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Abstract

In this article, by using the Lagrangian function, we investigate the sufficient global
optimality conditions for a class of semi-definite optimization problems, where the
objective function are general nonlinear, the variables are mixed integers subject to
linear matrix inequalities (LMIs) constraints as well as bounded constraints. In
addition, the sufficient global optimality conditions for general nonlinear
programming problems are derived, where the variables satisfy LMIs constraints and
box constraints or bivalent constraints. Furthermore, we give the sufficient global
optimality conditions for standard semi-definite programming problem, where the
objective function is linear, the variables satisfy linear inequalities constraints and box
constraints.
Mathematics Subject Classification 2010: 90C30; 90C26; 90C11.

1 Introduction
As we know semi-definite programming (SDP) can be viewed as a natural extension of

linear programming where the componentwise inequalities between vectors are

replaced by matrix inequalities. The SDP has many important applications in systems

and control theory [1] and combinatorial optimization [2-4]. Many survey articles such

as [1,5-7] featured various applications of SDP and algorithmic aspects. With the devel-

opment of optimization software, more and more problems are modeled as SDP pro-

blems. SDP became one of the basic modeling and optimization tools along with linear

and quadratic programming.

Recently, many researchers focused on characterizing the global minimizer of many

mathematical programming problems. Beck and Teboulle [8] have established a neces-

sary global optimality condition for nonconvex quadratic optimization problems with

binary constrains. Jeyakumar et al. [9] have given Lagrange multiplier conditions for

global optimality of general quadratic minimization problems with quadratic con-

straints. Jeyakumar et al. [10] have obtained sufficient global optimality conditions for

a quadratic minimization problem subject to box constraints or binary constraints.

Jeyakumar et al. [11] have established some necessary and sufficient conditions for a

given feasible point to be a global minimizer of some minimization problems with

mixed variables. Wu and Bai [12] have given some global optimality conditions for

mixed quadratic programming problems, their approach is based on L-subdifferential

and L-normal cone. Especially Jeyakumar and Wu [13] have presented sufficient condi-

tions for global optimality of non-convex quadratic programs involving linear matrix
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inequality (LMI) constraints by using Lagrangian function and by examining conditions

which minimizes a quadratic subgradient of the Lagrangian function over simple

bounding constraints. Jeyakumar [14] have obtained some necessary and sufficient con-

straint qualifications (CQs) for the strong duality in convex semidefinite optimization.

In this article, we consider the following semidefinite optimization model problem:

(SDPf ) min
x∈Rn

f (x)

s.t. F0 +
n∑

k=1

Fkxk � O,

xi ∈ [ui, vi], i ∈ M,

xj ∈ {pj, pj + 1, ..., qj}, j ∈ N

where M ∩ N = ∅, M ∪ N = {1,..., n), ui, vi Î R and ui <vi for any i Î M, pj, qj are

integers and pj <qj for all j Î N; f : Rn ® R are twice continuously differentiable func-

tions on an open subset of Rn containing set {x Î Rn|xi Î [ui,vi],i Î M; xj Î [pj, qj], j Î
N}. For k = 0, 1, 2,..., n, Fk Î Sm, the space of symmetric (m × m) matrices with the

trace inner product and ≽ denotes the Löwner partial order of Sm, that is, for A, B Î
Sm, A ≽ B if and only if (A - B) is positive semidefinite. Such semidefinite optimization

model problem has been intensely studied in the last 10 years since it arose from con-

trol system analysis and design. Interested reader may refer to [15,16]. The convex

semidefinite optimization model problem has been studied in [14,16,17] for it’s valu-

able numerical and modeling tool for system and control theory.

The purpose of this article is to present some sufficient global optimality condition

for a given feasible point to be a global minimizer of programming problems (SDPf)

with nonlinear objects. We develop the sufficient global optimality conditions for non-

linear programming problem (SDPf) with LMI and bounded constraints of mixed inte-

ger variables by using the Lagrangian function. We also deduce the sufficient global

optimality conditions for nonlinear programs with LMI and box constraints or bivalent

constraints which are the extended results beyond [13], as well as the sufficient global

optimality conditions for standard SDP problem (SDP), where the objective function is

linear, the variables satisfy LMIs constraints and box constraints.

