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Abstract

In this article, the strong limit theorems for arrays of rowwise negatively orthant-
dependent random variables are studied. Some sufficient conditions for strong law
of large numbers for an array of rowwise negatively orthant-dependent random
variables without assumptions of identical distribution and stochastic domination are
presented. As an application, the Chung-type strong law of large numbers for arrays
of rowwise negatively orthant-dependent random variables is obtained.
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1 Introduction
Let {Xn, n ≥ 1} be a sequence of random variables defined on a fixed probability space

(�,F ,P) with value in a real space ℝ. We say that the sequence {Xn, n ≥ 1} satisfies

the strong law of large numbers if there exist some increasing sequence {an, n ≥ 1}

and some sequence {cn, n ≥ 1} such that

1
an

n∑
i=1

(Xi − ci) → 0 a.s. as n → ∞.

Many authors have extended the strong law of large numbers for sequences of ran-

dom variables to the case of triangular array of random variables and arrays of rowwise

random variables. For more details about the strong law of large numbers for triangu-

lar array of random variables and arrays of rowwise random variables, one can refer to

Gut [1], and so forth. In the case of independence, Hu and Taylor [2] proved the fol-

lowing strong law of large numbers.

Theorem 1.1. Let {Xni : 1 ≤ i ≤ n, n ≥ 1} be a triangular array of rowwise indepen-

dent random variables. Let {an, n ≥ 1} be a sequence of positive real numbers such that

0 < an ↑ ∞. Let g(t) be a positive, even function such that g(|t|)/|t|p is an increasing

function of |t| and g(|t|)/|t|p+1 is a decreasing function of |t|, respectively, that is,

g(|t|)
|t|p ↑, g(|t|)

|t|p+1 ↓ as |t| ↑
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for some nonnegative integer p. If p ≥ 2 and

EXni = 0,
∞∑
n=1

n∑
i=1

E
g(|Xni|)
g(an)

< ∞,

∞∑
n=1

(
n∑
i=1

E
(
Xni

an

)2
)2k

< ∞,

where k is a positive integer, then

1
an

n∑
i=1

Xni → 0 a.s.

In this article, we will consider the strong law of large numbers for arrays of rowwise

negatively associated (NA) random variables. A finite collection of random variables

X1, X2, . . . , Xn is said to be negatively orthant dependent (NOD) if

P(X1 > x1,X2 > x2, . . . ,Xn > xn) ≤
n∏
i=1

P(Xi > xi)

and

P(X1 ≤ x1,X2 ≤ x2, . . . ,Xn ≤ xn) ≤
n∏
i=1

P(Xi ≤ xi)

for all x1, x2, . . . , xn Î ℝ. An infinite sequence {Xn, n ≥ 1} is said to be NOD if every

finite subcollection is NOD.

An array of random variables {Xni, i ≥ 1, n ≥ 1} is called rowwise NOD random vari-

ables if for every n ≥ 1, {Xni, i ≥ 1} is a sequence of NOD random variables.

The concept of NOD sequence was introduced by Joag-Dev and Proschan [3].

Obviously, independent random variables are NOD. Joag-Dev and Proschan [3] pointed

out that NA (one can refer to Joag-Dev and Proschan [3]) random variables are NOD.

They also presented an example in which X = (X1, X2, X3, X4) possesses NOD, but

does not possess NA. So we can see that NOD is weaker than NA. A number of limit

theorems for NOD random variables have been established by many authors. We refer

to Volodin [4] for the Kolmogorov exponential inequality, Asadian et al. [5] for the

Rosental’s-type inequality, Amini et al. [6,7], Klesov et al. [8], and Li et al. [9] for

almost sure convergence, Amini and Bozorgnia [10,11], Kuczmaszewska [12], Taylor et

al. [13], Zarei and Jabbari [14] and Wu [15] for complete convergence, and so on.

The main purpose of this article is to study the strong limit theorems for arrays of

rowwise NOD random variables. As an application, the Chung-type strong law of large

numbers for arrays of rowwise NOD random variables is obtained. We will give some

sufficient conditions for strong law of large numbers for an array of rowwise NOD

random variables without assumptions of identical distribution and stochastic domina-

tion. The results presented in this article are obtained using the truncated method and

the Rosental’s-type inequality of NOD random variables.

