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Abstract

Based on an abstract continuous theorem of k-set contractive operator and some
analysis skill, a new result is obtained for the existence of positive periodic solutions
to a neutral multi-delay logarithmic population model. Some sufficient conditions
obtained in this article for the existence of positive periodic solutions to a neutral
multi-delay logarithmic population model are easy to check. Furthermore, our main
result also weakens the condition in the existing results. An example is used to
illustrate the applicability of the main result.
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1 Introduction
In recent years, there has been considerable interest in the existence of periodic solu-

tions of functional differential equations (see, for example, [1-7]). It is well known that

the environments of most natural populations change with time and that such changes

induce variation in the growth characteristics of populations. Among many population

models, the neutral logarithmic population model has recently attracted the attention

of many mathematicians and biologists.

Let ω >0 be a constant, Cω = {x : x Î C(R, R), x(t + ω) = x(t)}, with the norm

defined by |x|0 = maxt∈[0,ω]
∣∣x(t)∣∣, and C1

ω = {x : x ∈ C1(R,R), x(t + ω) = x(t)}, with the

norm defined by ||x||0 = max{|x|0, |x’|0}, then Cω,C1
ω are both Banach spaces. Let

h̄ = 1
ω

∫ ω

0
h(t)dt,∀h ∈ Cω.

Lu and Ge [8] studied the existence of positive periodic solutions for neutral loga-

rithmic population model with multiple delays. Based on an abstract continuous theo-

rem of k-set contractive operator, Luo and Luo [9] investigate the following periodic

neutral multi-delay logarithmic population model:

dN
dt

= N(t)

⎡
⎣r(t) −

n∑
j=1

aj(t) lnN(t − σj(t)) −
m∑
i=1

bi(t)
d
dt

lnN(t − τi(t))

⎤
⎦ (1)

where r(t), aj(t), bi(t), sj(t), τi(t) are all in Cω with r̄ > 0, sj(t) > 0 and τi(t) > 0, ∀t Î [0,

ω], ∀j Î {1, 2, ..., n}, ∀i Î {1, 2, ..., m}. Furthermore, bi(t) Î C1(R, R), sj(t) Î C1(R, R), τi(t)
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Î C2 (R, R) and σ ′
j (t) < 1, τ ′

i (t) < 1, ∀j Î {1, 2, ..., n}, ∀i Î {1, 2, ..., m}.

Since σ ′
j (t) < 1,∀t ∈ [0,ω], t − σj(t) has a unique inverse. Let μj(t) be the inverse of

t - sj(t). Similarly, t - τi(t) has a unique inverse, denoted by gi(t).

For convenience, denote �(t) =
n∑
j=1

aj(μj(t))

1 − σ ′
j (μj(t))

−
m∑
i=1

b′
i(γi(t))

1 − τ ′
i (γi(t))

.

Luo and Luo [9] obtain the following sufficient condition on the existence of positive

periodic solutions for neutral logarithmic population model with multiple delays.

Theorem A. Assume the following conditions hold:

(H1’) There exists a constant θ >0 such that |Γ(t)| > θ, ∀t Î [0, ω].

(H2’)
∑n

j=1
|aj|0ω +

∑m

i=1
|bi|0 |1 − τ ′

i |1/20 < 1 and
∑m

i=1
|bi|0|1 − τ ′

i |0 < 1.

Then Equation (1) has at least an ω-positive periodic solution.

The purpose of this article is to further consider the existence of positive periodic solu-

tions to a neutral multi-delay logarithmic population model (1). We will present some

new sufficient conditions for the existence of positive periodic solutions to a neutral

multi-delay logarithmic population model. In this article, we will replace the assumption

(H1’): |Γ(t)| > θ in Theorem A by different assumption Γ(t) >0, ∀t Î [0, ω], (or Γ(t) < 0, ∀t
Î [0, ω]). Obviously, it is more easy to check Γ(t) > 0, ∀t Î [0, ω], than to find a constant

θ >0 such that |Γ(t)| > θ, ∀t Î [0, ω]. At the same time, the assumption (H2’) in Theorem

A will be greatly weakened.
∑n

j=1
|aj|0ω +

∑m

i=1
|bi|0|1 − τ ′

i |1/20 < 1 in Theorem A is

replaced by 1
2

∑n

j=1
|aj|0ω +

∑m

i=1
|bi|0 |1 − τ ′

i |1/20 < 1 in this article.

