The Ptolemy constant of absolute normalized norms on \mathbb{R}^{2}

Zhanfei Zuo

Correspondence: zuozhanfei@139. com
Department of Mathematics and Statistics, Chongqing Three Gorges University, Wanzhou 404000, China

Abstract

We determine and estimate the Ptolemy constant of absolute normalized norms on \mathbb{R}^{2} by means of their corresponding continuous convex functions on $[0,1]$. Moreover, the exact values were calculated in some concrete Banach spaces. 2000 Mathematics Subject Classification: 46B20. Keywords: Ptolemy constant, absolute normalized norm, Lorentz sequence space, the Cesàro sequence space

1. Introduction and preliminaries

There are several constants defined on Banach spaces such as the Gao [1] and von Neumann-Jordan constants [2]. It has been shown that these constants are very useful in geometric theory of Banach spaces, which enable us to classify several important concepts of Banach spaces such as uniformly non-squareness and uniform normal structure [3-8]. On the other hand, calculation of the constant for some concrete spaces is also of some interest $[5,6,9]$.

Throughout this article, we assume that X is a real Banach space. By S_{X} and B_{X} we denote the unit sphere and the unit ball of a Banach space X, respectively. The notion of the Ptolemy constant of Banach spaces was introduced in [10] and recently it has been studied by Llorens-Fuster in [9].

Definition 1.1 For a normed space $(X, \| .| |)$ the real number

$$
C_{p}(X):=\sup \left\{\frac{\|x-y\|\|z\|}{\|x-z\|\|y\|+\|z-y\|\|x\|}: x, y, z \in X \backslash\{0\}, x \neq y \neq z \neq x\right\}
$$

is called the Ptolemy constant of $(X,\|\|$.$) .$
As we have already mentioned [10], $1 \leq C_{p}(X) \leq 2$ for all normed spaces X. The Ptolemy inequality shows that $C_{p}(H)=1$ whenever $(H,\|\| \mid$.$) is an inner product space. It is$ obvious that if Y is a subspace of $(X,\|\|$.$) , then C_{p}(Y) \leq C_{p}(X)$. Since $C_{p}(Y)=2$ for $Y=$ $\left(\mathbb{R}^{2},\|\cdot\|_{\infty}\right)$, it follows that $C_{p}(X)=2$ whenever X contains an isometric copy of $\left(\mathbb{R}^{2}\right.$, $\left.\|.\|_{\infty}\right)$.
Recall that a norm on \mathbb{R}^{2} is called absolute if $\|(z, w)\|=\|(|z|,|w|)\|$ for all $z, w \in \mathbb{R}$ and normalized if $\|(1,0)\|=\|(0,1)\|=1$. Let N_{α} denotes the family of all absolute normalized norms on \mathbb{R}^{2}, and let Ψ denotes the family of all continuous convex functions on $[0,1]$ such that $\psi(1)=\psi(0)=1$ and $\max \{1-t, t\} \leq \psi(t) \leq 1(0 \leq t \leq 1)$. It has

[^0]been shown that N_{α} and Ψ are a one-to-one correspondence in view of the following proposition in [11].
Proposition 1.2 If $\|.\| \in N_{\alpha}$, then $\psi(t)=\|(1-t, t)\| \in \Psi$. On the other hand, if $\psi(t)$ $\in \Psi$, defining the norm $\|\cdot\| \|_{\psi}$ as
\[

\|(z, \omega)\|_{\psi}:=\left\{$$
\begin{array}{cc}
(|z|+|\omega|) \psi\left(\frac{|\omega|}{|z|+|\omega|}\right), & (z, \omega) \neq(0,0) ; \\
0, & (z, \omega)=(0,0) .
\end{array}
$$\right.
\]

then the norm $\|. \mid\|_{\mu} \in N_{\alpha}$.
A simple example of absolute normalized norm is usual $l_{p}(1 \leq p \leq \infty)$ norm. From Proposition 1.2 , one can easily get the corresponding function of the l_{p} norm:

$$
\psi_{p}(t)=\left\{\begin{array}{c}
\left\{(1-t)^{p}+t^{p}\right\}^{1 / p}, \quad 1 \leq p<\infty, \\
\max \{1-t, t\}, \quad p=\infty .
\end{array}\right.
$$

