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Abstract

In this paper, we establish a new double inequality between the Seiffert and
harmonic means.
The achieved results is inspired by the papers of Sándor (Arch. Math., 76, 34-40, 2001)
and Hästö (Math. Inequal. Appl., 7, 47-53, 2004), and the methods from Wang et al.
(J. Math. Inequal., 4, 581-586, 2010). The inequalities we obtained improve the
existing corresponding results and, in some sense, are optimal.
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1 Introduction
For a, b >0 with a ≠ b, the Seiffert mean P(a, b) was introduced by Seiffert [1] as fol-

lows:

P(a, b) =
a − b

4 arctan
√
a/b − π

. (1:1)

Recently, the bivariate mean values have been the subject of intensive research. In

particular, many remarkable inequalities for the Seiffert mean can be found in the lit-

erature [1-9].

Let H(a, b) = 2ab/(a+b), G(a, b) =
√
ab, L(a, b) = (a - b)/(log a - log b), I(a, b) = 1/e

(bb/aa)1/(b-a), A(a, b) = (a+b)/2, C(a, b) = (a2+b2)/(a+b), and Mp(a, b) = ((ap + bp)/2)1/p

(p ≠ 0) and M0(a, b) =
√
ab be the harmonic, geometric, logarithmic, identric, arith-

metic, contraharmonic, and p-th power means of two different positive numbers a and

b, respectively. Then, it is well known that

min{a, b} < H(a, b) = M−1(a, b) < G(a, b) = M0(a, b) < L(a, b)

< I(a, b) < A(a, b) = M1(a, b) < C(a, b) < max{a, b}.

For all a, b >0 with a ≠ b, Seiffert [1] established that L(a, b) < P(a, b) < I(a, b);

Jagers [4] proved that M1/2(a, b) < P (a, b) < M2/3(a, b) and M2/3(a, b) is the best-

possible upper power mean bound for the Seiffert mean P(a, b); Seiffert [7] estab-

lished that P(a, b) > A(a, b)G(a, b)/L(a, b) and P(a, b) >2 A(a, b)/π; Sándor [6] pre-

sented that (A(a, b) + G(a, b))/2 < P(a, b) <
√
A(a, b)(A(a, b) + G(a, b))/2 and

3
√
A2(a, b)G(a, b) < P(a, b) < (G(a, b) + 2A(a, b))/3; Hästö [3] proved that P(a, b) >
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Mlog 2/ log π(a, b) and Mlog 2/ log π(a, b) is the best-possible lower power mean bound

for the Seiffert mean P(a, b).

Very recently, Wang and Chu [8] found the greatest value a and the least value b
such that the double inequality Aa(a, b)H1-a(a, b) < P(a, b) < Ab(a, b)H1-b(a, b) holds

for a, b >0 with a ≠ b; For any a Î (0, 1), Chu et al. [10] presented the best-possible

bounds for Pa(a, b)G1-a(a, b) in terms of the power mean; In [2], the authors proved

that the double inequality aA(a, b) + (1 - a)H(a, b) < P(a, b) < bA(a, b) + (1 - b)H(a,
b) holds for all a, b >0 with a ≠ b if and only if a ≤ 2/π and b ≥ 5/6; Liu and Meng

[5] proved that the inequalities

α1C(a, b) + (1 − α1)G(a, b) < P(a, b) < β1C(a, b) + (1 − β1)G(a, b)

and

α2C(a, b) + (1 − α2)H(a, b) < P(a, b) < β2C(a, b) + (1 − β2)H(a, b)

hold for all a, b >0 with a ≠ b if and only if a1 ≤ 2/9, b1 ≥ 1/π, a2 ≤ 1/π and b2 ≥ 5/

12.

For fixed a, b >0 with a ≠ b and x Î [0, 1/2], let

h(x) = H(xa + (1 − x)b, xb + (1 − x)a).

Then, it is not difficult to verify that h(x) is continuous and strictly increasing in [0,

1/2]. Note that h(0) = H(a, b) < P(a, b) and h(1/2) = A(a, b) > P(a, b). Therefore, it is

natural to ask what are the greatest value a and least value b in (0, 1/2) such that the

double inequality H(aa + (1 - a)b, ab + (1 - a)a) < P(a, b) < H(ba + (1 - b)b, bb + (1

- b)a) holds for all a, b >0 with a ≠ b. The main purpose of this paper is to answer

these questions. Our main result is the following Theorem 1.1.

Theorem 1.1. If a, b Î (0, 1/2), then the double inequality

H(αa + (1 − α)b,αb + (1 − α)a) < P(a, b) < H(βa + (1 − β)b,βb + (1 − β)a)

holds for all a, b >0 with a ≠ b if and only if α ≤ (1 − √
1 − 2/π)/2 and

β ≥ (6 − √
6)/12.

2 Proof of Theorem 1.1

Proof of Theorem 1.1. Let λ = (1 − √
1 − 2/π)/2 and μ = (6 − √

6)/12. We first

prove that inequalities

P(a, b) > H(λa + (1 − λ)b,λb + (1 − λ)a) (2:1)

and

P(a, b) < H(μa + (1 − μ)b,μb + (1 − μ)a) (2:2)

hold for all a, b >0 with a ≠ b.

