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Abstract

We obtain an improved Heinz inequality for scalars and we use it to establish an
inequality for the Hilbert-Schmidt norm of matrices, which is a refinement of a result
due to Kittaneh.
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1. Introduction
Let Mn be the space of n × n complex matrices and ||·|| stand for any unitarily invar-

iant norm on Mn. So, ||UAV|| = ||A|| for all A Î Mn and for all unitary matrices U, V

Î Mn. If A = [aij] Î Mn, then

‖A‖2 =

⎛
⎝ n∑

i,j=1

|aij|2
⎞
⎠

1/2

is the Hilbert-Schmidt norm of matrix A. It is known that the Hilbert-Schmidt norm

is unitarily invariant.

The classical Young’s inequality for nonnegative real numbers says that if a, b ≥ 0

and 0 ≤ v ≤ 1, then

avb1−v ≤ va + (1 − v) b (1:1)

with equality if and only if a = b. Young’s inequality for scalars is not only interesting

in itself but also very useful. If v = 1
2 , by (1.1), we obtain the arithmetic-geometric

mean inequality

2
√
ab ≤ a + b. (1:2)

Kittaneh and Manasrah [1] obtained a refinement of Young’s inequality as follows:

avb1−v + r0
(√

a −
√
b
)2 ≤ va + (1 − v)b, (1:3)

where r0 = min {v, 1 − v}.

Let a, b ≥ 0 and 0 ≤ v ≤ 1. The Heinz means are defined as follows:

Hv(a, b) =
avb1−v + a1−vbv

2
.
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It follows from the inequalities (1.1) and (1.2) that the Heinz means interpolate

between the geometric mean and the arithmetic mean:

√
ab ≤ Hv(a, b) ≤ a + b

2
. (1:4)

The second inequality of (1.4) is known as Heinz inequality for nonnegative real

numbers.

As a direct consequence of the inequality (1.3), Kittaneh and Manasrah [1] obtained

a refinement of the Heinz inequality as follows:

Hv(a, b) + r0
(√

a −
√
b
)2

≤ a + b
2

, (1:5)

where r0 = min {v, 1 − v}.

Bhatia and Davis [2] proved that if A, B, X Î Mn such that A and B are positive

semidefinite and if 0 ≤ v ≤ 1, then

2
∥∥∥A1/2XB1/2

∥∥∥ ≤ ∥∥AvXB1−v + A1−vXBv
∥∥ ≤ ‖AX + XB‖ . (1:6)

This is a matrix version of the inequality (1.4). Kittaneh [3] proved that if A, B, X Î
Mn such that A and B are positive semidefinite and if 0 ≤ v ≤ 1, then

∥∥AvXB1−v + A1−vXBv
∥∥ ≤ 4r0

∥∥∥A1/2XB1/2
∥∥∥ + (1 − 2r0) ‖AX + XB‖ , (1:7)

where r0 = min {v, 1 − v}. This is a refinement of the second inequality in (1.6).

In this article, we first present a refinement of the inequality (1.5). After that, we use

it to establish a refinement of the inequality (1.7) for the Hilbert-Schmidt norm.

2. A refinement of the inequality (1.5)
In this section, we give a refinement of the inequality (1.5). To do this, we need the

following lemma.

Lemma 2.1. [4,5] Let f(x) be a real valued convex function on an interval [a, b]. For

any x1, x2 Î [a, b], we have

f (x) ≤ f (x2) − f (x1)
x2 − x1

x − x1f (x2) − x2f (x1)
x2 − x1

, x ∈ (x1, x2).

Theorem 2.1. Let a, b ≥ 0 and 0 ≤ v ≤ 1. If r0 = min {v, 1 − v}, then

2Hv(a, b) ≤
{
(1 − 4r0)(a + b) + 4r0(a1/4b3/4 + a3/4b1/4) , v ∈ [0, 1

4 ] ∪ [ 34 , 1],

2 (4r0 − 1)
√
ab + 2(1 − 2r0)(a1/4b3/4 + a3/4b1/4) , v ∈ [ 14 ,

3
4 ].

(2:1)

Proof. It is known that as a function of v, Hv (a, b) is convex and attains its mini-

mum at v = 1
2 . Let

f (v) = 2Hv(a, b) = avb1−v + a1−vbv, 0 ≤ v ≤ 1.

Obviously, f(v) is convex. For 0 ≤ v ≤ 1
4 , since f(v) is convex on 0[1], by Lemma 2.1,

we have
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f (v) ≤ f
( 1
4

) − f (0)

1
4 − 0

v − 0f
( 1
4

) − 1
4 f (0)

1
4 − 0

,

which is equivalent to

f (v) ≤ 4
(
f
(
1
4

)
− f (0)

)
v + f (0) .

That is,

f (v) ≤ (1 − 4v) f (0) + 4vf
(
1
4

)
.

So,

avb1−v + a1−vbv ≤ (1 − 4r0) (a + b) + 4r0
(
a1/4b3/4 + a3/4b1/4

)
.

For 3
4 ≤ v ≤ 1 , similarly, we have

f (v) ≤ f (1) − f
( 3
4

)
1 − 3

4

v −
3
4 f (1) − f

( 3
4

)
1 − 3

4

,

which is equivalent to

f (v) ≤ 4
(
f (1) − f

(
3
4

))
v − 3f (1) + 4f

(
3
4

)
.

That is,

f (v) ≤ (4v − 3) f (1) + 4 (1 − v) f
(
3
4

)
.

So,

avb1−v + a1−vbv ≤ (1 − 4r0) (a + b) + 4r0
(
a1/4b3/4 + a3/4b1/4

)
.