Also, the above correspondence enable us to get many non $-l_{p}$ norms on \mathbb{R}^{2}. One of the properties of these norms is stated in the following result.
Proposition 1.3 Let $\psi, \phi \in \Psi$ and $\phi \leq \psi$. Put $M=\max _{0 \leq t \leq 1} \frac{\psi(t)}{\varphi(t)}$, then

$$
\|\cdot\|_{\varphi} \leq\|\cdot\|_{\psi} \leq M\|\cdot\|_{\varphi} .
$$

The Cesàro sequence space was defined by Shue [12]. It is very useful in the theory of matrix operators and others. Let l be the space of real sequences. For $1<p<\infty$, the Cesàro sequence space ces $_{p}$ is defined by

$$
\operatorname{ces}_{p}=\left\{x \in l:\|x\|=\|(x(i))\|=\left(\sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{i=1}^{n}|x(i)|\right)^{p}\right)^{1 / p}<\infty\right\}
$$

The geometry of Cesàro sequence spaces have been extensively studied in [13-21]. Let us restrict ourselves to the 2D Cesàro sequence space cesp ${ }_{p}^{(2)}$ which is just \mathbb{R}^{2} equipped with the norm defined by norm defined by

$$
\|(x, y)\|=\left(|x|^{p}+\left(\frac{|x|+|y|}{2}\right)^{p}\right)^{1 / p}
$$

2. Main results

In this section, we give a simple method to determine and estimate the Ptolemy constant of absolute normalized norms on \mathbb{R}^{2}. Moreover, the exact values were calculated in some concrete Banach spaces. For a norm $\|$.$\| on \mathbb{R}^{2}$, we write $C_{p}(\|\|$.$) for C_{p}$ $\left(\mathbb{R}^{2}, \||| |)\right.$.
Proposition 2.1 Let $\phi \in \Psi$ and $\psi(t)=\phi(1-t)$. Then $C_{p}\left(\||\cdot|\|_{\phi}\right)=C_{p}\left(\|\cdot\| \|_{\psi}\right)$
Proof. For any $x=(a, b) \in \mathbb{R}^{2}$ and $a \neq 0, b \neq 0$, put $\tilde{x}=(b, a)$. Then

$$
\|x\|_{\varphi}=(|a|+|b|) \varphi\left(\frac{|b|}{|a|+|b|}\right)=(|b|+|a|) \psi\left(\frac{|a|}{|a|+|b|}\right)=\|\tilde{x}\|_{\psi} .
$$

Consequently, we have

$$
\begin{aligned}
C_{p}\left(\|\cdot\|_{\varphi}\right) & =\sup \left\{\frac{\|x-y\|_{\varphi}\|z\|_{\varphi}}{\|x-z\|_{\varphi}\|y\|_{\varphi}+\|z-y\|_{\varphi}\|x\|_{\varphi}}: x, y, z \in X \backslash\{0\}, x \neq y \neq z \neq x\right\} \\
& =\sup \left\{\frac{\|\tilde{x}-\tilde{y}\|_{\psi}\|\tilde{z}\|_{\psi}}{\|\tilde{x}-\tilde{z}\|_{\psi}\|\tilde{y}\|_{\psi}+\|\tilde{z}-\tilde{y}\|_{\psi}\|\tilde{x}\|_{\psi}}: \tilde{x}, \tilde{y}, \tilde{z} \in X \backslash\{0\}, \tilde{x} \neq \tilde{y} \neq \tilde{z} \neq \tilde{x}\right\} \\
& =C_{p}\left(\|\cdot\|_{\psi}\right) .
\end{aligned}
$$

We now consider the Ptolemy constant of a class of absolute normalized norms on \mathbb{R}^{2}. Now let us put

$$
M_{1}=\max _{0 \leq t \leq 1} \frac{\psi_{2}(t)}{\psi(t)} \text { and } M_{2}=\max _{0 \leq t \leq 1} \frac{\psi(t)}{\psi_{2}(t)}
$$