2 Preliminaries and notations
Firstly we present some notations that will be used throughout this article. The real

line is denoted by R and the n-dimensional Euclidean space is denoted by Rn. For vec-

tors x, y Î Rn, x ≥ y means that xk ≥ yk, for k = 1,..., n. The notation A ≽ B means A -

B is a positive semidefinite and A ≼ O means - A ≽ O. A diagonal matrix with diagonal

elements a1,...,an is denoted by diag(a1,...,an). We let U = {x = (x1,..., xn)
T | xi Î [ui, vi],

i Î M, xj Î {pj, pj + 1,...,qj}, j Î N}; The feasible set Ω of (SDPf) is given by Ω = U ∩ F-

1(S), where S = {M Î Sm|M ≽ O} is the closed convex cone of positive semidefinite (m

× m) matrices, F-1(S) := {x Î Rn|F(x) ≽ O} and F(x) := F0 +
∑n

k=1 Fkxk . The inner pro-

duct in Sm is defined by (N1, N2) = Tr[N1 N2], where Tr[·] is the trace operation. The

dual cone of S is denoted by S+ := {θ Î Sm|(θ, Z) ≥ 0, ∀Z Î S}, then S+ = S. Let

F̂(x) =
∑n

k=1 xkFk , x = (x1,...,xn) Î Rn, then F̂ is a linear operator from Rn to Sm and its

dual is defined by F̂∗(Z) =
(
Tr[F1Z], ..., Tr[FnZ]

T
)
for any Z Î S. The Lagrangian
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function of (SDPf) is defined as

HZ(x) := f (x) − F̂ ∗ (Z)Tx − Tr[ZF0],

where Z Î Sm. For x̄ ∈ � and any i Î M, j Î N, we let

˜̄xi :=
⎧⎨⎩

−1, if x̄i = ui
1, if x̄i = vi

sign(∇f (x̄) − F̂ ∗ (Z))i, if ui < x̄i < vi

,

˜̄xj :=
⎧⎨⎩

−1, if x̄j = pj
1, if x̄j = qj

sign(∇f (x̄) − F̂ ∗ (Z))j, if pj < x̄j < qj
,

˜̄X = diag
(
˜̄x1, ..., ˜̄xn

)
,

bx̄i :=
˜̄xi(∇f (x̄) − F̂ ∗ (Z)

)
i

vi − ui

bx̄j := max

⎧⎪⎨⎪⎩
˜̄xj(∇f (x̄) − F̂ ∗ (Z)

)
j

1
,

˜̄xj(∇f (x̄) − F̂ ∗ (Z)
)
j

qj − pj

⎫⎪⎬⎪⎭ ,

bx̄ :=
(
bx̄1 , ..., bx̄n

)T ,

where sign
(
∇f (x̄) − F̂ ∗ (Z)

)
k
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1,

(
∇f (x̄) − F̂ ∗ (Z)

)
k

< 0

0,
(
∇f (x̄) − F̂ ∗ (Z)

)
k
= 0

1,
(
∇f (x̄) − F̂ ∗ (Z)

)
k

> 0,

, k = 1, 2, ...,n. Let G =

diag(a1, a2,...,an)bea diagonal matrix in Sn. Let G̃ = diag (α̃1, ..., α̃n) , where

α̃i = min{0,αi} for i Î M; α̃j = αj for j Î N and let

Ū =
{
x ∈ Rn|xi ∈ [ui, vi], i ∈ M; xj ∈ [pj, qj], j ∈ N

}
.

3 Sufficient global optimality conditions for (SDPf)
In this section, we will derive the sufficient global optimality conditions for problem (SDPf).

Theorem 3.1 (Sufficient global optimality conditions for (SDPf)) For the problem

(SDPf), let x̄ ∈ � . If there exist Z ≽ O such that Tr
[
ZF(x̄)

]
= 0and a diagonal matrix

G = diag(a1,a2, ...,an) Î Sn such that ∇2f(x) - G ≽ O for each x ∈ Ū and condition

diag (bx̄) � 1
2 G̃ hold, then x̄ is a global minimizer of (SDPf).