The main results of this article are depending on the following lemmas:

Lemma 1.1 (cf. Bozorgnia et al. [16]). Let random variables X1, X2, . . . , Xn be NOD,

f1, f2, . . . , fn be all nondecreasing (or all nonincreasing) functions, then random vari-

ables f1(X1), f2(X2), . . . , fn(Xn) are NOD.
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Lemma 1.2 (cf. Asadian et al. [5]). Let p ≥ 2 and {Xn, n ≥ 1} be a sequence of NOD

random variables with EXn = 0 and E|Xn|
p <∞ for every n ≥ 1. Then, there exists a

positive constant C = C(p) depending only on p such that for every n ≥ 1

E

∣∣∣∣ n∑
i=1

Xi

∣∣∣∣
p

≤ C

{
n∑
i=1

E|Xi|p +
(

n∑
i=1

EX2
i

)p/2
}
.

Throughout the article, let I(A) be the indicator function of the set A. C denotes a

positive constant which may be different in various places.

2 Main results
In this section, we will give some sufficient conditions for strong law of large numbers

for an array of rowwise NOD random variables without assumptions of identical distri-

bution and stochastic domination. Our main results are as follows.

Theorem 2.1. Let {Xni : i ≥ 1, n ≥ 1} be an array of rowwise NOD random variables

and {an, n ≥ 1} be a sequence of positive real numbers. Let {gn(t), n ≥ 1} be a sequence

of positive, even functions such that gn(|t|) is an increasing function of |t| and gn(|t|)/|t|

is a decreasing function of |t| for every n ≥ 1, respectively, that is

gn(|t|) ↑, gn(|t|)
|t| ↓ as |t| ↑ .

If

∞∑
n=1

n∑
i=1

Egn(|Xni|)
gn(an)

< ∞, (2:1)

then for any ε >0,

∞∑
n=1

P
(∣∣∣∣ 1an

n∑
i=1

Xni

∣∣∣∣ > ε

)
< ∞. (2:2)

Proof. For fixed n ≥ 1, define

X(n)
i = −anI(Xni < −an) + XniI(|Xni| ≤ an) + anI(Xni > an), i ≥ 1,

T(n)
j =

1
an

j∑
i=1

(
X(n)
i − EX(n)

i

)
, j = 1, 2, . . . ,n.

By Lemma 1.1, we can see that for fixed n ≥ 1, {X(n)
i , i ≥ 1}is still a sequence of NOD

random variables. It is easy to check that for any ε >0,(∣∣∣∣∣ 1an
n∑
i=1

Xni

∣∣∣∣∣ > ε

)
⊂

(
max
1≤i≤n

|Xni| > an

)
∪

(∣∣∣∣∣ 1an
n∑
i=1

X(n)
i

∣∣∣∣∣ > ε

)
,

which implies that

P

(∣∣∣∣∣ 1an
n∑
i=1

Xni

∣∣∣∣∣ > ε

)
≤ P

(
max
1≤i≤n

|Xni| > an

)
+ P

(∣∣∣∣∣ 1an
n∑
i=1

X(n)
i

∣∣∣∣∣ > ε

)

≤
n∑
i=1

P (|Xni| > an) + P

(∣∣∣T(n)
n

∣∣∣ > ε −
∣∣∣∣∣ 1an

n∑
i=1

EX(n)
i

∣∣∣∣∣
)
.

(2:3)
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First, we will show that∣∣∣∣ 1an
n∑
i=1

EX(n)
i

∣∣∣∣ → 0 as n → ∞. (2:4)

Actually, by conditions gn(|t|) ↑, gn(|t|)/|t| ↓ as |t| ↑ and (2.1), we have that∣∣∣∣∣ 1an
n∑
i=1

EX(n)
i

∣∣∣∣∣ ≤
n∑
i=1

P (|Xni| > an) +
1
an

n∑
i=1

E|Xni|I(|Xni| ≤ an)

≤
n∑
i=1

Egn(|Xni|)
gn(an)

+
n∑
i=1

Egn(|Xni|)I(|Xni| ≤ an)
gn(an)

≤ 2
n∑
i=1

Egn(|Xni|)
gn(an)

→ 0 as n → ∞,

which implies (2.4). It follows from (2.3) and (2.4) that for n large enough,

P

(∣∣∣∣∣ 1an
n∑
i=1

Xni

∣∣∣∣∣ > ε

)
≤

n∑
i=1

P (|Xni| > an) + P
(∣∣∣T(n)

n

∣∣∣ >
ε

2

)
.