Theorem 2.2 Let $\psi \in \Psi$ and $\psi \leq \psi_{2}$, if the function $\frac{\psi_{2}(t)}{\psi(t)}$ attains its maximum at $t=$ $1 / 2$, then

$$
C_{p}\left(\|\cdot\|_{\psi}\right)=\frac{1}{2 \psi^{2}(1 / 2)} .
$$

Proof. By Proposition 1.3, we have $\|\cdot\|_{\psi} \leq\|\cdot\|_{2} \leq M_{1}\|\cdot\|_{\psi}$. Let $x, y \in X,(x, y) \neq(0$, $0)$, where $X=\mathbb{R}^{2}$. Then

$$
\begin{aligned}
\frac{\|x-y\|_{\psi}\|z\|_{\psi}}{\|x-z\|_{\psi}\|y\|_{\psi}+\|z-\gamma\|_{\psi}\|x\|_{\psi}} & \leq \frac{\|x-y\|_{2}\|z\|_{2}}{\left(1 / M_{1}^{2}\right)\|x-z\|_{2}\|y\|_{2}+\|z-\gamma\|_{2}\|x\|_{2}} \\
& \leq M_{1}^{2} C_{p}\left(\|\cdot\|_{2}\right) \\
& \leq M_{1}^{2}
\end{aligned}
$$

from the definition of $C_{p}(X)$, implies that

$$
\begin{equation*}
C_{p}\left(\|\cdot\|_{\psi}\right) \leq M_{1}^{2}=\max _{0 \leq t \leq 1} \frac{\psi_{2}^{2}(t)}{\psi^{2}(t)} \tag{1}
\end{equation*}
$$

On the other hand, note that the function $\frac{\psi_{2}(t)}{\psi(t)}$ attains its maximum at $t=1 / 2$, i.e., $M_{1}=\frac{\psi_{2}(1 / 2)}{\psi(1 / 2)}$. Let us put $x=(1 / 2,1 / 2), y=(1 / 2,-1 / 2), z=(1,0)$, then

$$
\begin{aligned}
\frac{\|x-y\|_{\psi}\|z\|_{\psi}}{\|x-z\|_{\psi}\|y\|_{\psi}+\|z-y\|_{\psi}\|x\|_{\psi}} & =\frac{\|(0,1)\|_{\psi}\|(1,0)\|_{\psi}}{\|(-1 / 2,1 / 2)\|_{\psi}\|(1 / 2,-1 / 2)\|_{\psi}+\|(1 / 2,1 / 2)\|_{\psi}\|(1 / 2,1 / 2)\|_{\psi}} \\
& =\frac{1}{2 \psi^{2}(1 / 2)} \\
& =\frac{2 \times 1 / 2 \times(1-1 / 2)}{\psi^{2}(1 / 2)}=\frac{(1 / 2)^{2}+(1-1 / 2)^{2}}{\psi^{2}(1 / 2)} \\
& =\frac{\psi_{2}^{2}(1 / 2)}{\psi^{2}(1 / 2)}=M_{1}^{2} .
\end{aligned}
$$

From (1) and the above equality, we have

$$
C_{p}\left(\|\cdot\|_{\psi}\right)=M_{1}^{2}=\frac{1}{2 \psi^{2}(1 / 2)} .
$$

Theorem 2.3 Let $\psi \in \Psi$ and $\psi \geq \psi_{2}$, if the function $\frac{\psi(t)}{\psi_{2}(t)}$ attains its maximum at $t=$ $1 / 2$, then

$$
C_{p}\left(\|\cdot\|_{\psi}\right)=2 \psi^{2}(1 / 2)
$$

Proof. By Proposition 1.3, we have $\|\cdot\|_{2} \leq\|\cdot\|_{\psi} \leq M_{2}\|\cdot\|_{2}$. Let $x, y \in X,(x, y) \neq(0$, $0)$, where $X=\mathbb{R}^{2}$. Then

