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Abstract

In this article, we shall study the uniqueness problems on meromorphic functions
sharing nonzero finite value or having fixed points. Our results extend the
corresponding results of Fang and Hua, Yang and Hua, and Fang and Qiu. MSC
2010: 30D35, 30D30.
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1 Introduction and main results
Let ℂ denote the complex plane and f be a nonconstant meromorphic function on ℂ.

We assume the reader is familiar with the standard notion used in the Nevanlinna

value distribution theory such as T (r, f ), m(r, f ), N(r, f ) (see, e.g., [1-4]), and S(r, f )

denotes any quantity that satisfies the condition S(r, f ) = o(T (r, f )) as r ® ∞ outside

of a possible exceptional set of finite linear measure. A meromorphic function a is

called a small function with respect to f, provided that T (r, a) = S(r, f ).

Let f and g be two nonconstant meromorphic functions. Let a be a small function

of f and g. We say that f, g share a counting multiplicities (CM) if f - a, g - a have

the same zeros with the same multiplicities and we say that f, g share a ignoring

multiplicities (IM) if we do not consider the multiplicities. We denote N0 (r, ∞)

the reduced counting function of the common poles of f and g. If

N
(
r, f

) − N0 (r, ∞) = S
(
r, f

)
, and N

(
r, g

) − N0 (r, ∞) = S
(
r, g

)
, we say that f

and g share ∞ “IM”. We denote by Nk) (r, 1
f−a ) (orNk(r, 1

f−a )) the counting function

for zeros of f - a with multiplicity ≤ k (IM), and by N(k(r, 1
f−a ) (orNk(r, 1

f−a ) ) the

counting function for zeros of f - a with multiplicity ≤ k (IM). Moreover, we set

Nk(r, 1
f − a ) = N̄(r, 1

f − a ) + N̄2(r, 1
f − a ) + N̄3(r, 1

f − a ) + · · · + N̄k(r, 1
f − a ) .

We say that a finite value z0 is called a fixed point of f if f(z0) = z0 or z0 is a zero of

f(z) - z.

The following theorem in the value distribution theory is well known [5,6].

Theorem A. Let f be a transcendental meromorphic function, n ≤ 1 a positive integer.

Then f nf’ = 1 has infinitely many solutions.

Fang and Hua [7], Yang and Hua [8] got a unicity theorem, respectively, correspond-

ing to Theorem A.
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Theorem B. Let f and g be two nonconstant entire (meromorphic) functions, n ≤ 6(n

≤ 11) be a positive integer. If f nf ’ and gng’ share 1 CM, then either f(z) = c1e
cz, g(z) =

c2e
-cz, where c1, c2 and c are three constants satisfying 4(c1c2)

n+1c2 = -1, or f ≡ tg for a

constant t such that tn+1 = 1.

Considering the uniqueness question of entire or meromorphic functions having

fixed points, Fang and Qiu [9] obtained the following result.

Theorem C. Let f and g be two nonconstant meromorphic (entire) functions, n ≤ 11(n

≤ 6) a positive integer. If f nf’ and gng’ share z CM, then either f (z) = c1ecz
2 ,

g (z) = c2e−cz2 , where c1, c2, and c are three constants satisfying 4(c1c2)
n+1c2 = -1, or f ≡

tg for a constant t such that tn+1 = 1.

For more results in such directions, we refer the readers to [7-24].

We recall the following result by Xu et al. [25] or Zhang and Li [26], respectively.

Theorem D. Let f be a transcendental meromorphic function, n(≤ 2), k be two posi-

tive integers. Then f nf (k) takes every finite nonzero value infinitely many times or has

infinitely many fixed points.

