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Abstract

In this study, we generalize and sharpen an integral inequality raised in theory for
convex and star-shaped sets and relax the conditions on the integrand.
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1 Introduction
In the study [1], which investigated convex and star-shaped sets, the following interest-

ing result was obtained.

Theorem 1. ([1, Lemma 2.1]) Let p : [0, T ] ® ℝ be a nonnegative convex function

such that p(0) = 0. Then for 0 < a ≤ b ≤ T and k Î N+ the inequality

b∫
0

tkp(t)dt ≥
(
b
a

)k+2 a∫
0

tkp(t)dt (1)

holds.

In this note, we shall show that the convexity of the function p(t) may be replaced by

the condition that p(t)
t

is increasing, sharpen inequality (1), and obtain the following a

general result using a monotone form of l’Hospital’s rule, a elementary method, and

Mitrinović-Pečarić inequality, respectively.

Theorem 2. Let p : [0, T ] ® ℝ be a nonnegative continuous function such that p(0)

= 0 and p(t)
t
be a monotone function on (0, T ]. Let A = lim

x→0+
p(x)
x .Then for 0 < x ≤ b ≤ T

and k ≥ 0 the double inequality

α ≤
(
b

x

)k+2 x∫
0

tkp(t)dt ≤ β (2)

holds so that

(i) when p(t)
t
is increasing, we haveα = bk+2A

k+2
, β =

b∫
0
tkp(t)dt;

(ii) when p(t)
t
is decreasing, we have α =

∫ b
0 tkp(t)dt, β = bk+2A

k+2
.
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Furthermore, these paired numbers a and b defined in (i) and (ii) are the best con-

stants in (2).

2 Two lemmas
Lemma 1. ([2-5], A Monotone form of L’Hospital’s rule) Let f, g : [a, b] ® ℝ be two

continuous functions which are differentiable on (a, b). Further, let g′ �= 0 on (a, b). If

f ′/g′is increasing (or decreasing) on (a, b), then the functions f (x)−f (b)
g(x)−g(b) and

f (x)−f (a)
g(x)−g(a) are

also increasing (or decreasing) on (a, b).

Lemma 2. ([[6], Mitrinović-Pečarić inequality]) If f is increasing function and p satis-

fies the conditions 0 ≤ ∫ x
a p(t)dt ≤ ∫ b

a p(t)dtfor x Î[a, b], and for some c ∈ [a, b],∫ b
c p(t)dt > 0,

∫ b
c p(t)dt > 0, then we have

∫ c
a p(t)f (t)dt∫ c

a p(t)dt
≤

∫ b
a p(t)f (t)dt∫ b

a p(t)dt
≤

∫ b
c p(t)f (t)dt∫ b

c p(t)dt
. (3)

If f is decreasing the inequalities (3) are reversed.

3 A concise proof of Theorem 2

Let H(t) =
∫ t
0 b

k+1skp(bs)ds
tk+2 = f1(t)

g1(t)
, where f1(t) =

∫ t

0
bk+1skp(bs)ds, g1(t) = tk + 2, and 0 < t ≤

1. Then f
′
1(t)
g′
1(t)

= bk+1p(bt)
(k+2)t .

(a) When p(t)
t

is increasing, we have f
′
1(t)
g′
1(t)

is also increasing, and

H(t) = f1(t)
g1(t)

= f1(t)−f1(0)
g1(t)−g1(0)

is increasing by Lemma 1. At the same time,

lim
t→0+

H(t) = lim
t→0+

bk+1p(bt)
(k+2)t = bk+2A

k+2 , and lim
t→1

H(t) =
∫ 1

0
bk+1tkp(bt)dt =

∫ b

0
ukp(u)du. So we

obtain

bk+2A
k + 2

≤
∫ t
0 b

k+1skp(bs)ds

tk+2
≤

b∫
0

ukp(u)du, (4)

bk+2A
k+2 and

∫ b

0
ukp(u)du are the best constants in (4).

Replacing t with x/b in (4), we have
∫ t

0
bk+1skp(bs)ds =

∫ x
b

0
bk+1skp(bs)ds. Then let bs

= u, we obtain ∫ x
b
0 bk+1skp(bs)ds =

∫ x
0 ukp(u)du, and

bk+2A
k + 2

≤
(
b
x

)k+2 x∫
0

tkp(t)dt ≤
b∫

0

ukp(u)du (5)

holds. Furthermore α = bk+2A
k+2

and β =
∫ b
0 ukp(u)du are the best constants in (5).

(b) When p(t)
t

is decreasing, we obtain corresponding result by the same way.
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4 New elementary proof of Theorem 2

Let F(x) =
∫ x
0 tkp(t)dt
xk+2

for x Î (0, b]. Assume that p(t)
t

is increasing. By a simple calculation

and the inequality p(t) ≤ t p(x)x for 0 <t ≤ x ≤ b we have that

xF′(x) =
p(x)
x

− (k + 2)

∫ x
0 tkp(t)dt

xk+2
≥ p(x)

x
− (k + 2)

∫ x
0 tkt p(x)x dt

xk+2
= 0.

So F (x) is increasing and the chain inequality

α =
bk+2

k + 2
lim
x→0+

p(x)
x

= lim
x→0+

bk+2F(x) ≤ inf
x∈(0,b]

bk+2F(x)

≤
(
b

x

)k+2 x∫
0

tkp(t)dt

≤ sup
x∈(0,b]

bk+2F(x) = lim
x→b

bk+2F(x) =

b∫
0

tkp(t)dt = β

(6)

holds. Then the double inequality (5) holds, a and b are the best constants in (6) or

(2).

The decreasing case can be proved similarly.

5 Other proof of Theorem 2

In what follows, we also assume that p(t)
t

is increasing.

Let p(t) = tk + 1, f (t) = p(t)
t
,c = x, and a = 0 in Lemma 2, we can obtain

∫ x
0 tkp(t)dt∫ x
0 tk+1dt

≤
∫ b
0 tkp(t)dt∫ b
0 tk+1dt

≤
∫ b
x tkp(t)dt∫ b
x tk+1dt

. (7)

(i) The left-side inequality of (7) deduces

(
b
x

)k+2 x∫
0

tkp(t)dt ≤
b∫

0

tkp(t)dt,

then the right-side inequality of (2) holds.

(ii) Let b ® 0+ in the right-side inequality of (7), we can obtain

lim
b→0+

∫ b
0 tkp(t)dt∫ b
0 tk+1dt

= lim
b→0+

p(b)
b

≤
∫ 0
x tkp(t)dt∫ 0
x tk+1dt

=

∫ x
0 tkp(t)dt∫ x
0 tk+1dt

,

then the left-side inequality of (2) holds.

Let G(x) = ( bx )
k+2

∫ x
0 tkp(t)dt. Since lim

x→0+
G(x) = α and G(b) = b, we obtain that is a

and b are the best constants in (2).
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