$$
\begin{aligned}
\frac{\|x-y\|_{\psi}\|z\|_{\psi}}{\|x-z\|_{\psi}\|y\|_{\psi}+\|z-y\|_{\psi}\|x\|_{\psi}} & \leq \frac{M_{2}^{2}\|x-y\|_{2}\|z\|_{2}}{\|x-z\|_{2}\|y\|_{2}+\|z-\gamma\|_{2}\|x\|_{2}} \\
& \leq M_{2}^{2} C_{p}\left(\|\cdot\|_{2}\right) \\
& \leq M_{2}^{2}
\end{aligned}
$$

from the definition of $C_{p}(X)$, implies that

$$
\begin{equation*}
C_{p}\left(\|\cdot\|_{\psi}\right) \leq M_{2}^{2}=\max _{0 \leq t \leq 1} \frac{\psi^{2}(t)}{\psi_{2}^{2}(t)} \tag{2}
\end{equation*}
$$

On the other hand, note that the function $\frac{\psi(t)}{\psi_{2}(t)}$ attains its maximum at $t=1 / 2$, i.e., $M_{2}=\frac{\psi(1 / 2)}{\psi_{2}(1 / 2)}$. Let us put $x=(1 / 2,0), y=(0,1 / 2), z=(1 / 2,1 / 2)$, then

$$
\begin{aligned}
\frac{\|x-y\|_{\psi}\|z\|_{\psi}}{\|x-z\|_{\psi}\|y\|_{\psi}+\|z-y\|_{\psi}\|x\|_{\psi}} & =\frac{\|(1 / 2,-1 / 2)\|_{\psi}\|(1 / 2,1 / 2)\|_{\psi}}{\|(0,-1 / 2)\|_{\psi}\|(0,1 / 2)\|_{\psi}+\|(1 / 2,0)\|_{\psi}\|(1 / 2,0)\|_{\psi}} \\
& =2 \psi^{2}(1 / 2) \\
& =\frac{\psi^{2}(1 / 2)}{(1 / 2)^{2}+(1-1 / 2)^{2}} \\
& =\frac{\psi^{2}(1 / 2)}{\psi_{2}^{2}(1 / 2)}=M_{2}^{2} .
\end{aligned}
$$

From (2) and the above equality, we have

$$
C_{p}\left(\|\cdot\|_{\psi}\right)=M_{2}^{2}=2 \psi^{2}(1 / 2)
$$

Theorem 2.4 If X is the $l_{p}(1 \leq p \leq \infty)$ space, then

$$
C_{p}\left(\|.\|_{p}\right)=\max \left\{2^{2 / p-1}, 2^{2 / q-1}\right\}
$$

In particular, $C_{p}\left(\|\cdot\|_{1}\right)=C_{p}\left(\|\cdot\|_{\infty}\right)=2$.
Proof. Let $1 \leq p \leq 2$, then we have $\psi_{p}(t) \geq \psi_{2}(t)$ and $\psi_{p}(t) / \psi_{2}(t)$ attains s maximum at $t=1 / 2$. Since

$$
\psi_{2}(t) \leq \psi_{p}(t) \leq 2^{1 / p-1 / 2} \psi_{2}(t)(0 \leq t \leq 1)
$$

where the constant $2^{1 / p-1 / 2}$ is the best possible. On the other hand, for $t=1 / 2$, we have

$$
\frac{\psi_{p}(1 / 2)}{\psi_{2}(1 / 2)}=\frac{\left((1-1 / 2)^{p}+(1 / 2)^{p}\right)^{1 / p}}{\left((1-1 / 2)^{2}+(1 / 2)^{2}\right)^{1 / 2}}=2^{1 / p-1 / 2}
$$

Therefore, by Theorem 2.3, we have

$$
\begin{equation*}
C_{p}\left(\|\cdot\|_{p}\right)=2 \psi_{p}^{2}(1 / 2)=2^{2 / p-1} \tag{3}
\end{equation*}
$$

