Refinement of an integral inequality

Ling Zhu

Correspondence: zhuling0571@163.
com
Department of Mathematics, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, P. R. China

Abstract

In this study, we generalize and sharpen an integral inequality raised in theory for convex and star-shaped sets and relax the conditions on the integrand.
Mathematics Subject Classification (2000): 26D15
Keywords: lower and upper bounds, refinement of an integral inequality, a monotone form of I'Hospital's rule, Mitrinović-Pečarić inequality

1 Introduction

In the study [1], which investigated convex and star-shaped sets, the following interesting result was obtained.
Theorem 1. ([1, Lemma 2.1]) Let $p:[0, T] \rightarrow \mathbb{R}$ be a nonnegative convex function such that $p(0)=0$. Then for $0<a \leq b \leq T$ and $k \in \mathbb{N}^{+}$the inequality

$$
\begin{equation*}
\int_{0}^{b} t^{k} p(t) d t \geq\left(\frac{b}{a}\right)^{k+2} \int_{0}^{a} t^{k} p(t) d t \tag{1}
\end{equation*}
$$

holds.
In this note, we shall show that the convexity of the function $p(t)$ may be replaced by the condition that $\frac{p(t)}{t}$ is increasing, sharpen inequality (1), and obtain the following a general result using a monotone form of l'Hospital's rule, a elementary method, and Mitrinović-Pečarić inequality, respectively.

Theorem 2. Let $p:[0, T] \rightarrow \mathbb{R}$ be a nonnegative continuous function such that $p(0)$ $=0$ and $\frac{p(t)}{t}$ be a monotone function on ($\left.0, T\right]$. Let $A=\lim _{x \rightarrow 0^{+}} \frac{p(x)}{x}$. Then for $0<x \leq b \leq T$ and $k \geq 0$ the double inequality

$$
\begin{equation*}
\alpha \leq\left(\frac{b}{x}\right)^{k+2} \int_{0}^{x} t^{k} p(t) d t \leq \beta \tag{2}
\end{equation*}
$$

holds so that
(i) when $\frac{p(t)}{t}$ is increasing, we have $\alpha=\frac{b^{k+2} A}{k+2}, \beta=\int_{0}^{b} t^{k} p(t) d t$;
(ii) when $\frac{p(t)}{t}$ is decreasing, we have $\alpha=\int_{0}^{b} t^{k} p(t) d t, \beta=\frac{b^{k+2} A}{k+2}$.

[^0]Furthermore, these paired numbers α and β defined in (i) and (ii) are the best constants in (2).

2 Two lemmas

Lemma 1. ([2-5], A Monotone form of L'Hospital's rule) Let $f, g:[a, b] \rightarrow \mathbb{R}$ be two continuous functions which are differentiable on (a, b). Further, let $g^{\prime} \neq 0$ on (a, b). If f^{\prime} / g^{\prime} is increasing (or decreasing) on (a, b), then the functions $\frac{f(x)-f(b)}{g(x)-g(b)}$ and $\frac{f(x)-f(a)}{g(x)-g(a)}$ are also increasing (or decreasing) on (a, b).

Lemma 2. ([[6], Mitrinović-Pečarić inequality]) If f is increasing function and p satisfies the conditions $0 \leq \int_{a}^{x} p(t) d t \leq \int_{a}^{b} p(t) d t f o r x \in[a, b]$, and for some $c \in[a, b]$, $\int_{c}^{b} p(t) d t>0, \int_{c}^{b} p(t) d t>0$, then we have

$$
\begin{equation*}
\frac{\int_{a}^{c} p(t) f(t) d t}{\int_{a}^{c} p(t) d t} \leq \frac{\int_{a}^{b} p(t) f(t) d t}{\int_{a}^{b} p(t) d t} \leq \frac{\int_{c}^{b} p(t) f(t) d t}{\int_{c}^{b} p(t) d t} \tag{3}
\end{equation*}
$$

Iff is decreasing the inequalities (3) are reversed.