2 Main lemmas
Under the transformation N(t) = ex(t), then Equation (1) can be rewritten in the follow-

ing form:

x′(t) = r(t) −
n∑
j=1

aj(t)x(t − σj(t)) −
m∑
i=1

ci(t)x′(t − τi(t)) (2)

where ci(t) = bi(t)(1 − τ ′
i (t)), i = 1, 2, . . . ,m.

It is easy to see that in this case the existence of positive periodic solution of Equa-

tion (1) is equivalent to the existence of periodic solution of Equation (2). In order to

investigate the existence of periodic solution of Equation (2), we need some definitions

and lemmas.

Definition 1. Let E be a Banach space, S ⊂ E be a bounded subset, denote aE(S) =

inf {δ > 0| there is a finite number of subsets Si ⊂ S such that S =
⋃
i
Siand

diamSi ≤ δ}
then aE is called non-compactness measure of S or Kuratowski distance (see [1]),

where diamSi denotes the diameter of set Si.

Definition 2. Let E1 and E2 be Banach spaces, D ⊂ E1, A : D ® E2 be a continuous

and bounded operator. If there exists a constant k ≥ 0 satisfying αE2 (A(S)) ≤ kαE1 (S)for

any bounded set S ⊂ D, then A is called k-set contractive operator on D.

Definition 3. Let X, Y be normed vector spaces, L : DomL ⊂ X ® Y be a linear map-

ping. This mapping L will be called a Fredholm mapping of index 0 if dimKerL = codi-

mImL <∞ and ImL is closed in Y [3].
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Assume that L : DomL ⊂ X ® Y is a Fredholm operator with index 0, from [3], we

know that sup{δ >0|δaX(B) ≤ aY (L(B))} exists for any bounded set B ⊂ DomL, so we

can define

l(L) = sup{δ > 0|δαX(B) ≤ αY(L(B))for any bounded set B ⊂ DomL}.

Now let L : X ® Y be a Fredholm operator with index 0, X and Y be Banach spaces,

Ω ⊂ X be an open and bounded set, and let N : 	̄ → Y be a k-set contractive operator

with k < l(L). By using the homotopy invariance of k-set contractive operator’s topolo-

gical degree D[(L, N), Ω], Petryshyn and Yu [10] proved the following result.

Lemma 1. [10]Assume that L : X ® Y is a Fredholm operator with index 0, r Î Y is

a fixed point, N : 	̄ → Yis a k-set contractive operator with k < l(L), where Ω ⊂ X is

bounded, open, and symmetric about 0 Î Ω. Furthermore, we also assume that

(R1) Lx �= λNx + λr,∀λ ∈ (0, 1), ∀x ∈ ∂	 ∩ DomL;

(R2) [QN(x) +Qr, x][QN(−x) +Qr, x] < 0, ∀x ∈ ∂	 ∩ KerL.

where[·,·] is a bilinear form on Y × X, and Q is the projection of Y onto Coker, where

Coker is the cokernel of the operator L. Then there exists a x ∈ 	̄ satisfying Lx = Nx + r.

In the rest of this article, we set Y = Cω,X = C1
ω

Lx =
dx
dt

(3)

and

Nx = −
n∑
j=1

aj(t)x(t − σj(t)) −
m∑
i=1

ci(t)x′(t − τi(t)), (4)

then Equation (2) is equivalent to the equation

Lx = Nx + r (5)

where r = r(t). Clearly, Equation (2) has an ω-periodic solution if and only if Equa-

tion (5) has a solution x ∈ C1
ω
.

Lemma 2. [7]The differential operator L is a Fredholm operator with index 0, and

satisfies l(L) ≥ 1.

Lemma 3. [9]If k =
∑n

i=1
|ci|0, then N : Ω ® Cω is a k-set contractive operator.

Lemma 4. [8]Suppose τ ∈ C1
ω
and τ’(t) < 1, ∀t Î [0, ω]. Then the function t - τ (t) has

a inverse μ(t) satisfying μ Î C(R, R) with μ(a + ω) = μ(a) + ω.

Lemma 5. [11]Let x(t) be continuous differentiable T-periodic function (T >0). Then

for any t* Î (-∞, +∞)

max
t∈[t∗,t∗+T]

|x(t)| ≤ |x(t∗)| + 1
2

T∫
0

|x′(s)|ds.

3 Main results
Let μj(t) be the inverse of t - sj(t), gj(t) be the inverse of t - τi(t) and

�(t) =
∑n

j=1
aj(μj(t))

1 − σ ′
j (μj(t))

− ∑m
i=1

b′
i(γi(t))

1 − τ ′
i (γi(t))

.