Corresponding to Theorem D, one may ask, what can be said about the relationship

between two meromorphic functions f and g, if f nf (k) and gng(k) have the same fixed

points or share one nonzero complex number, where n and k are positive numbers? In

this direction, we will prove:

Theorem 1.1. Let f and g be two transcendental meromorphic functions, whose zeros

are of multiplicities at least k, where k is a positive integer. Let n >max{2k - 1, k+ 4/k +

4} be a positive integer. If f n f (k) and gn g(k) share z CM, f and g share ∞ IM, one of the

following two conclusions holds:

(i) f n f (k) = gn g(k);

(ii) f (z) = c1ecz
2 , g (z) = c2e−cz2 , where c1 , c2, and c are constants such that

4(c1c2)
n+1c2 = -1.

Theorem 1.2. Let f and g be two nonconstant meromorphic functions, whose zeros are

of multiplicities at least k, where k is a positive integer. Let n >max{2k - 1, k + 4/k + 4}

be a positive integer. If f nf (k) and gng(k) share 1 CM, f and g share ∞ IM, one of the fol-

lowing two conclusions holds:

(i) f nf (k) = gng(k);

(ii) f(z) = c3e
dz, g(z) = c4e

-dz, where c3, c4, and d are constants such that (-1)k (c3c4)
n+1

d2k = 1.

Remark 1.1. Theorems 1.1 and 1.2 are also true of entire functions when n >4/k+2 be

a positive integer.

Theorem 1.3. Let f and g be two nonconstant meromorphic functions, whose zeros are

of multiplicities at least k + 1, where k is a positive integer with 1 ≤ k ≤ 5. Let n ≤10 be

a positive integer. If f nf (k) and gng(k) share 1 CM, f (k) and g(k) share 1 CM, f and g

share ∞ IM, one of the following two conclusions holds:

(i) f ≡ tg for a constant t such that tn+1 = 1;

(ii) f(z) = c3e
dz, g(z) = c4e

-dz, where c3, c4 and d are constants such that (-1)k(c3c4)
n+1d2k = 1.

2 Preliminary lemmas
Lemma 2.1. [3] Let f be a nonconstant meromorphic function, and let k be a positive

integer. Suppose that f (k) ≢0, then
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N
(
r,

1
f (k)

)
≤ N

(
r,

1
f

)
+ kN̄

(
r, f

)
+ S

(
r, f

)
.

By using the similar method of Yang and Hua [8], we can prove the following

lemma.

Lemma 2.2. Let f and g be two nonconstant meromorphic functions, a be a finite

nonzero constant. If f and g share a CM and ∞ “IM”, one of the following cases holds:

(i) T
(
r, f

) ≤ N2
(
r, 1/f

)
+ N2

(
r, 1/g

)
+ 3N

(
r, f

)
+ S

(
r, f

)
+ S

(
r, g

)
, the same

inequality holding for T (r, g);

(ii) fg ≡ a2; (iii) f ≡ g.

Lemma 2.3. [1, Theorem 3.10] Suppose that f is a nonconstant meromorphic func-

tion, k ≤ 2 is an integer. If

N(r, f ) + N(r, 1/f ) + N(r, 1/f (k)) = S(r, f ′/f ),

Then f(z) = eaz+b, where a ≠ 0, b are constants.

Lemma 2.4. [27] Let f and g be nonconstant meromorphic functions. Suppose that f

and g share the values 0 and ∞ CM, f (k) and g(k) share the value 0 CM for k = 1, 2, 3,

4, 5, 6. Then f and g satisfy one of the following cases:

(i) f = tg, where t(≠ 0) is a constant.

(ii) f(z) = eaz+b, g(z) = ecz+d, where a, b, c, and d are constants with ac ≠ 0.

(iii) f (z) = a
1−beα(z) , g (z) = a

e−α(z)−b , where a, b are nonzero consants, and a(z)

is a nonconstant entire function.

(iv) f(z) = a(1 - becz), g(z) = d(e-cz - b), where a, b, c, and d are nonzero constants.

To prove Theorems 1.1 and 1.2, we also need the following results.

Lemma 2.5. Let f, g be two nonconstant meromorphic functions, whose zeros are of

multiplicities at least k, where k is a positive integer. Let n >2k - 1 be a positive integer.