3 A concise proof of Theorem 2

Let $H(t)=\frac{\int_{0}^{t} b^{k+1} s^{k} p(b s) d s}{t^{k+2}}=\frac{f_{1}(t)}{g_{1}(t)}$, where $f_{1}(t)=\int_{0}^{t} b^{k+1} s^{k} p(b s) d s, g_{1}(t)=t^{k+2}$, and $0<\mathrm{t} \leq$

1. Then $\frac{f_{1}^{\prime}(t)}{g_{1}^{\prime}(t)}=\frac{b^{k+1} p(b t)}{(k+2) t}$.
(a) When $\frac{p(t)}{t}$ is increasing, we have $\frac{f_{1}^{\prime}(t)}{g_{1}^{\prime}(t)}$ is also increasing, and $H(t)=\frac{f_{1}(t)}{g_{1}(t)}=\frac{f_{1}(t)-f_{1}(0)}{g_{1}(t)-g_{1}(0)}$ is increasing by Lemma 1. At the same time, $\lim _{t \rightarrow 0^{+}} H(t)=\lim _{t \rightarrow 0^{+}} \frac{b^{k+1} p(b t)}{(k+2) t}=\frac{b^{k+2} A}{k+2}$, and $\lim _{t \rightarrow 1} H(t)=\int_{0}^{1} b^{k+1} t^{k} p(b t) d t=\int_{0}^{b} u^{k} p(u) d u$. So we obtain

$$
\begin{equation*}
\frac{b^{k+2} A}{k+2} \leq \frac{\int_{0}^{t} b^{k+1} s^{k} p(b s) d s}{t^{k+2}} \leq \int_{0}^{b} u^{k} p(u) d u \tag{4}
\end{equation*}
$$

$\frac{b^{k+2} A}{k+2}$ and $\int_{0}^{b} u^{k} p(u) d u$ are the best constants in (4).
Replacing t with x / b in (4), we have $\int_{0}^{t} b^{k+1} s^{k} p(b s) d s=\int_{0}^{\frac{x}{b}} b^{k+1} s^{k} p(b s) d s$. Then let $b s$ $=u$, we obtain $\int_{0}^{\frac{x}{b}} b^{k+1} s^{k} p(b s) d s=\int_{0}^{x} u^{k} p(u) d u$, and

$$
\begin{equation*}
\frac{b^{k+2} A}{k+2} \leq\left(\frac{b}{x}\right)^{k+2} \int_{0}^{x} t^{k} p(t) d t \leq \int_{0}^{b} u^{k} p(u) d u \tag{5}
\end{equation*}
$$

holds. Furthermore $\alpha=\frac{b^{k+2} A}{k+2}$ and $\beta=\int_{0}^{b} u^{k} p(u) d u$ are the best constants in (5).
(b) When $\frac{p(t)}{t}$ is decreasing, we obtain corresponding result by the same way.

4 New elementary proof of Theorem 2

Let $F(x)=\frac{\int_{0}^{x} t^{k} p(t) d t}{x^{k+2}}$ for $x \in(0, \mathrm{~b}]$. Assume that $\frac{p(t)}{t}$ is increasing. By a simple calculation and the inequality $p(t) \leq t \frac{p(x)}{x}$ for $0<t \leq x \leq b$ we have that

$$
x F^{\prime}(x)=\frac{p(x)}{x}-(k+2) \frac{\int_{0}^{x} t^{k} p(t) d t}{x^{k+2}} \geq \frac{p(x)}{x}-(k+2) \frac{\int_{0}^{x} t^{k} t \frac{p(x)}{x} d t}{x^{k+2}}=0 .
$$

So $F(x)$ is increasing and the chain inequality

$$
\begin{align*}
\alpha & =\frac{b^{k+2}}{k+2} \lim _{x \rightarrow 0^{+}} \frac{p(x)}{x}=\lim _{x \rightarrow 0^{+}} b^{k+2} F(x) \leq \inf _{x \in(0, b]} b^{k+2} F(x) \\
& \leq\left(\frac{b}{x}\right)^{k+2} \int_{0}^{x} t^{k} p(t) d t \tag{6}\\
& \leq \sup _{x \in(0, b]} b^{k+2} F(x)=\lim _{x \rightarrow b} b^{k+2} F(x)=\int_{0}^{b} t^{k} p(t) d t=\beta
\end{align*}
$$

holds. Then the double inequality (5) holds, α and β are the best constants in (6) or (2).