Similarly, for $2<p<\infty$, then we have $1<q<2$ and $\psi_{p}(t) \leq \psi_{2}(t)$. By Theorem 2.2, we have

$$
\begin{equation*}
C_{p}\left(\|\cdot\|_{p}\right)=\frac{1}{2 \psi_{p}^{2}(1 / 2)}=2^{2 / q-1} . \tag{4}
\end{equation*}
$$

From (3) and (4), we have

$$
C_{p}\left(\|\cdot\|_{p}\right)=\max \left\{2^{2 / p-1}, 2^{2 / q-1}\right\}
$$

Lemma 2.5 Let ||.|| and |.| be two equivalent norms on a Banach space. If $a|| \leq.\|$. $\leq b||.(b \geq a>0)$, then

$$
\frac{a^{2} C_{p}(|.|)}{b^{2}} \leq C_{p}(\|.\|) \leq \frac{b^{2} C_{p}(|.|)}{a^{2}}
$$

Moreover, if $\|x\|=a|x|$, then $C_{p}(| | \cdot| |)=C_{p}(|\cdot|)$.
Proof. From the definition of $C_{p}(X)$, we have

$$
\begin{aligned}
C_{p}(\|\cdot\|) & =\sup \left\{\frac{\|x-y\|\|z\|}{\|x-z\|\|y\|+\|z-y\|\|x\|}: x, y, z \in X \backslash\{0\}, x \neq y \neq z \neq x\right\} \\
& \leq \sup \left\{\frac{b^{2}|x-y||z|}{a^{2}|x-z||y|+|z-y||x|}: x, y, z \in X \backslash\{0\}, x \neq y \neq z \neq x\right\} \\
& =\frac{b^{2}}{a^{2}} \sup \left\{\frac{|x-y||z|}{|x-z||y|+|z-y||x|}: x, y, z \in X \backslash\{0\}, x \neq y \neq z \neq x\right\} \\
& \leq \frac{b^{2}}{a^{2}} C_{p}(|\cdot|) .
\end{aligned}
$$

Similarly, we also have

$$
\frac{a^{2} C_{p}(|.|)}{b^{2}} \leq C_{p}(\|\cdot\|)
$$

Example 2.6 Let $X=\mathbb{R}^{2}$ with the norm

$$
\|x\|=\max \left\{\|x\|_{2}, \lambda\|x\|_{1}\right\}(1 / \sqrt{2} \leq \lambda \leq 1) .
$$

Then

$$
C_{p}(\|\cdot\|)=2 \lambda^{2} .
$$

Proof. It is very easy to check that $\|x\|=\max \left\{\|x\|_{2}, \lambda\|x\|_{1}\right\} \in \mathbb{N}_{\alpha}$ and its corresponding function is

$$
\psi(t)=\|(1-t, t)\|=\max \left\{\psi_{2}(t), \lambda\right\} \geq \psi_{2}(t) .
$$

Therefore

$$
\frac{\psi(t)}{\psi_{2}(t)}=\max \left\{1, \frac{\lambda}{\psi_{2}(t)}\right\} .
$$

Since $\psi_{2}(t)$ attains minimum at $t=1 / 2$ and hence $\frac{\psi(t)}{\psi_{2}(t)}$ attains maximum at $t=1 / 2$. Therefore, from Theorem 2.3, we have

$$
C_{p}(\|\cdot\|)=2 \psi^{2}(1 / 2)=2 \lambda^{2}
$$

Example 2.7 Let $X=\mathbb{R}^{2}$ with the norm

$$
\|x\|=\max \left\{\|x\|_{2}, \lambda\|x\|_{\infty}\right\}(1 \leq \lambda \leq \sqrt{2}) .
$$

Then

$$
C_{p}(\|\cdot\|)=\lambda^{2} .
$$

Proof. It is obvious to check that the norm $\|x\|=\max \left\{\|x\|_{2}, \lambda\|x\|_{\infty}\right\}$ is absolute, but not normalized, since $\|(1,0)\|=\|(0,1)\|=\lambda$. Let us put

$$
|\cdot|=\frac{\|\cdot\|}{\lambda}=\max \left\{\frac{\|\cdot\|_{2}}{\lambda},\|\cdot\|_{\infty}\right\}
$$