If f nf (k)gng(k) = z2, f and g share ∞ IM, then f (z) = c1e
cz2 g(z) = c2e

−cz2 , where c1, c2,

and c are constants such that 4(c1c2)
n+1c2 = -1.

Lemma 2.6. Let f, g be two nonconstant meromorphic functions, whose zeros are of

multiplicities at least k, where k is a positive integer. Let n >2k - 1 be a positive integer.

If f nf (k)gng(k) = 1, f and g share ∞ IM, then f(z) = c3e
dz, g(z) = c4e

-dz, where c3, c4, and d

are constants such that (-1)k(c3c4)
n+1d2k = 1.

3 Proofs of Lemmas 2.5 and 2.6
3.1 Proof of Lemma 2.5

Since f and g share ∞ IM, we have from

f n f (k) gn g(k) = z2 (3:1)

that f and g are entire functions.

Suppose that f has a zero z0 of multiplicity p ≤ k, then z0 is a zero of f nf (k) with mul-

tiplicity np + p - k ≤ 2k2. In view of (3.1), we get k = 1, n = 2, and z0 = 0.

Moreover, g has no zero. Therefore,

f (z) = zeα1(z), g(z) = eβ1(z), (3:2)
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where a1(z), b1(z) are nonconstant entire functions. So from 3.2, we get

z2(1 + zα′
1(z))β

′
1e

3(α1(z)+β1(z)) = z2, (3:3)

namely

(1 + zα′
1(z))β

′
1e

3(α1(z)+β1(z)) = 1, (3:4)

which is impossible since a1 and b1 are non-constant entire functions(
α′

1 ≡ 0, β ′
1 ≡ 0

)
. Thus f has no zero. similarly, we get that g has no zero. So, we

have

f (z) = eα(z), g(z) = eβ(z), (3:5)

where a(z), b(z) are nonconstant entire functions. Then

T
(
r,
f ′

f

)
= T(r, α′). (3:6)

We claim that a + b ≡ C, where C is a constant.

Let F = f nf (k), G = gng(k). Then we have

nT(r, f ) = T(r, f n) = T
(
r,

F

f (k)

)
≤ T(r, F) + T(r, f (k)) + S(r, f ) ≤ T(r, F) + T(r, f ) + S(r, f ),

We obtain from (3.7) that

T(r, f ) = O(T(r, F)), (3:8)

as r Î E and r ® ∞, where E ⊂ (0, +∞) is some subset of finite linear measure. Note

that

T (r, F) = T
(
r, f n f (k)

)
+ nT

(
r, f

)
+ T

(
r, f (k)

)
+ S

(
r, f

)
≤ (n + 1) T

(
r, f

)
+ S

(
r, f

)
,

(3:9)

We obtain from (3.9) that

T(r, F) = O(T(r, f )), (3:10)

as r Î E and r ® ∞, where E ⊂ (0, +∞) is some subset of finite linear measure.

Thus from (3.8), (3.10) and the standard reasoning of removing exceptional set (see

[2, Lemma 1.1.1]) we deduce s ( f) = s (F). Similarly, we have s(g) = s(G). It follows
from (3.1) that s(F ) = s(G), we get s (f) = s(g).
We deduce that either both a and b are transcendental functions or both a and b

are polynomials. Moreover, we have

N(r, 1/f (k)) ≤ N(r, 1/z2) = O(log r).

From this and (3.5) we get

N(r, f ) + N(r, 1/f ) + N(r, 1/f (k)) = O(log r).
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If k ≤ 2, then it follows from (3.6) and Lemma 2.3 that a’ is a polynomial, and so a
is a nonconstant polynomial. Similarly, we can deduce that b is also a nonconstant

polynomial.

We deduce from (3.5) that

f (k) = [(α′)k + Pk−1(α′)]eα , g(k) = [(β ′)k +Qk−1(β ′)]eβ ,

where Pk-1(a’) and Qk-1(b’) are differential polynomials in a’ and b’ of degree at most

k - 1, respectively. Thus, we obtain

[(α′)k + Pk−1(α′)] [(β ′)k +Qk−1(β ′)]e(n+1)(α+β) = z2. (3:11)

We deduce from (3.11) that a(z) + b(z) ≡ C for a constant C.