Hence, to prove (2.2), we only need to show that

∞∑
n=1

n∑
i=1

P (|Xni| > an) < ∞ (2:5)

and

∞∑
n=1

P
(∣∣∣T(n)

n

∣∣∣ >
ε

2

)
< ∞. (2:6)

The conditions gn(|t|) ↑ as |t| ↑ and (2.1) yield that

∞∑
n=1

n∑
i=1

P (|Xni| > an) ≤
∞∑
n=1

n∑
i=1

Egn(|Xni|)
gn(an)

< ∞,

which implies (2.5).

By Markov’s inequality, Lemma 1.2 (for p = 2), gn(|t|) ↑, gn(|t|)/|t| ↓ as |t| ↑ and

(2.1), we can get that

∞∑
n=1

P
(∣∣∣T(n)

n

∣∣∣ >
ε

2

)
≤ C

∞∑
n=1

E
∣∣∣T(n)

n

∣∣∣2 ≤ C
∞∑
n=1

1
a2n

n∑
i=1

E
∣∣∣X(n)

i

∣∣∣2

≤ C
∞∑
n=1

n∑
i=1

P (|Xni| > an) + C
∞∑
n=1

n∑
i=1

E|Xni|2I(|Xni| ≤ an)
a2n

≤ C
∞∑
n=1

n∑
i=1

|Egn(|Xni|)
gn(an)

+ C
∞∑
n=1

n∑
i=1

E|Xni|2I(|Xni| ≤ an)
a2n

≤ C
∞∑
n=1

n∑
i=1

Egn(|Xni|)
gn(an)

+ C
∞∑
n=1

n∑
i=1

Egn(|Xni|)I(|Xni| ≤ an)
gn(an)

≤ C
∞∑
n=1

n∑
i=1

Egn(|Xni|)
gn(an)

< ∞,
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which implies (2.6). This completes the proof of the theorem. □
Corollary 2.1. Under the conditions of Theorem 2.1,

1
an

n∑
i=1

Xni → 0 a.s.

Theorem 2.2. Let {Xni : i ≥ 1, n ≥ 1} be an array of rowwise NOD random variables

and {an, n ≥ 1} be a sequence of positive real numbers. Let {gn(t), n ≥ 1} be a sequence

of nonnegative, even functions such that gn(|t|) is an increasing function of |t| for every

n ≥ 1. Assume that there exists a constant δ >0 such that gn(t) ≥ δt for 0 < t ≤ 1. If

∞∑
n=1

n∑
i=1

Egn

(
Xni

an

)
< ∞, (2:7)

then for any ε >0, (2.2) holds true.

Proof. We use the same notations as that in Theorem 2.1. The proof is similar to

that of Theorem 2.1.

First, we will show that (2.4) holds true. In fact, by the conditions gn(t) ≥ δt for 0 < t

≤ 1 and (2.7), we have that∣∣∣∣∣ 1an
n∑
i=1

EX(n)
i

∣∣∣∣∣ ≤
n∑
i=1

P (|Xni| > an) +
n∑
i=1

E
( |Xni|

an
I(|Xni| ≤ an)

)

≤ 1
δ

n∑
i=1

Egn

(
Xni

an

)
+
1
δ

n∑
i=1

Egn

(
Xni

an

)
I(|Xni| ≤ an)

≤ 2
δ

n∑
i=1

Egn

(
Xni

an

)
→ 0 as n → ∞,

which implies (2.4).

According to the proof of Theorem 2.1, we only need to prove that (2.5) and (2.6)

hold true.

When |Xni| > an >0, we have gn
(
Xni
an

)
≥ gn(1) ≥ δ, which yields that

P(|Xni| > an) = EI(|Xni| > an) ≤ 1
δ
Egn

(
Xni

an

)
.

Hence,

∞∑
n=1

n∑
i=1

P (|Xni| > an) ≤ 1
δ

∞∑
n=1

n∑
i=1

Egn

(
Xni

an

)
< ∞,

which implies (2.5).

By Markov’s inequality, Lemma 1.2 (for p = 2), gn(t) ≥ δt for 0 < t ≤ 1 and (2.7), we

can get that
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∞∑
n=1

P
(∣∣∣T(n)

n

∣∣∣ >
ε

2

)
≤ C

∞∑
n=1

n∑
i=1

P (|Xni| > an) + C
∞∑
n=1

n∑
i=1

E|Xni|2I(|Xni| ≤ an)
a2n

≤ C + C
∞∑
n=1

n∑
i=1

E|Xni|I(|Xni| ≤ an)
an

≤ C + C
∞∑
n=1

n∑
i=1

Egn

(
Xni

an

)
I(|Xni| ≤ an)

≤ C + C
∞∑
n=1

n∑
i=1

Egn

(
Xni

an

)
< ∞,

which implies (2.6). This completes the proof of the theorem. □
Corollary 2.2. Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise NOD random variables

and {an, n ≥ 1} be a sequence of positive real numbers. If there exists a constant b Î (0,

1] such that

∞∑
n=1

n∑
i=1

E
( |Xni|β

|an|β + |Xni|β
)

< ∞,

then (2.2) holds true.