Proof. Let l(x) = 1
2x

TGx +
(
∇f (x̄) − F̂ ∗ (Z) − Gx̄

)T
x, x ∈ Rn , and j(x) = H Z (x) -l

(x), x ∈ Ū . Then we have that ∇2j(x) = ∇2f(x) - ∇2l(x) = ∇2f(x) -G ≽ O, ∀x ∈ Ū . Thus

j (x) is convex on Ū , and ∇φ(x̄) = ∇HZ(x̄) − ∇l(x̄) = 0 . So we get that

φ(x) ≥ φ(x̄),∀x ∈ Ū and HZ(x) − HZ(x̄) ≥ l(x) − l(x̄) holds. As Tr[ZF(x)] ≥ 0,∀x Î F-

1(S), Tr
[
ZF(x̄)

]
= 0 , we have

f (x) − f (x̄) ≥ f (x) − Tr
[
ZF(x)

]− (f (x̄) + Tr
[
ZF(x̄)

])
= HZ(x) − HZ(x̄),

≥ l(x) − l(x̄), ∀x ∈ F−1(S).
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So we have

f (x) − f (x̄) ≥ l(x) − l(x̄), ∀x ∈ �,

where

l(x) − l(x̄) =
n∑

k=1

[
1
2

αk(xk − x̄k)2 +
(
∇f (x̄) − F̂ ∗ (Z)

)
k
(xk − x̄k)

]
. (1)

If l(x) − l(x̄) ≥ 0, ∀x Î Ω, then x̄ is a global minimizer of (SDPf). In the following,

we prove if condition diag(bx̄) � 1
2 G̃ hold, then for any k = 1,..., n,

1
2

αk(xk − x̄k)2 +
(
∇f (x̄) − F̂ ∗ (Z)

)
k
(xk − x̄k) ≥ 0, for any x ∈ �. (2)

hold, thus we have

n∑
k=1

[
1
2

αk(xk − x̄k)2 +
(
∇f (x̄) − F̂ ∗ (Z)

)
k
(xk − x̄k)

]
≥ 0, for any x ∈ �. (3)

i.e. x̄ is a global minimizer of (SDPf). We consider the following cases:

1°. If x̄i = ui , then (2) is equivalent to

1
2

αi (xi − x̄i) +
(
∇f (x̄) − F̂∗ (Z)

)
i
≥ 0, for any xi ∈ (ui, vi]

⇔
⎧⎨⎩
(
∇f (x̄) − F̂∗(Z)

)
i
≥ 0, if αi ≥ 0(

∇f (x̄) − F̂∗(Z)
)
i
≥ − (vi − ui)αi

2
, if αi < 0

⇔ ˜̄xi(∇f (x̄) − F̂∗ (Z)
)
i
≤ min

{
0,

(vi − ui)αi

2

}
.

2°. If x̄i = vi , then (2) is equivalent to

1
2

αi (xi − x̄i) +
(
∇f (x̄) − F̂ ∗ (Z)

)
i
≤ 0, for any xi ∈ [ui, vi)

⇔
⎧⎨⎩
(
∇f (x̄) − F̂ ∗ (Z)

)
i
≤ 0, if αi ≥ 0(

∇f (x̄) − F̂ ∗ (Z)
)
i
≤ −(vi − ui)αi

2
, if αi < 0

⇔ ˜̄xi(∇f (x̄) − F̂ ∗ (Z)
)
i
≤ min

{
0,

(vi − ui)αi

2

}
.