The decreasing case can be proved similarly.

5 Other proof of Theorem 2

In what follows, we also assume that $\frac{p(t)}{t}$ is increasing.
Let $p(t)=t^{k+1}, f(t)=\frac{p(t)}{t}, c=x$, and $a=0$ in Lemma 2, we can obtain

$$
\begin{equation*}
\frac{\int_{0}^{x} t^{k} p(t) d t}{\int_{0}^{x} t^{k+1} d t} \leq \frac{\int_{0}^{b} t^{k} p(t) d t}{\int_{0}^{b} t^{k+1} d t} \leq \frac{\int_{x}^{b} t^{k} p(t) d t}{\int_{x}^{b} t^{k+1} d t} \tag{7}
\end{equation*}
$$

(i) The left-side inequality of (7) deduces

$$
\left(\frac{b}{x}\right)^{k+2} \int_{0}^{x} t^{k} p(t) d t \leq \int_{0}^{b} t^{k} p(t) d t
$$

then the right-side inequality of (2) holds.
(ii) Let $b \rightarrow 0^{+}$in the right-side inequality of (7), we can obtain

$$
\lim _{b \rightarrow 0^{+}} \frac{\int_{0}^{b} t^{k} p(t) d t}{\int_{0}^{b} t^{k+1} d t}=\lim _{b \rightarrow 0^{+}} \frac{p(b)}{b} \leq \frac{\int_{x}^{0} t^{k} p(t) d t}{\int_{x}^{0} t^{k+1} d t}=\frac{\int_{0}^{x} t^{k} p(t) d t}{\int_{0}^{x} t^{k+1} d t},
$$

then the left-side inequality of (2) holds.
Let $G(x)=\left(\frac{b}{x}\right)^{k+2} \int_{0}^{x} t^{k} p(t) d t$. Since $\lim _{x \rightarrow 0+} G(x)=\alpha$ and $G(b)=\beta$, we obtain that is α and β are the best constants in (2).

References

1. Fischer, P, Slodkowski, Z: Mean value inequalities for convex and star-shaped sets. Aequationes Math. 70, 213-224 (2005). doi:10.1007/s00010-005-2797-3
2. Anderson, GD, Vamanamurthy, MK, Vuorinen, M: Inequalities for quasiconformal mappings in space. Pacific J Math. 160 1-18 (1993)
3. Vamanamurthy, MK, Vuorinen, M: Inequalities for means. J Math Anal Appl. 183, 155-166 (1994). doi:10.1006/ jmaa.1994.1137
4. Anderson, GD, Vamanamurthy, MK, Vuorinen, M: Conformal Invariants, Inequalities, and Quasiconformal Maps. Wiley, New York (1997)
5. Anderson, GD, Qiu, S-L, Vamanamurthy, MK, Vuorinen, M: Generalized elliptic integral and modular equations. Pacific J Math. 192, 1-37 (2000). doi:10.2140/pjm.2000.192.1
6. Mitrinović, DS, Pečarić, JE: Monotone funkcije i njihove nejednakosti I. pp. 294. Naucna knjiga, Belgrade (1990)

doi:10.1186/1029-242X-2012-103

Cite this article as: Zhu: Refinement of an integral inequality. Journal of Inequalities and Applications 2012 2012:103.

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$

 journal and benefit from:- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

[^0]: © 2012 Zhu; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