Without loss of generality, we assume that a > b. Let t =
√
a/b > 1 and p Î (0, 1/2);

then, from (1.1), one has
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H(pa + (1 − p)b, pb + (1 − p)a) − P(a, b)

=
2[pt2 + (1 − p)][(1 − p)t2 + p]

t2 + 1
− t2 − 1

4 arctan t − π

=
2[pt2 + (1 − p)][(1 − p)t2 + p]

(t2 + 1)(4 arctan t − π)

×
{
4 arctan t − t4 − 1

2[pt2 + (1 − p)][(1 − p)t2 + p]
− π

}
.

(2:3)

Let

f (t) = 4 arctan t − t4 − 1
2[pt2 + (1 − p)][(1 − p)t2 + p]

− π , (2:4)

then, simple computations lead to

f (1) = 0, (2:5)

lim
t→+∞ f (t) = π − 1

2p(1 − p)
(2:6)

and

f ′(t) =
f1(t)

(t2 + 1)[p(1 − p)t4 + (2p2 − 2p + 1)t2 + p(1 − p)]2
, (2:7)

where

f1(t) = 4p2(1 − p)2t8 − (2p2 − 2p + 1)t7 + 8p(1 − p)(2p2 − 2p + 1)t6

+(2p2 − 2p − 1)t5 + 4(6p4 − 12p3 + 10p2 − 4p + 1)t4

+(2p2 − 2p − 1)t3 + 8p(1 − p)(2p2 − 2p + 1)t2

−(2p2 − 2p + 1)t + 4p2(1 − p)2.

(2:8)

Note that

f1(1) = 0, (2:9)

lim
t→+∞ f1(t) = +∞, (2:10)

f ′
1(t) = 32p2(1 − p)2t7 − 7(2p2 − 2p + 1)t6 + 48p(1 − p)(2p2 − 2p + 1)t5

+5(2p2 − 2p − 1)t4 + 16(6p4 − 12p3 + 10p2 − 4p + 1)t3

+3(2p2 − 2p − 1)t2 + 16p(1 − p)(2p2 − 2p + 1)t

−(2p2 − 2p + 1),

f ′
1(1) = 0, (2:11)

lim
t→+∞ f ′

1(t) = +∞. (2:12)

Let f2(t) = f ′′
1 (t)/2, f3(t) = f ′

2(t)/3, f4(t) = f ′
3(t)/4, f5(t) = f ′

4(t)/5, f6(t) = f ′
5(t)/6 and

f7(t) = f ′
6(t)/7. Then, simple computations lead to
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f2(t) = 112p2(1 − p)2t6 − 21(2p2 − 2p + 1)t5 + 120p(1 − p)(2p2 − 2p + 1)t4

+10(2p2 − 2p − 1)t3 + 24(6p4 − 12p3 + 10p2 − 4p + 1)t2

+3(2p2 − 2p − 1)t + 8p(1 − p)(2p2 − 2p + 1),

f2(1) = −2(24p2 − 24p + 5), (2:13)

lim
t→+∞ f2(t) = +∞, (2:14)

f3(t) = 224p2(1 − p)2t5 − 35(2p2 − 2p + 1)t4 + 160p(1 − p)(2p2 − 2p + 1)t3

+10(2p2 − 2p − 1)t2 + 16(6p4 − 12p3 + 10p2 − 4p + 1)t

+(2p2 − 2p − 1),

f3(1) = −6(24p2 − 24p + 5), (2:15)

lim
t→+∞ f3(t) = +∞, (2:16)

f4(t) = 280p2(1 − p)2t4 − 35(2p2 − 2p + 1)t3 + 120p(1 − p)(2p2 − 2p + 1)t2

+5(2p2 − 2p − 1)t + 4(6p4 − 12p3 + 10p2 − 4p + 1),

f4(1) = 4(16p4 − 32p3 − 25p2 + 41p − 9), (2:17)

lim
t→+∞ f4(t) = +∞, (2:18)

f5(t) = 224p2(1 − p)2t3 − 21(2p2 − 2p + 1)t2 + 48p(1 − p)(2p2 − 2p + 1)t

+(2p2 − 2p − 1),

f5(1) = 2(64p4 − 128p3 + 20p2 + 44p − 11), (2:19)

lim
t→+∞ f5(t) = +∞, (2:20)

f6(t) = 112p2(1 − p)2t2 − 7(2p2 − 2p + 1)t

+8p(1 − p)(2p2 − 2p + 1),
(2:21)

f6(1) = 96p4 − 192p3 + 74p2 + 22p − 7, (2:22)

lim
t→+∞ f6(t) = +∞, (2:23)

f7(t) = 32p2(1 − p)2t − (2p2 − 2p + 1) (2:24)

and

f7(1) = 32p4 − 64p3 + 30p2 + 2p − 1. (2:25)