3°. If ui < x̄i < vi , then (2) is equivalent to⎧⎨⎩
1
2αi(xi − x̄i) +

(
∇f (x̄) − F̂ ∗ (Z)

)
i
≥ 0, for any xi ∈ (x̄i, vi]

1
2αi(xi − x̄i) +

(
∇f (x̄) − F̂ ∗ (Z)

)
i
≤ 0, for any xi ∈ [ui, x̄i)

⇔
(
∇f (x̄) − F̂ ∗ (Z)

)
i
= 0, αi ≥ 0

⇔ ˜̄xi(∇f (x̄) − F̂ ∗ (Z)

)
i
≤ min

{
0,

(vi − ui) αi

2

}
.
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4°. If x̄j = pj , then (2) is equivalent to

1
2

αj
(
xj − x̄j

)
+
(
∇f (x̄) − F̂ ∗ (Z)

)
j
≥ 0, for any xj ∈ {pj + 1, pj + 2, ..., qj

}
⇔

⎧⎪⎨⎪⎩
(
∇f (x̄) − F̂ ∗ (Z)

)
j
≥ −αj

2 , if αj ≥ 0(
∇f (x̄) − F̂ ∗ (Z)

)
j
≥ − (qj − pj)αj

2
, if αj < 0

⇔ ˜̄xj(∇f (x̄) − F̂ ∗ (Z)
)
j
≤ min

{
αj

2
,
(qj − pj)αj

2

}
.

5°. If x̄j = qj , then (2) is equivalent to

1
2

αj
(
xj − x̄j

)
+
(
∇f (x̄) − F̂ ∗ (Z)

)
j
≤ 0, for any xj ∈ {pjpj + 1, ..., qj − 1

}
⇔

⎧⎪⎨⎪⎩
(
∇f (x̄) − F̂ ∗ (Z)

)
j
≤ αj

2 , if αj ≥ 0(
∇f (x̄) − F̂ ∗ (Z)

)
j
≤ − (qj − pj)αj

2
, if αj < 0

⇔ ˜̄xj(∇f (x̄) − F̂ ∗ (Z)
)
j
≤ min

{
αj

2
,
(qj − pj)αj

2

}
.

6°. If x̄j ∈ {pj + 1, ..., qj − 1
}
, then (2) is equivalent to⎧⎪⎨⎪⎩

1
2αj(xj − x̄j) +

(
∇f (x̄) − F̂ ∗ (Z)

)
j
≤ 0, for any xj ∈ {pj, ..., x̄j − 1

}
1
2αj(xj − x̄j) +

(
∇f (x̄) − F̂ ∗ (Z)

)
j
≥ 0, for any xj ∈ {x̄j + 1, ..., qj

}
⇔ −αj

2
≤
(
∇f (x̄) − F̂ ∗ (Z)

)
j
≤ αj

2
,αj ≥ 0

⇔ ˜̄xj(∇f (x̄) − F̂ ∗ (Z)

)
j
≤ min

{
αj

2
,

(
qj − pj

)
αj

2

}
.

By the above discussion, we know that if condition diag (bx̄) � 1
2 G̃ hold, then for

any k = 1,...,n, 1
2αk(xk − x̄k)2 +

(
∇f (x̄) − F̂ ∗ (Z)

)
k
(xk − x̄k) ≥ 0 , for any x Î Ω., i.e. x̄

is a global minimizer of (SDPf).

If f(x) is convex, then we have the following results.

Corollary 3.1 For the problem (SDPf), let x̄ ∈ � . If f is convex on Ū and there exist Z

≽ O such that Tr
[
ZF(x̄)

]
= 0and condition diag (bx̄) � O hold, then x̄ is a global mini-

mizer of (SDPf).

Proof. We can get the results from the proof of Theorem 3.1 by taken G = O.

Then we consider the following special cases. At first consider the following minimi-

zation problem with LMI and box constraints:

(SDP’f ) min
x∈Rn

f (x)

s.t. F0 +
n∑

k=1

Fkxk � O,

x ∈
n∏

k=1

[uk, vk].
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Theorem 3.2 For the problem
(
SDP’f

)
, let x̄ ∈ F−1(S)

⋂∏n
k=1 [uk, vk] . If there exist Z

≽ O such that Tr
[
ZF(x̄)

]
= 0and a diagonal matrix G = diag(a1, a2, ..., an) Î Sn such

that ∇2f(x)-G ≽ O for each x ∈∏n
k=1 [uk, vk]and condition

1
2 α̃k (vk − uk) − ˜̄xk

(
∇f (x̄) − F̂ ∗ (Z)

)
k

≥ 0hold, then x̄ is a global minimizer of
(
SDP’f

)
.