Proof. In Theorem 2.2, we take

gn(t) ≡ |t|β
1 + |t|β , 0 < β ≤ 1, n ≥ 1.

It is easy to check that {gn(t), n ≥ 1} is a sequence of nonnegative, even functions

such that gn(|t|) is an increasing function of |t| for every n ≥ 1. And

gn(t) ≥ 1
2
tβ ≥ 1

2
t, 0 < t ≤ 1, 0 < β ≤ 1.

Therefore, by Theorem 2.2, we can easily get (2.2). □
Corollary 2.3. Under the conditions of Theorem 2.2 or Corollary 2.2,

1
an

n∑
i=1

Xni → 0 a.s.

Theorem 2.3. Let {Xni : i ≥ 1, n ≥ 1} be an array of rowwise NOD random variables

and {an, n ≥ 1} be a sequence of positive real numbers. EXni = 0, i ≥ 1, n ≥ 1. Let {gn
(x), n ≥ 1} be a sequence of nonnegative, even functions. Assume that there exist b Î (1,

2] and δ >0 such that gn(x) ≥ δxb for 0 <x ≤ 1 and there exists a δ >0 such that gn(x) ≥

δx for x > 1. If (2.7) satisfies, then for any ε >0, (2.2) holds true.

Proof. We use the same notations as that in Theorem 2.1. The proof is similar to

that of Theorem 2.1.

First, we will show that (2.4) holds true. Actually, by the conditions EXni = 0, gn(x) ≥

δx for x >1 and (2.7), we have that
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∣∣∣∣∣ 1an
n∑
i=1

EX(n)
i

∣∣∣∣∣ ≤
n∑
i=1

P (|Xni| > an) +

∣∣∣∣∣ 1an
n∑
i=1

EXniI(|Xni| > an)

∣∣∣∣∣
≤ 2

n∑
i=1

E
( |Xni|

an
I(|Xni| > an)

)

≤ 2
δ

n∑
i=1

Egn

(
Xni

an

)
I(|Xni| > an)

≤ 2
δ

n∑
i=1

Egn

(
Xni

an

)
→ 0 as n → ∞,

which implies (2.4). Hence, to prove (2.2), we only need to show that (2.5) and (2.6)

hold true.

The conditions gn(x) ≥ δx for x >1 and (2.1) yield that

∞∑
n=1

n∑
i=1

P (|Xni| > an) =
∞∑
n=1

n∑
i=1

EI (|Xni| > an)

≤
∞∑
n=1

n∑
i=1

E
( |Xni|

an
I (|Xni| > an)

)

≤ 1
δ

∞∑
n=1

n∑
i=1

Egn

(
Xni

an

)
I (|Xni| > an)

≤ 1
δ

∞∑
n=1

n∑
i=1

Egn

(
Xni

an

)
< ∞,

which implies (2.5).

By Markov’s inequality, Lemma 1.2 (for p = 2), gn(x) ≥ δxb for 1 < b ≤ 2, 0 <x ≤ 1

and (2.7), we can get that

∞∑
n=1

P
(∣∣∣T(n)

n

∣∣∣ >
ε

2

)
≤ C

∞∑
n=1

n∑
i=1

P (|Xni| > an) + C
∞∑
n=1

n∑
i=1

E|Xni|2I(|Xni| ≤ an)
a2n

≤ C + C
∞∑
n=1

n∑
i=1

E|Xni|β I(|Xni| ≤ an)

aβ
n

≤ C + C
∞∑
n=1

n∑
i=1

Egn

(
Xni

an

)
I(|Xni| ≤ an)

≤ C + C
∞∑
n=1

n∑
i=1

Egn

(
Xni

an

)
< ∞,

which implies (2.6). This completes the proof of the theorem. □
Corollary 2.4. Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise NOD random variables

and {an, n ≥ 1} be a sequence of positive real numbers. EXni = 0, i ≥ 1, n ≥ 1. If there

exists a constant b Î (1, 2] such that

∞∑
n=1

n∑
i=1

E

(
|Xni|β

an|Xni|β−1 + aβ
n

)
< ∞,

then (2.2) holds true.
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Proof. In Theorem 2.3, we take

gn(x) ≡ |x|β
1 + |x|β−1

, 1 < β ≤ 2, n ≥ 1.