Tang and Tang Journal of Inequalities and Applications 2012, 2012:10
http://www.journalofinequalitiesandapplications.com/content/2012/1/10

Page 3 of 9



Theorem 1. Assume the following conditions hold:

(H1) If Γ(t) > 0, ∀t Î [0, ω] (or Γ(t) < 0, ∀t Î [0, ω]);

(H2) 1
2

∑n

j=1

∣∣aj∣∣0ω +
∑m

i=1
|bi|0|1 − τ ′

i |1/20 < 1 and
∑m

i=1
|bi|0|1 − τ ′

i |0 < 1.

Then Equation (1) has at least an ω-positive periodic solution.

Proof. Suppose that x(t) is an arbitrary ω-periodic solution of the following operator

equation

Lx = λNx + λr (6)

where L and N are defined by Equations (3) and (4), respectively. Then x(t) satisfies

x′(t) = λ

⎡
⎣r(t) −

n∑
j=1

aj(t)x(t − σj(t)) −
m∑
i=1

ci(t)x′(t − τi(t))

⎤
⎦ . (7)

Integrating both sides of Equation (7) over [0, ω] gives

ω∫
0

⎡
⎣r(t) −

n∑
j=1

aj(t)x(t − σj(t)) +
m∑
i=1

b′
i(t)x(t − τi(t))

⎤
⎦ dt = 0 (8)

i.e.,

ω∫
0

⎡
⎣ n∑

j=1

aj(t)x(t − σj(t)) −
m∑
i=1

b′
i(t)x(t − τi(t))

⎤
⎦ dt = r̄ω. (9)

Let t - sj(t) = s, i.e., t = μj(s). Lemma 4 implies that

aj(μj(s))

1 − σ ′
j (μj(s))

∈ Cω,
aj(μj(s))

1 − σ ′
j (μj(s))

x(s) ∈ Cω.

Lemma 4 implies μj(0 + ω) = μj(0) + ω, gi(0 + ω) = gi(0) + ω, ∀j Î {1, ..., n}, i Î{1, ..., m}.

Noting that sj(0) = sj(ω), τi(0) = τi(ω), then

ω∫
0

aj(μj(s))

1 − σ ′
j (μj(s))

ds =

ω−σj(ω)∫
−σj(0)

aj(μj(s))

1 − σ ′
j (μj(s))

ds =

ω∫
0

aj(t)dt = ωāj, j = 1, . . . ,n, (10)

ω∫
0

b′
i(γi(s))

1 − τ ′
i (γi(s))

ds =

ω−τi(ω)∫
−τi(0)

b′
i(γi(s))

1 − τ ′
i (γi(s))

ds =

ω∫
0

b′
i(t)dt = 0, i = 1, . . . ,m. (11)

Noting that Γ(t) > 0, we have

�̄ =
1
ω

ω∫
0

�(t)dt =
1
ω

ω∫
0

⎡
⎣ n∑

j=1

aj(μj(t))

1 − σ ′
j (μj(t))

−
m∑
i=1

b′
i(γi(t))

1 − τ ′
i (γi(t))

⎤
⎦ dt =

n∑
j=1

āj > 0. (12)

Furthermore

ω∫
0

aj(t)x(t − σj(t))dt =

ω−σj(ω)∫
−σj(0)

aj(μj(s))

1 − σ ′
j (μj(s))

x(s)ds

=

ω∫
0

aj(μj(s))

1 − σ ′
j (μj(s))

x(s)ds, j = 1, . . . ,n.

(13)
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Similarly

ω∫
0

b′
i(t)x(t − τi(t))dt =

ω−τi(ω)∫
−τi(0)

b′
i(γi(s))

1 − τ ′
i (γi(s))

x(s)ds

=

ω∫
0

b′
i(γi(s))

1 − τ ′
i (γi(s))

x(s)ds, i = 1, . . . ,m.

(14)

Combining (13) and (14) with (9) yields

ω∫
0

�(t)x(t)dt = r̄ω. (15)

Since Γ(t) > 0, it follows from the extended integral mean value theorem that there

exists h Î [0, ω] satisfying

x(η)

ω∫
0

�(t)dt = r̄ω, (16)

i.e.,

x(η) =
r̄

�̄
. (17)

By Lemma 5, we obtain

|x(t)| ≤ |x(η)| + 1
2

ω∫
0

|x′(t)|dt.