Remark 3.1 This is just the result of [13, Theorem 3.1] when f (x) = 1
2x

TAx + aTx .

In the second we consider the following minimization problem with LMI and biva-

lent constraints:

(SDP”f ) min
x∈Rn

f (x)

s.t. F0 +
n∑

k=1

Fkxk � O,

x ∈
n∏

k=1

{−1, 1}.

Theorem 3.3 For the problem
(
SDP”f

)
, let x̄ ∈ F−1(S)

⋂∏n
i=1 {−1, 1} . If there exist

Z ≽ O such that Tr
[
ZF(x̄)

]
= 0and ∇2f (x) − diag

(˜̄X (∇f (x̄) − F̂ ∗ (Z)
))

� O for each

x ∈∏n
k=1 [−1, 1]hold, then x̄ is a global minimizer of

(
SDP”f

)
.

Proof. From the proof of Theorem3.1, we know if there exists a diagonal matrix G =

diag(a1,a2, ...,an) Î Sn such that ∇2f(x) - G ≽ O on
∏n

k=1 [−1, 1] and l(x) − l(x̄) ≥ 0

hold for each x ∈
∏n

k=1
{−1, 1} , where l(x) = 1

2x
TGx +

(
∇f (x̄) − F̂ ∗ (Z) − Gx̄

)T
x , then

x̄ is a global minimizer of
(
SDP”f

)
.

Suppose condition ∇2f (x) − diag
(˜̄X (∇f (x̄) − F̂ ∗ (Z)

))
� O hold on

∏n
k=1 [−1, 1] , we let

αk = ˜̄xk(∇f (x̄) − F̂ ∗ (Z)
)
k
, then we have ∇2f(x) -G ≽ O. For each k = 1, 2,..., n and each

x ∈
∏n

k=1
{−1, 1} , we only have xk = x̄k or xk = −x̄k . Obviously If xk = x̄k , then we have

l(x) − l(x̄) =
n∑

k=1

[
1
2

αk(xk − x̄k)2 +
(
∇f (x̄) − F̂ ∗ (Z)

)
k
(xk − x̄k)

]
= 0.

if xk = −x̄k , then we have

1
2

αk(xk − x̄k)2 +
(
∇f (x̄) − F̂ ∗ (Z)

)
k
(xk − x̄k)

= 2αk(x̄k)
2 − 2

(
∇f (x̄) − F̂ ∗ (Z)

)
k
x̄k

= 2
(
αk −

(
∇f (x̄) − F̂ ∗ (Z)

)
k̃
x̄k
)

= 0,

so we get

l(x) − l(x̄) =
n∑

k=1

[
1
2

αk(xk − x̄k)2 +
(
∇f (x̄) − F̂ ∗ (Z)

)
k
(xk − x̄k)

]
= 0.
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That is for each x ∈
∏n

k=1
{−1, 1}, l(x) − l(x̄) = 0 .

Remark 3.2 This is just the result of [13, Theorem 4.1] when f (x) =
1
2
xTAx + aTx .

Example 3.1 Consider the following programming problem with LMI and bivalent

constraints:

(EXP1) min f (x) :=
2
3
x31 − x21 + 2x22 + x1x2 − x2

s.t. F0 +
2∑

k=1

xkFk � O,

x ∈
2∏

k=1

{−1, 1},

Where F0 =

⎛⎝3 2 0
2 1 0
0 0 1

⎞⎠ , F1 =

⎛⎝0 1 0
1 0 0
0 0 1

⎞⎠ , F2 =

⎛⎝1 0 0
0 1 0
0 0 1

⎞⎠ . .

We can check the point x̄ = (−1, 1)T satisfies the sufficient global optimization condi-

tions of
(
SDP”f

)
. Since F(x) =

⎛⎝3 + x2 2 + x1 0
2 + x1 1 + x2 0
0 0 1 + x1 + x2

⎞⎠ , F(x̄) =

⎛⎝4 1 0
1 2 0
0 0 1

⎞⎠ . Let

Z =

⎛⎝1 −3 0
−3 2 0
0 0 −2

⎞⎠ , and Tr
[
ZF(x̄)

]
= 0 . We can get

∇2f (x) − diag
(˜̄X (∇f (x̄) − F̂ ∗ (Z)

))
=
(
4x1 − 2 + 13 1

1 4 − 1

)
� O so

∇2f (x) − diag
(˜̄X (∇f (x̄) − F̂ ∗ (Z)

))
=
(
4x1 − 2 + 13 1

1 4 − 1

)
� O for any x1 Î [-1,1].