If 1
4 ≤ v ≤ 1

2 , then by Lemma 2.1, we have

f (v) ≤ f
(1
2

) − f
( 1
4

)
1
2 − 1

4

v −
1
4 f

(1
2

) − 1
2 f

( 1
4

)
1
2 − 1

4

,

and so

f (v) ≤ (4v − 1) f
(
1
2

)
+ 2 (1 − 2v) f

(
1
4

)
,

which is equivalent to

avb1−v + a1−vbv ≤ 2(4r0 − 1)
√
ab + 2(1 − 2r0)

(
a1/4b3/4 + a3/4b1/4

)
.
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If 1
2 ≤ v ≤ 3

4 , similarly, we have

f (v) ≤ f
(3
4

) − f
( 1
2

)
3
4 − 1

2

v −
1
2 f

(3
4

) − 3
4 f

( 1
2

)
3
4 − 1

2

,

and so

f (v) ≤ (3 − 4v) f
(
1
2

)
+ 2 (2v − 1) f

(
3
4

)
,

which is equivalent to

f (v) ≤ (4r0 − 1) f
(
1
2

)
+ 2 (1 − 2r0) f

(
3
4

)
.

That is,

avb1−v + a1−vbv ≤ 2(4r0 − 1)
√
ab + 2(1 − 2r0)

(
a1/4b3/4 + a3/4b1/4

)
.

This completes the proof. □
Now, we give a simple comparison between the upper bound for avb1-v + a1-vbv in

(1.5) and (2.1). If v ∈ [
0, 14

] ∪ [ 3
4 , 1

]
, then

a + b − 2r0
(√

a −
√
b
)2 − (1 − 4r0)(a + b) − 4r0(a1/4b3/4 + a3/4b1/4)

= 2r0
(
a + b + 2

√
ab − 2

(
a1/4b3/4 + a3/4b1/4

))
≥ 0.

If v ∈ [ 1
4 ,

3
4

]
, then

a + b − 2r0
(√

a −
√
b
)2 − 2(4r0 − 1)

√
ab − 2(1 − 2r0)(a1/4b3/4 + a3/4b1/4)

= (1 − 2r0)
(
a + b + 2

√
ab − 2

(
a1/4b3/4 + a3/4b1/4

))
≥ 0.

So, the inequality (2.1) is a refinement of the inequality (1.5).

3. An application
In this section, we give a refinement of the inequality (1.7) for the Hilbert-Schmidt

norm based on the inequality (2.1).

Theorem 3.1. Let A, B, X Î Mn such that A and B are positive semidefinite and

suppose

that

φ (v) = ||AvXB1−v + A1−vXBv||2, 0 ≤ v ≤ 1.

Then

φ(v) ≤
{
(1 − 4r0)φ(0) + 4r0φ

(1
4

)
, v ∈ [0, 1

4 ] ∪ [ 3
4 , 1

]
(4r0 − 1)φ

( 1
2

)
+ 2(1 − 2r0)φ

(1
4

)
, v ∈ [ 1

4 ,
3
4

] , (3:1)

where r0 = min {v, 1 − v}.
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Proof. Since every positive semidefinite matrix is unitarily diagonalizable, it follows

that there exist unitary matrices U, V Î Mn such that A = UΛ1U* and B = VΛ2V*,

where Λ1 = diag (l1,..., ln), Λ2 = diag(µ1,..., µn) and li, µi ≥ 0, i = 1,..., n. Let

Y = U∗XV = [yij].

If v ∈ [
0, 14

] ∪ [ 3
4 , 1

]
, then by (2.1) and the Cauchy-Schwarz inequality, we have

||AvXB1−v + A1−vXBv||22 =
n∑

i,j=1

(λv
iμ

1−v
j + λ1−v

i μv
j )

2|yij|2

≤
n∑

i,j=1

(
(1 − 4r0)(λi + μj) + 4r0(λ

1/4
i μ

3/4
j + λ

3/4
i μ

1/4
j )

)2
|yij|2

= (1 − 4r0)2
n∑

i,j=1

(λi + μj)
2|yij|2

+ 16r20

n∑
i,j=1

(
λ
1/4
i μ

3/4
j + λ

3/4
i μ

1/4
j

)2
|yij|2

+ 8r0(1 − 4r0)
n∑

i,j=1

(λi + μj)
(
λ
1/4
i μ

3/4
j + λ

3/4
i μ

1/4
j

)
|yij|2

≤ (1 − 4r0)2φ2(0) + 16r20φ
2 (1

4

)
+ 8r0(1 − 4r0)φ(0)φ

( 1
4

)
=

(
(1 − 4r0)φ(0) + 4r0φ

( 1
4

))2
.

If v ∈ [ 1
4 ,

3
4

]
, the result follows from the inequality (2.1) and the same method above.

This completes the proof. □
Remark. For the Hilbert-Schmidt norm, by the inequality (1.7), we have

φ (v) ≤ 2r0φ
(
1
2

)
+ (1 − 2r0) φ (0) .

So, for v ∈ [
0, 14

] ∪ [ 3
4 , 1

]
, we have

2r0φ
( 1
2

)
+ (1 − 2r0)φ (0) − (1 − 4r0)φ (0) − 4r0φ

( 1
4

)
= 2r0

(
φ

(1
2

)
+ φ (0) − 2φ

( 1
4

)) ≥ 0.

If v ∈ [ 1
4 ,

3
4

]
, then

2r0φ
( 1
2

)
+ (1 − 2r0)φ (0) − (4r0 − 1)φ

(1
2

) − 2(1 − 2r0)φ
(1
4

)
= (1 − 2r0)

(
φ

( 1
2

)
+ φ (0) − 2φ

(1
4

)) ≥ 0.

So, the inequality (3.1) is a refinement of the inequality (1.7) for the Hilbert-Schmidt

norm.
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