Then $|.| \in \mathbb{N}_{\alpha}$ and its corresponding function is

$$
\psi(t)=\|(1-t, t)\|=\max \left\{\frac{\psi_{2}(t)}{\lambda}, \psi_{\infty}(t)\right\} \leq \psi_{2}(t)
$$

Thus

$$
\frac{\psi_{2}(t)}{\psi(t)}=\min \left\{\lambda, \frac{\psi_{2}(t)}{\psi_{\infty}(t)}\right\}
$$

Consider the increasing continuous function $g(t)=\frac{\psi_{2}(t)}{\psi(t)}(0 \leq t \leq 1 / 2)$. Because $g(0)=$ 1 and $g(1 / 2)=\sqrt{2}$, hence, there exists a unique $0 \leq a \leq 1$ such that $g(a)=\lambda$. In fact g (t) is symmetric with respect to $t=1 / 2$, then we have

$$
g(t)=\left\{\begin{array}{cc}
\frac{\psi_{2}(t)}{\psi(t)}, & t \in[0, a] \cup[1-a, a] \\
\lambda, & t \in[a, 1-a]
\end{array}\right.
$$

Obvious, $g(t)$ attains its maximum at $t=1 / 2$. Hence, from Theorem 2.2 and Lemma 2.5 , we have

$$
C_{p}(\|\cdot\|)=C_{p}(|\cdot|)=\frac{1}{2 \psi^{2}(1 / 2)}=\lambda^{2} .
$$

Example 2.8 Let $X=\mathbb{R}^{2}$ with the norm

$$
\|x\|=\left(\|x\|_{2}^{2}+\lambda\|x\|_{\infty}^{2}\right)(\lambda \geq 0)
$$

Then

$$
C_{p}(\|\cdot\|)=2(1+\lambda) / \lambda+2 .
$$

Proof. It is obvious to check that the norm $\|x\|=\left(\|x\|_{2}^{2}+\lambda\|x\|_{\infty}^{2}\right)$ is absolute, but not normalized, since $\|(1,0)\|=\|(0,1)\|=(1+\lambda)^{1 / 2}$. Let us put

Therefore $|.| \in \mathbb{N}_{\alpha}$ and its corresponding function is

$$
\psi(t)=\|(1-t, t)\|= \begin{cases}{\left[(1-t)^{2}+t^{2} /(1+\lambda)\right]^{1 / 2},} & t \in[0,1 / 2] \\ {\left[t^{2}+(1-t)^{2} /(1+\lambda)\right]^{1 / 2},} & t \in[1 / 2,1]\end{cases}
$$

Obvious $\psi(t) \leq \psi_{2}(t)$. Since $\lambda \geq 0, \frac{\psi_{2}(t)}{\psi(t)}$ is symmetric with respect to $t=1 / 2$, it suffices to consider $\frac{\psi_{2}(t)}{\psi(t)}$ for $t \in[0,1 / 2]$. Note that, for any $t \in[0,1 / 2]$, put $g(t)=\frac{\left.\psi_{2}(t)\right)^{2}}{\psi(t)^{2}}$. Taking derivative of the function $g(t)$, then we have

$$
g^{\prime}(t)=\frac{2 \lambda}{1+\lambda} \times \frac{t(1-t)}{\left[(1-t)^{2}+t^{2} /(1+\lambda)\right]^{2}} .
$$

We always have $g^{\prime}(t) \geq 0$ for $0 \leq t \leq 1 / 2$, this implies that the function $g(t)$ is increased for $0 \leq t \leq 1 / 2$. Therefore, the function $\frac{\psi_{2}(t)}{\psi(t)}$ attains its maximum at $t=1 / 2$, by Theorem 2.2 and Lemma 2.5, we have

$$
C_{p}(\|\cdot\|)=C_{p}(|.|)=\frac{1}{2 \psi^{2}(1 / 2)}=2(1+\lambda) / \lambda+2 .
$$