So

|x|0 ≤ | r̄
�̄

| + 1
2

ω∫
0

∣∣x′(t)
∣∣ dt. (18)

Multiplying both sides of Equation (7) by x’(t) and integrating them over [0, ω], we

have

ω∫
0

|x′(t)|2dt

=

ω∫
0

x′(t)2dt

=

∣∣∣∣∣∣
ω∫

0

x′(t)2dt

∣∣∣∣∣∣

= λ

∣∣∣∣∣∣
ω∫

0

r(t)x′(t)dt −
ω∫

0

n∑
j=1

aj(t)x(t − σj(t))x′(t)dt −
ω∫

0

m∑
i=1

ci(t)x′(t − τi(t))x′(t)dt

∣∣∣∣∣∣

≤ |r|0
ω∫

0

|x′(t)|dt+
n∑
j=1

|aj|0|x|0
ω∫

0

∣∣x′(t)
∣∣dt +

m∑
i=1

ω∫
0

|ci(t)x′(t − τi(t))x′(t)|dt.

(19)
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Cauchy-Schwarz inequality implies

ω∫
0

|x′(t)|2dt = λ

∣∣∣∣∣∣
ω∫

0

r(t)x′(t)dt −
ω∫

0

n∑
j=1

aj(t)x(t − σj(t))x′(t)dt

−
ω∫

0

m∑
i=1

ci(t)x′(t − τi(t))x′(t)dt

∣∣∣∣∣∣

≤
⎛
⎝|r|0 +

n∑
j=1

|aj|0|x|0
⎞
⎠

⎛
⎝

ω∫
0

|x′(t)|2dt
⎞
⎠

1/2

ω1/2+

m∑
i=1

⎛
⎝

ω∫
0

|ci(t)x′(t − τi(t))|2dt
⎞
⎠

1/2⎛
⎝

ω∫
0

|x′(t)|2dt
⎞
⎠

1/2

.

(20)

Meanwhile

⎛
⎝

ω∫
0

|ci(t)x′(t − τi(t))|2dt
⎞
⎠

1/2

=

⎛
⎝

ω∫
0

1
1 − τ ′

i (γi(t))
|ci(γi(t))x′(t)|2dt

⎞
⎠

1/2

=

⎛
⎝

ω∫
0

(1 − τ ′
i (γi(t)))|bi(γi(t))x′(t)|2dt

⎞
⎠

1/2

≤ |1 − τ ′
i |1/20 |bi|0

⎛
⎝

ω∫
0

|x′(t)|2dt
⎞
⎠

1/2

.

(21)

Substituting Equations (18) and (21) into (20) gives

ω∫
0

|x′(t)|2dt ≤
⎛
⎝|r|0 +

n∑
j=1

|aj|0|x|0
⎞
⎠

⎛
⎝

ω∫
0

|x′(t)|2dt
⎞
⎠

1/2

ω1/2

+
m∑
i=1

|1 − τ ′
i |1/20 |bi|0

⎛
⎝

ω∫
0

|x′(t)|2dt
⎞
⎠

≤
⎛
⎝|r|0 +

n∑
j=1

|aj|0 r̄

�̄

⎞
⎠

⎛
⎝

ω∫
0

|x′(t)|2dt
⎞
⎠

1/2

ω1/2+

⎡
⎣1
2

ω

n∑
j=1

|aj|0 +
m∑
i=1

|1 − τ ′
i |1/20 |bi|0

⎤
⎦

⎛
⎝

ω∫
0

|x′(t)|2dt
⎞
⎠ .

(22)

From the assumption 1
2ω

∑n

j=1
|aj|0 +

∑m

i=1
|1 − τ ′

i |1/20 |bi|0 < 1, it follows from Equa-

tion (22) that there exists constant M >0 such that

⎛
⎝

ω∫
0

∣∣x′(t)
∣∣2dt

⎞
⎠

1/2

< M. (23)
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Then

|x|0 ≤
∣∣∣∣ r̄�̄

∣∣∣∣ + 1
2

ω∫
0

∣∣x′(t)
∣∣ dt ≤

∣∣∣∣ r̄�̄
∣∣∣∣ + 1

2
Mω1/2 := M1. (24)

Again from (7), we get

|x′|0 ≤ |r|0 +
n∑
j=1

|aj|0 |x|0 +
m∑
i=1

|ci|0|x′|0. (25)