It is easy to check that {gn(x), n ≥ 1} is a sequence of nonnegative, even functions

satisfying

gn(x) ≥ 1
2
xβ , 0 < x ≤ 1, 1 < β ≤ 2 and gn(x) ≥ 1

2
x, x > 1.

Therefore, by Theorem 2.3, we can easily get (2.2). □
Furthermore, by Corollaries 2.2 and 2.4, we can get the following important Chung-

type strong law of large numbers for arrays of rowwise NOD random variables.

Corollary 2.5. Let {Xni, i ≥ 1, n ≥ 1} be an array of rowwise NOD random variables

and {an, n ≥ 1} be a sequence of positive real numbers. If there exists some b Î (0, 2]

such that

∞∑
n=1

n∑
i=1

E|Xni|β
aβ
n

< ∞, (2:8)

and EXni = 0, i ≥ 1, n ≥ 1 if b Î (1, 2], then (2.2) holds true and 1
an

∑n
i=1 Xni → 0 a.s..

For b ≥ 2, we have the following result.

Theorem 2.4. Let {Xni : i ≥ 1, n ≥ 1} be an array of rowwise NOD random variables

and {an, n ≥ 1} be a sequence of positive real numbers. Let {gn(x), n ≥ 1} be a sequence

of nonnegative, even functions. Assume that there exists some b ≥ 2 such that gn(x) ≥

δxb for x > 0. If

∞∑
n=1

n∑
i=1

[
Egn

(
Xni

an

)]1/β

< ∞, (2:8a)

then for any ε >0, (2.2) holds true.

Proof. We use the same notations as that in Theorem 2.1. The proof is similar to

that of Theorem 2.1. It is easily seen that (2.8) implies that

∞∑
n=1

n∑
i=1

Egn

(
Xni

Man

)
< ∞ (2:9)

and

∞∑
n=1

n∑
i=1

[
Egn

(
Xni

Man

)]2/β

< ∞. (2:10)

First, we will show that (2.4) holds true. In fact, by Hölder’s inequality, gn(x) ≥ δxb

for x >0, (2.8) and (2.9), we have that
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∣∣∣∣∣ 1an
n∑
i=1

EX(n)
i

∣∣∣∣∣ ≤
n∑
i=1

P (|Xni| > an) +
n∑
i=1

E
( |Xni|

an
I(|Xni| ≤ an)

)

≤
n∑
i=1

E
( |Xni|β

aβ
n

I(|Xni| > an)
)
+

n∑
i=1

[
E

( |Xni|β
aβ
n

I(|Xni| ≤ an)
)]1/β

≤ C
n∑
i=1

Egn

(
Xni

an

)
+ C

n∑
i=1

[
Egn

(
Xni

an

)
I(|Xni| ≤ an)

]1/β

≤ C
n∑
i=1

Egn

(
Xni

an

)
+ C

n∑
i=1

[
Egn

(
Xni

an

)]1/β

→ 0 as n → ∞,

which implies (2.4). To prove (2.2), we only need to show that (2.5) and (2.6) hold

true.

By the condition gn(x) ≥ δxb for x >0 again and (2.9), we have

∞∑
n=1

n∑
i=1

P (|Xni| > an) =
∞∑
n=1

n∑
i=1

EI(|Xni| > an)

≤
∞∑
n=1

n∑
i=1

E
( |Xni|β

aβ
n

I(|Xni| > an)
)

≤ 1
δ

∞∑
n=1

n∑
i=1

Egn

(
Xni

an

)
< ∞,

which implies (2.5).

By Markov’s inequality, Lemma 1.2 (for p = 2), gn(x) ≥ δxb for x >0 and (2.10), we

can get that

∞∑
n=1

P
(∣∣∣T(n)

n

∣∣∣ >
ε

2

)
≤ C

∞∑
n=1

n∑
i=1

P (|Xni| > an) + C
∞∑
n=1

n∑
i=1

E|Xni|2I(|Xni| ≤ an)
a2n

≤ C + C
∞∑
n=1

n∑
i=1

[
E

( |Xni|β
aβ
n

I(|Xni| ≤ an)
)]2/β

≤ C + C
∞∑
n=1

n∑
i=1

[
Egn

(
Xni

an

)
I(|Xni| ≤ an)

]2/β

≤ C + C
∞∑
n=1

n∑
i=1

[
Egn

(
Xni

an

)]2/β

< ∞,

which implies (2.6). This completes the proof of the theorem. □
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