If k = 1, from (3.1) and (3.5) we get

α′β ′e(n+1)(α+β) = z2. (3:12)

Next, we let a + b = g and suppose that a, b are transcendental entire functions.

If g is a constant, then a’ + b’ = 0, and from (3.12) we have a’b ’e(n+1)g = - a’2 e(n+1)g = z2

which implies that a’ is a nonconstant polynomial of degree deg (a’) = 1. This together

with a’ + b ’ = 0 implies that b ’ is also a nonconstant polynomial of degree deg(b ’) = 1.

If g is not a constant, then (3.12) implies that

α′(γ ′ − α′)e(n+1)γ = z2. (3:13)

Since T(r, γ ′) = m(r, γ ′) ≤ m

(
r,
(e(n+1)γ )′

e(n+1)γ

)
+O(1) = S(r, e(n+1)γ ) . Thus (3.13)

implies that

T(r, e(n+1)γ ) ≤ T
(
r,

z2

α′(γ ′ − α′)

)
+O(1)

≤ (2 + o(1))T(r,α′) + S(r, enγ ),

which implies that

T(r, e(n+1)γ ) = O(T(r, α′)),

Similarly, we have

T(r, α′) = O(T(r, e(n+1)γ )).

Thus T (r, g ’) = S(r, e(n+1)g) = S(r, a’).
In view of (3.13) and by the second fundamental theorem for small functions, we get

T(r, α′) ≤ N̄
(
r,

1
α′

)
+ N̄

(
r,

1
α′ − γ ′

)
+ S(r, α′) ≤ O(log r) + S(r, α′).

Thus a’ is a polynomial, which contradicts that a is a transcendental entire function.

Thus a and b are both polynomials and a(z) + b(z) ≡ C for a constant C.

Hence, from (3.11) we get

(−1)k(α′)2k = z2 + P̃2k−1(α′), (3:14)
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where P̃2k−1 is a differential polynomial in a’ of degree at most 2k - 1. From (3.14)

we have

2kT(r, α′) = 2 log r + S(r, α′). (3:15)

From (3.15) we can see that a’ is a nonconstant polynomial of degree 1 and that

k = 1.

By induction we get

α′ + β ′ = 0,

e(n+1)Cα′β ′ = z2.

By computation we get

α′ = l1z, β ′ = −l2z, (3:16)

Hence

α = cz2 + l3, β = −cz2 + l4, (3:17)

We can rewrite f and g as

f = c1e
cz2 , g = c2e

−cz2 ,

where c1, c2, and c are constants such that 4(c1c2)
n+1c2 = -1.

This completes the proof of Lemma 2.5.

3.2 Proof of Lemma 2.6

By the same reasons as in Lemma 2.5, we get

f (z) = eα(z), g(z) = eβ(z), (3:18)

and

(α′)2k = 1 + P̃2k−1(α′), (3:19)

where P̃2k−1 is a differential polynomial in a’ of degree at most 2k - 1. From (3.19)

we have

2kT(r, α′) ≤ (2k − 1)T(r, α′) + S(r, α′), (3:20)

which implies that a’ is a nonzero constant. Thus a = dz + l5, b = -dz + l6. By (3.18),

rewrite f and g as

f = c3e
dz, g = c4e

−dz, (3:21)

where c3, c4 and d are constants such that (-1)k(c3c4)
n+1d2k = 1.

This completes the proof of Lemma 2.6.

4 Proof of Theorem 1.1
Let F = f nf (k), G = gng(k), F*(z) = F(z)/z, G* (z) = G(z)/z. Note that f and g are transcen-

dental, so z is a small function with respect to both F and G. Then F* and G* share

1 CM and ∞ “IM”. By Lemma 2.2, we consider three cases.
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Case 1. Suppose that

T(r, F∗) ≤ N2(r, 1/F∗) +N2(r, 1/G∗) + 3N̄(r, f ) + S(r, f ) + S(r, g). (4:1)

We deduce from (4.1) that

T(r, F) ≤ N2(r, 1/F) +N2(r, 1/G) + 3N̄(r, f ) + S(r, f ) + S(r, g).