Example 2.9 (Lorentz sequence spaces) Let $0<a<1$. Two-dimensional Lorentz sequence space, i.e., \mathbb{R}^{2} with the norm

$$
\|(z, \omega)\|_{a, 2}=\left(\left(x_{1}^{*}\right)^{2}+a\left(x_{2}^{*}\right)^{2}\right)^{1 / 2},
$$

where $\left(x_{1}^{*}, x_{2}^{*}\right)$ is the rearrangement of $(|z|,|\omega|)$ satisfying $\left(x_{1}^{*} \geq x_{2}^{*}\right)$, then

$$
C_{p}\left(\|(z, \omega)\|_{a, 2}\right)=\frac{2}{a+1} .
$$

Proof. Indeed, $\|(z, \omega)\|_{a, 2} \in \mathbb{N}_{\alpha}$, and the corresponding convex function is given by

$$
\psi_{a, 2}(t)=\|(1-t, t)\|_{a, 2}= \begin{cases}{\left[(1-t)^{2}+a t^{2}\right]^{1 / 2},} & t \in[0,1 / 2], \\ {\left[t^{2}+a(1-t)^{2}\right]^{1 / 2},} & t \in[1 / 2,1] .\end{cases}
$$

Obvious $\psi_{a, 2}(t) \leq \psi_{2}(t)$. Repeating the arguments in the proof of Example 2.8, we can easily get the conclusion that $\frac{\psi_{2}(t)}{\psi_{0,2}(t)}$ attains its maximum at $t=1 / 2$. By Theorem 2.2 , we have

$$
C_{p}\left(\|(z, \omega)\|_{a, 2}\right)=\frac{2}{a+1} .
$$

Example 2.10 Let X be a 2D Cesàro space $\operatorname{ces}_{2}^{(2)}$, then

$$
C_{p}\left(\operatorname{ces}_{2}^{(2)}\right)=1+\frac{1}{\sqrt{5}} .
$$

Proof. We first define

$$
|x, y|=\left\|\left(\frac{2 x}{\sqrt{5}}, 2 y\right)\right\|_{\operatorname{cs}_{2}^{(2)}}
$$

for $(x, y) \in \mathbb{R}^{2}$. It follows that $\operatorname{ces}_{2}^{(2)}$ is isometrically isomorphic to $\left(\mathbb{R}^{2},| |\right)$ and $|$.$| is$ absolute and normalized norm, and the corresponding convex function is given by

$$
\psi(t)=\left[\frac{4(1-t)^{2}}{5}+\left(\frac{1-t}{\sqrt{5}}+t\right)^{2}\right]^{\frac{1}{2}}
$$

Indeed, $T: \operatorname{ces}_{2}^{(2)} \rightarrow\left(\mathbb{R}^{2},||.\right)$ defined by $T(x, y)=\left(\frac{x}{\sqrt{5}}, 2 y\right)$ is an isometric isomorphism. We prove that $\psi(t) \geq \psi_{2}(t)$. Note that

$$
\left(\frac{1-t}{\sqrt{5}}+t\right)^{2} \geq\left(\frac{1-t}{\sqrt{5}}\right)^{2}+t^{2}
$$

Consequently,

$$
\psi(t) \geq\left((1-t)^{2}+t^{2}\right)^{1 / 2}=\psi_{2}(t)
$$

Some elementary computation shows that $\frac{\psi(t)}{\psi_{2}(t)}$ attains its maximum at $t=1 / 2$. Therefore, from Theorem 2.3, we have

$$
C_{p}\left(\operatorname{ces}_{2}^{(2)}\right)=2 \psi^{2}(1 / 2)=1+\frac{1}{\sqrt{5}} .
$$

Acknowledgements

This research was supported by the fund of Scientific research in Southeast University (the support project of fundamental research) and NSF of CHINA, Grant No. 11126329.

Competing interests

The author declares that they have no competing interests.