Condition
∑m

i=1
|ci|0 ≤

∑m

i=1
|bi|0|1 − τ ′

i |0 < 1 implies that

|x′|0 ≤ |r|0 +
∑n

j=1 |aj|0M1

1 − ∑m
i=1 |ci|0

:= M2. (26)

Let M3 > max{M1,M2, |r̄/
∑n

j=1
āj|} and 	 = {x|x ∈ C1

ω, ‖ x ‖< M3}. Then

k =
∑m

i=1
|ci|0 < 1 ≤ l(L). Equations (24) and (26) imply that all conditions of Lemma

1 except (R2) hold. Next, we prove that the condition (R2) of Lemma 1 is also satisfied.

We define a bounded bilinear form [·,· ] on Cω × C1
ω
as follows:

[y, x] =

ω∫
0

y(t)x(t)dt. (27)

Define Q : Y ® CokerL by

Qy =
1
ω

ω∫
0

y(t)dt.

Obviously,
{
x|x ∈ kerL

⋂
∂	

}
= {x|x = M3, x = −M3}.

Without loss of generality, we may assume that x = M3. Thus

[QN(x) +Qr, x][QN(−x) +Qr, x]

= M2
3

⎡
⎣

ω∫
0

r(t)dt − M3

n∑
j=1

ω∫
0

aj(t)dt

⎤
⎦

⎡
⎣

ω∫
0

r(t)dt +M3

n∑
j=1

ω∫
0

aj(t)dt

⎤
⎦

= ω2M2
3

⎡
⎣r̄ − M3

n∑
j=1

āj

⎤
⎦

⎡
⎣r̄ +M3

n∑
j=1

āj

⎤
⎦

< 0.

(28)

Therefore, by Lemma 1, Equation (1) has at least an ω-positive periodic solution. □
Since |1 − τ ′

i |0 < 1, then |1 − τ ′
i |0 < |1 − τ ′

i |1/20 . So∑m

i=1
|bi|0|1 − τ ′

i |0 <
∑m

i=1
|bi|0|1 − τ ′

i |1/20 . From Theorem 1, we have

Corollary 1. Assume that the following conditions hold

(H1’) If �(t) > 0,∀t ∈ [0,ω] (or �(t) < 0, ∀t ∈ [0,ω]).
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(H2’) 1
2

∑n

j=1
|aj|0ω +

∑m

i=1
|bi|0|1 − τ ′

i |1/20 < 1and |1 − τ ′
i |0 < 1, i = 1, ..., m.

Then Equation (1) has at least an ω-positive periodic solution.

4 Example
Example 1 is given to illustrate the effectiveness of our new sufficient conditions, also

to demonstrate the difference between the proposed result in this paper and the result

in [9].

Example 1. Consider the following equation:

dN
dt

= N(t)
[
r(t) − 1

8
(cos2 t + 1) lnN(t − π) − 1

64
(3 − cos t)

d
dt

lnN(t − π)
]
(29)

where r(t) = cos t − 1
32 (cos

2 t + 1) sin t − 1
64 (3 − cos t) cos t.

Let ω = 2π. Corresponding to Equation (1), we have n = m = 1, a1(t) = 1
8(cos

2 t + 1),

b1(t) = 1
64 (3 − cos t), s1(t) = τ1(t) = π So r̄ = 1

128 > 0,

σ ′
1(t) = τ ′

1(t) = 0,μ1(t) = γ1(t) = π + t. Thus

�(t) = a1(μ1(t)) − b′
1(γ1(t)) =

1
8
(cos2 t + 1) +

1
64

sin t > 0,

1
2

|a1|0ω + |b1|0|1 − τ ′
i |1/20 =

4π + 1
16

< 1.

The conditions in Theorem 1 in this article are satisfied. Hence Equation (29) has at

least an 2π-positive periodic solution. However, the condition (H′
2)in Theorem A(Theo-

rem 3.1 in [9]) is not satisfied. Since

|a1|0ω + |b1|0|1 − τ ′
i |1/20 =

8π + 1
16

> 1,

Theorem 3.1 in [9]can not be applied to this example. Let θ = 7
64. Although the condi-

tion (H′
1)in Theorem A (Theorem 3.1 in [9]) is satisfied, it is more complex to check the

condition |Γ(t)| > θ, ∀t Î [0, ω] in Theorem A than to test Γ(t) >0, ∀t Î [0, ω]. This

example illustrates the advantages of the proposed results in this paper over the existing

ones.
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