Obviously,

N(r, F) = (n + 1)N(r, f ) + kN̄(r, f ) + S(r, f ). (4:2)

Since

nm(r, f ) = m(r, F/f (k)) ≤ m(r, F) +m(r, 1/f (k)) + S(r, f )

= m(r, F) + T(r, f (k)) − N(r, 1/f (k)) + S(r, f )

≤ m(r, F) + T(r, f ) + kN̄(r, f ) − N(r, 1/f (k)) + S(r, f ).

(4:3)

It follows from (4.2), (4.3), and Lemma 2.1 that

(n − 1)T(r, f ) ≤ T(r, F) − N(r, f ) − N(r, 1/f (k)) + S(r, f )

≤ N2(r, 1/F) +N2(r, 1/G) + 3N̄(r, f )

− N(r, f ) − N(r, 1/f (k)) + S(r, f ) + S(r, g)

≤ N2(r, 1/f n) +N2(r, 1/f (k)) +N2(r, 1/gn) +N2(r, 1/g(k))

+ 3N(r, f ) − N(r, f ) − N(r, 1/f (k)) + S(r, f ) + S(r, g)

≤ 2N̄(r, 1/f ) + 2N̄(r, 1/g) +N(r, 1/f (k)) +N(r, 1/g(k))

+ 2N(r, f ) − N(r, 1/f (k)) + S(r, f ) + S(r, g)

≤ 2
k
N(r, 1/f ) +

2
k
N(r, 1/g) +N(r, 1/g) + kN̄(r, g)

+ 2N(r, g) + S(r, f ) + S(r, g)

≤ 2
k
(T(r, f ) + T(r, g)) + (k + 3)T(r, g) + S(r, f ) + S(r, g).

Similarly, we have

(n − 1)T(r, g) ≤ 2
k
(T(r, f ) + T(r, g)) + (k + 3)T(r, f ) + S(r, f ) + S(r, g).

Combining the above two inequalities gives

(n − 1)(T(r, f ) + T(r, g)) ≤
(
4
k
+ k + 3

) (
T(r, f ) + T(r, g)

)
+ S(r, f ) + S(r, g). (4:4)

Note that n > k + 4/k + 4, we get a contradiction from (4.4).

Case 2. Suppose that f nf (k)gng(k) = z2. Then, by Lemma 2.5, we get conclusion (ii).

Case 3. Suppose that f nf (k) = gng(k). Then we have the conclusion (i) of Theorem 1.1.

This completes the proof of Theorem 1.1.

By Lemma 2.6, using the same argument as in the proof of Theorem 1.1, we can

prove Theorem 1.2.

Cao and Zhang Journal of Inequalities and Applications 2012, 2012:100
http://www.journalofinequalitiesandapplications.com/content/2012/1/100

Page 7 of 10



5 Proof of Theorem 1.3
Since n ≤ 10, we have n >max{2k - 1, k + 4/k + 4} for 1 ≤ k ≤ 5. By Theorem 1.2, one

of the following two conclusions holds:

(i)f nf (k) = gng(k);

(ii) f(z) = c3e
dz, g(z) = c4e

-dz, where c3, c4, and d are constants such that (-1)k(c3c4)
n+1d2k = 1.

We only need to consider the case (1). Namely

f nf (k) = gng(k). (5:1)

Let

h = g/f . (5:2)

We claim that h is a nonzero constant.

If h is not a constant, we claim that

h = eγ , (5:3)

where g is a nonconstant entire function. Thus we need to prove that

(a) f and g share ∞ CM;

(b) f and g share 0 CM.

We prove the above two conclusions step-by-step.

Step 1. We prove (a).