So (-1,1)T is the global minimizer of (EXP1).

In fact from

� =
{
x ∈

∏2

k=1
{−1, 1}|F0 +

∑2

k=1
xkFk � O

}
=
{
(−1,−1) , (1, 1), (−1, 1)

}
, we can

easily check that (-1,1)T is the global minimizer of (EXP1).

4 Sufficient global optimality conditions for (SDP)
Consider the following standard SDP problem, where the objective function is linear,

the variables satisfy linear inequalities constraints and box constraints:

(SDP) min
x∈Rn

f (x) =
n∑

k=1

ckxk

s.t. F0 +
n∑
i=1

Fkxk � O,

x ∈
n∏

k=1

[uk, vk].

Theorem 4.1 For the problem (SDP), let x̄ ∈ F−1(S)
⋂∏n

k=1 [uk, vk] . If there exist Z ≽

O such that Tr
[
ZF(x̄)

]
= 0and a diagonal matrix G = diag(a1,a2, ..., an) Î Sn such that
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-G ≽ O for each x ∈∏n
k=1 [uk, vk]and condition

1
2

α̃k (vk − uk) − ˜̄xk
[
ck −

(
F̂∗ (Z)

)
k

]
≥ 0 ,

k = 1, 2,...,n hold, then x̄ is a global minimizer of (SDP).

Proof. Obviously we have ∇2f(x) = O for all x ∈∏n
k=1 [uk, vk] by the reason of

f (x) =
∑n

k=1 ckxk , so we can get this result from Theorem 3.2.

Theorem 4.2 For the problem (SDP), let x̄ ∈ F−1(S)
⋂∏n

k=1 [uk, vk] . If there exist Z ≽

O such that Tr
[
ZF(x̄)

]
= 0and condition −̃x̄k

[
ck −

(
F̂ ∗ (Z)

)
k

]
≥ 0 , k = 1,2,...,n hold,

then x̄ is a global minimizer of (SDP).

Proof. Let G = O for all x ∈∏n
k=1 [uk, vk] , then the condition -G ≽ O for each

x ∈∏n
k=1 [uk, vk] in Theorem 4.1 is met, so we can get this result from Theorem 4.1.

Example 4.1 Consider the following programming problem with LMI and box con-

straints:

(EXP2) min f (x) := 3x1 − 2x2

s.t. F0 +
2∑
k=1

xkFk � O,

x ∈
2∏

k=1

[−1, 1].

Where F0 =

⎛⎝3 2 0
2 1 0
0 0 1

⎞⎠ , F1 =

⎛⎝0 1 0
1 0 0
0 0 1

⎞⎠ , F2 =

⎛⎝1 0 0
0 1 0
0 0 1

⎞⎠ , c = (3,−2)T . .

We can check the point x̄ = (−1, 1)T satisfies the sufficient global optimization condi-

tions of (SDP). Since F(x) =

⎛⎝3 + x2 2 + x1 0
2 + x1 1 + x2 0
0 0 1 + x1 + x2

⎞⎠, F(x̄) =

⎛⎝4 1 0
1 2 0
0 0 −1

⎞⎠. Let

Z =

⎛⎝ 1 −3 0
−3 2 0
0 0 −2

⎞⎠ , and Tr
[
ZF(x̄)

]
= 0 Tr[ZF1] = -8, Tr[ZF2] = 1. We can get

˜̄x1(c − F̂ ∗ (Z))1 = (−1)×(3−(−4)) = −7 < 0;˜̄x2(c − F̂ ∗ (Z))2 = (1)×((−2)−5) = −7 < 0 . So (-1,, 1)
T is the global minimizer of (EXP2).
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