0

( x
2n

)
◦ y
2n

∥∥∥
A

≤ lim
n→∞ 4nϕ

( x
2n

,
y
2n

)
= 0

for all x, y Î A0. Hence

δ(x ◦ y) = x ◦ δ(y) + δ(x) ◦ y

for all x, y Î A0. So δ : A0 ® A is a Jordan derivation, as desired.

The rest of the proof is similar to the proof of Theorem 3.2.

□
Corollary 3.6. [[37], Theorem 3.2] Let θ be a nonnegative real number and r0, r1

positive real numbers with l:= r0 + r1 >2 and let f, f0, f1 : A0 ® A be mappings satisfy-

ing f(0) = f0(0) = f1(0) = 0, (3.11) and (3.12). Then there exists a unique Jordan deriva-

tion δ: A0 ® A such that

||f (x) − δ(x)||A ≤ kλ−1θ

2λ − 4
||x||λA0

||fi(x) − δ(x)||A ≤ θ

2λ − 4
||x||λA0

for all x Î A0. Moreover, f0(x) = f1(x) for all x Î A0.

Proof. The proof follows from Theorem 3.3 by taking

ϕ(x, y) := θ ||x||r0A0
||y||r1A0

for all x, y Î A. Letting L = 22-l, we get the desired result.

□
Corollary 3.7. [[37], Theorem 3.3] Let θ, r be nonnegative real numbers with r >2,

and let f, f0, f1 : A0 ® A be mappings satisfying f (0) = f0(0) = f1(0) = 0, (3.13) and

(3.14). Then there exists a unique Jordan derivation δ : A0 ® A such that
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||f (x) − δ(x)||A ≤ 2kr−1θ

2r − 4
||x||rA0

,

||f0(x) − δ(x)||A ≤ 2θ

2r − 4
||x||rA0

for all x Î A0. Moreover, f0(x) = f1(x) for all x Î A0.

Proof. The proof follows from Theorem 3.3 by taking

ϕ(x, y) := θ(||x||rA0
+ ||y||rA0

)

for all x, y Î A. Letting L = 22-r, we get the desired result.

□
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