Note that f and g share ∞ IM. Suppose that z0 is a pole of f with multiplicity p, a

pole of g with multiplicity q. From (5.1) we have

np + p + k = nq + q + k, (5:4)

namely

(n + 1) (p – q) = 0, (5:5)

which implies p = q, thus f and g share ∞ CM, we get (a).

Step 2. We prove (b).

From (5.1) and the assumptions that f nf (k) and gng(k) share 1 CM, f (k) and g(k) share

1 CM, f and g share ∞ IM, we can deduce f and g share 0 IM.

Suppose that z2 is a zero of f with multiplicity m1, a zero of g with multiplicity m2.

Then we have

nm1 +m1 − k = nm2 +m2 − k, (5:6)

which implies m1 = m2. Thus f and g share 0 CM, and we get (b). Therefore, (5.3)

holds. Moreover, from (5.1) we get

f (k)/g(k) = enγ . (5:7)

Thus f (k) and g(k) share 0 and ∞ CM. By Lemma 2.4 and note that h is not a con-

stant, we consider three cases.

Case 1. f(z) = eaz+b, g(z) = ecz+d, where a, b, c, and d are constants with ac ≠ 0. We

deduce from (5.1) that

(a/c)ke(n+1)(b−d)e(n+1)(a−c)z = 1, (5:8)
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which implies a = c, thus f = t1g, where t1 is a nonzero constant, which is a contra-

diction since h is not a constant. Case 1 has been ruled out.

Case 2. f (z) = a
1−beα(z) , g (z) = a

e−α(z)−b , where a, b are nonzero constants, and a(z) is

a nonconstant entire function. Thus we have h = g/f = ea(z). From (5.1) it is easy to

obtain

S(r, f ) = S(r, g). (5:9)

Moreover, we have from the expressions of f and g that

T(r, f ) = T(r, eα(z)) +O(1) = T(r, h) + S(r, h), T(r, g) = T(r, h) + S(r, h). (5:10)

Combining (5.9) and (5.10) gives

S(r, f ) = S(r, g) = S(r, h). (5:11)

From (5.1) we have

hn+1 =
gf (k)

f g(k)
. (5:12)

Note that f and g have no zero. By the first fundamental theorem and the lemma of

logarithmic derivative, we deduce from (5.12) that

(n + 1)T(r, h) = T(r, hn+1) = T

(
r,
gf (k)

f g(k)

)
≤ T

(
r,
f (k)

f

)
+ T

(
r,
g(k)

g

)
+O(1)

= m

(
r,

f (k)

f

)
+N

(
r,

f (k)

f

)
+m

(
r,

g(k)

g

)
+N

(
r,

g(k)

g

)
+O(1)

≤ kN̄(r, f ) + kN̄(r, g) + S(r, f ) + S(r, g)

≤ kT(r, f ) + kT(r, g) + S(r, f ) + S(r, g)

≤ 2kT(r, h) + S(r, h) ≤ 10T(r, h) + S(r, h),

(5:13)

which is a contradiction since n ≤ 11. Case 2 has been ruled out.

Case 3. f (z) = a(1 - becz), g(z) = d(e-cz - b), where a, b, c, and d are nonzero

constants.

Then all zeros of f and g are simple, which contradicts our assumption. Case 3 has

been ruled out.

Therefore, h is a constant. Since g is not a constant, we have h ≠ 0. Let t = 1/h,

and we have f ≡ tg, we deduce from (5.1) that tn+1 = 1. This completes the proof of

Theorem 1.3.

Conjecture
In this section, we pose the following

Conjecture: Let f and g be two nonconstant meromorphic functions, whose zeros are

of multiplicities at least k, where k is a positive integer. Let n >max{2k - 1, k + 4/k + 5}

be a positive integer. If f nf (k) and gng(k) share 1 CM, then one of the following two

conclusions holds:

(i) f = tg for a constant t such that tn+1 = 1;

(ii) f(z) = c3e
dz, g(z) = c4e

-dz, where c3, c4 and d are constants such that (-1)k(c3c4)
n+1d2k = 1.
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