We divide the proof into two cases.
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Case 1. p = λ = (1 − √
1 − 2/π)/2. Then equations (2.6), (2.13), (2.15), (2.17), (2.19),

(2.22) and (2.25) become

lim
t→+∞ f (t) = 0, (2:26)

f2(1) = −2(5π − 12)
π

< 0, (2:27)

f3(1) = −6(5π − 12)
π

< 0, (2:28)

f4(1) = −2(18π2 − 41π − 8)
π2

< 0, (2:29)

f5(1) = −2(11π2 − 22π − 16)
π2

< 0, (2:30)

f6(1) = −7π2 − 11π − 24
π2

< 0 (2:31)

and

f7(1) =
π + 8 − π2

π2
> 0. (2:32)

From (2.24), we clearly see that f7(t) is strictly increasing in [1, +∞), and then (2.32)

leads to the conclusion that f7(t) >0 for t Î [1, +∞). Thus, f6(t) is strictly increasing in

[1, +∞).

It follows from (2.23) and (2.31) together with the monotonicity of f6(t) that there

exists t1 >1 such that f6(t) <0 for t Î (1, t1) and f6(t) >0 for t Î (t1, +∞). Thus, f5(t) is

strictly decreasing in [1, t1] and strictly increasing in [t1, +∞).

From (2.20) and (2.30), together with the piecewise monotonicity of f5(t), we clearly

see that there exists t2 > t1 >1 such that f4(t) is strictly decreasing in [1, t2] and strictly

increasing in [t2, +∞). Then, equation (2.18) and inequality (2.29) lead to the conclu-

sion that there exists t3 > t2 >1 such that f3(t) is strictly decreasing in [1, t3] and

strictly increasing in [t3, +∞).

It follows from (2.16) and (2.28) together with the piecewise monotonicity of f3(t) we

conclude that there exists t4 > t3 >1 such that f2(t) is strictly decreasing in [1, t4] and

strictly increasing in [t4, +∞). Then, equation (2.14) and inequality (2.27) lead to the

conclusion that there exists t5 > t4 >1 such that f ′
1(t) is strictly decreasing in [1, t5]

and strictly increasing in [t5, +∞).

From equations (2.11) and (2.12), together with the piecewise monotonicity of f ′
1(t),

we know that there exists t6 > t5 >1 such that f1(t) is strictly decreasing in [1, t6] and

strictly increasing in [t6, +∞). Then, equations (2.7)-(2.10) lead to the conclusion that

there exists t7 > t6 >1 such that f(t) is strictly decreasing in [1, t7] and strictly increas-

ing in [t7, +∞).

Therefore, inequality (2.1) follows from equations (2.3)-(2.5) and (2.26) together with

the piecewise monotonicity of f(t).
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Case 2. p = μ = (6 − √
6)/12. Then, equations (2.13), (2.15), (2.17), (2.19) and (2.21)

become

f2(1) = 0, (2:33)

f3(1) = 0, (2:34)

f4(1) =
17
18

> 0, (2:35)

f5(1) =
17
9

> 0 (2:36)

and

f6(t) =
1
36

(175t2 − 147t + 35) > 0 (2:37)

for t >1.

From inequality (2.37), we know that f5(t) is strictly increasing in [1, +∞), and then

inequality (2.36) leads to the conclusion that f5(t) >0 for t Î [1, +∞). Thus, f4(t) is

strictly increasing in [1, +∞).

It follows from inequality (2.35) and the monotonicity of f4(t) that f3(t) is strictly

increasing in [1, +∞).

Therefore, inequality (2.2) follows easily from equations (2.3)-(2.5), (2.7), (2.9), (2.11),

(2.33), and (2.34) together with the monotonicity of f3(t).

Next, we prove that λ = (1 − √
1 − 2/π)/2 is the best-possible parameter such that

inequality (2.1) holds for all a, b >0 with a ≠ b. In fact, if

(1 − √
1 − 2/π)/2 = λ < p < 1/2, then equation (2.6) leads to

lim
t→+∞ f (t) = π − 1

2p(1 − p)
> 0. (2:38)

Inequality (2.38) implies that there exists T = T(p) >1 such that

f (t) > 0 (2:39)

for t Î (T, +∞).

From equations (2.3) and (2.4), together with inequality (2.39), we clearly see that P

(a, b) < H(pa + (1 - p)b, pb + (1 - p)a) for a/b Î (T2, +∞).

Finally, we prove that μ = (6 − √
6)/12 is the best-possible parameter such that

inequality (2.2) holds for all a, b >0 with a ≠ b. In fact, if 0 < p < μ = (6 − √
6)/12,

then equation (2.13) leads to

f2(1) = −2(24p2 − 24p + 5) < 0. (2:40)

Inequality (2.40) implies that there exists δ = δ (p) >0 such that

f2(t) < 0 (2:41)

for t Î (1, 1 + δ).

Therefore, P(a, b) > H(pa + (1 - p)b, pb + (1 - p)a) for a/b Î (1, (1 + δ)2) follows

from equations (2.3)-(2.5), (2.7), (2.9), and (2.11) together with inequality (2.41).
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