Received: 19 October 2011 Accepted: 17 May 2012 Published: 17 May 2012

References

1. Gao, J, Lau, KS: On two classes Banach spaces with uniform normal structure. Studia Math. 99, 41-56 (1991)
2. Kato, M, Maligranda, L, Takahashi, Y: On James and Jordan-von Neumann constants and normal structure coefficient of Banach spaces. Studia Math. 144, 275-295 (2001). doi:10.4064/sm144-3-5
3. Zuo, ZZ, Cui, Y: On some parameters and the fixed point property for multivalued nonexpansive mapping. J Math Sci Adv Appl. 1, 183-199 (2008)
4. Zuo, ZZ, Cui, Y: A note on the modulus of U-convexity and modulus of W^{*}-convexity. J Inequal Pure Appl Math. 9, 1-7 (2008)
5. Zuo, ZZ, Cui, Y: Some modulus and normal structure in Banach space. J Inequal Appl 2009, 1-15 (2009). Article ID 676373,
6. Zuo, ZZ, Cui, Y: A coefficient related to some geometrical properties of Banach space. J Inequal Appl 2009, 1-14 (2009) Article ID 934321,
7. Zuo, ZZ, Cui, Y: The application of generalization modulus of convexity in fixed point theory. I Natur Sci Heilongjiang Univ. 2, 206-210 (2009)
8. Zuo, ZZ, Cui, Y: Some Sufficient Conditions for Fixed Points of Multivalued Nonexpansive Mappings. Fixed Point Theory and Applications 2009, 1-12 (2009). Article ID 319804,
9. Llorens-Fuster, E: The Ptolemy and Zb®ganu constants of normed spaces. Nonlinear Anal. 72, 3984-3993 (2010). doi:10.1016/j.na.2010.01.030
10. Pinchover, Y, Reich, S, Shafrir, I: The Ptolemy constant of a normed space. Am Math Monthly. 108, 475-476 (2001). doi:10.2307/2695815
11. Bonsall, FF, Duncan, J: Numerical Ranges II., London Mathematical Society Lecture Notes Series. Cambridge Univ. Press, New York10 (1973)
12. Shue, JS: On the Cesàro sequence spaces. Tamkang J Math. 1, 143-150 (1970)
13. Cui, Y, Jie, L, Płuciennik, R: Local uniform nonsquareness in Cesàro sequence spaces. Comment Math. 27, 47-58 (1997)
14. Cui, Y, Hudik, H: Some geometric properties related to fixed point theory in Cesàro spaces. Collect Math. 50, 277-288 (1999)
15. Cui, Y, Meng, C: Płuciennik, Banach-Saks property and property (β) in Cesàro sequence spaces. South-east Asian Bull Math. 24, 201-210 (2000)
16. Cui, Y, Hudzik, H, Petrot, N, Suantai, S, Szymaszkiewicz, : Basic topological and geometrical properties of Cesàro-Orlicz spaces. Proc Math Sci. 115(4):461-476 (2005). doi:10.1007/BF02829808
17. Cui, Y, Hudzik, H: On the Banach-Saks and weak Banach-Saks properties of some Banach sequence spaces. Acta Sci Math (Szeged). 65, 179-187 (1999)
18. Foralewski, P, Hudzik, H, Szymaszkiewicz, A: Some remarks on Cesàro-Orlicz sequence spaces. Math Inequal Appl. 2, 363-386 (2010)
19. Foralewski, P, Hudzik, H, Szymaszkiewicz, A: Local rotundity structure of Cesàro-Orlicz sequence spaces. J Math Anal Appl. 345, 410-419 (2008). doi:10.1016/j.jmaa.2008.04.016
20. Maligranda, L, Petrot, N, Suantai, S: On the James constant and B-convexity of Cesàro and Cesàro-Orlicz sequence spaces. J Math Anal Appl. 326(1):312-331 (2007). doi:10.1016/j.jmaa.2006.02.085
21. Sanhan, W, Suantai, S: Some geometric properties of Cesàro sequence space. Kyungpook Math J. 43(2):191-197 (2003)
doi:10.1186/1029-242X-2012-107
Cite this article as: Zuo: The Ptolemy constant of absolute normalized norms on \mathbb{R}^{2}. Journal of Inequalities and Applications 2012 2012:107.

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

[^0]: © 2012 Zuo; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

