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Abstract

We study the homogeneity of isosceles orthogonality, which is one of the most
important orthogonality types in normed linear spaces, from two viewpoints. On the
one hand, we study the relation between homogeneous direction of isosceles
orthogonality and other notions including isometric reflection vectors and L2-summand
vectors and show that a Banach space X is a Hilbert space if and only if the relative
interior of the set of homogeneous directions of isosceles orthogonality in the unit
sphere of X is not empty. On the other hand, we introduce a geometric constant NHX to
measure the non-homogeneity of isosceles orthogonality. It is proved that 0 ≤ NHX ≤ 2,
NHX = 0 if and only if X is a Hilbert space, and NHX = 2 if and only if X is not uniformly
non-square.
Mathematics Subject Classification (2010):
46B20; 46C15

Keywords: Birkhoff orthogonality, homogeneity of isosceles orthogonality, Roberts
orthogonality, uniformly non-square

1 Introduction
We denote by X a real Banach space with origin o and norm ||·||, by BX and SX the

unit ball and unit sphere of X, respectively. When the dimension of X is two, BX and

SX are called the unit disc and unit circle of X, respectively. For two linearly indepen-

dent points x and y in X, we denote by Xx,y the two-dimensional subspace of

X spanned by x and y.

In a certain sense, we can say that it is the missing of an orthogonality type with “nice

property” that makes non-Hilbertian Banach spaces different from Hilbert spaces (cf.

characterizations of inner product spaces related to orthogonality types listed in [1], and

the surveys [2] and [3]). Due to this situation, many generalized orthogonality types have

been introduced into Banach spaces to act as substitutions of the orthogonality induced

by inner products in Hilbert spaces. Certain property (or properties) of the orthogonality

induced by an inner product is (are) missing from each of these generalized orthogonal-

ity types. For example, isosceles orthogonality introduced by James in [4], the one we

study in this paper, is not homogeneous, where a vector x in X is said to be isosceles

orthogonal to a vector y in X if the equality ||x + y|| = ||x - y|| holds (we write x ⊥I y for
this situation). James [4] proved that X is a Hilbert space if and only if isosceles ortho-

gonality is homogeneous, i.e., if and only if the implication x ⊥I y ⇒ x ⊥I ay holds for

each real number a. For the situation of Birkhoff orthogonality (cf. [5] and [6]), where a
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vector x is said to be Birkhoff orthogonal to y (denoted by x ⊥B y) if the inequality ||x +

ay|| ≥ ||x|| holds for each real number a, we know that this orthogonality is not

symmetric, i.e., x ⊥B y does not necessarily imply that y ⊥B x. We also need the notion of

Roberts orthogonality. A vector x is said to be Roberts orthogonal to another vector y

(denoted by x ⊥R y) if the equality ||x + ay|| = ||x - ay|| holds for each real number a
(cf. [7]). Roberts orthogonality implies both Birkhoff orthogonality and isosceles ortho-

gonality. More precisely, the implications x ⊥R y ⇒ x ⊥B y and x ⊥R y ⇒ x ⊥I y hold.

Roberts orthogonality is both homogeneous and symmetric, but it does not have the

existence property (cf. Example 2.1 in [4]): there exists a Minkowski plane (i.e., a real

two-dimensional Banach space) such that

x⊥Ry ⇒ ||x|| · ||y|| = 0.

Although isosceles orthogonality is not homogeneous in general, it is possible that,

for a Banach space that is not a Hilbert space, there exists a vector x Î SX such that

the implication

∀y ∈ X, x⊥Iy ⇒ x⊥Ry

holds. Such a unit vector x is said to be a homogeneous direction of isosceles ortho-

gonality. In the following, we denote by HX the set of all homogeneous directions of

isosceles orthogonality in X. In Section 2, we study the relation of homogeneous direc-

tion of isosceles orthogonality to other notions including isometric reflection vectors

and L2-summand vectors (see Section 2 for the definitions) and prove a new character-

ization of Hilbert spaces.

In the meantime, we provide a quantitative characterization of the non-homogeneity

of isosceles orthogonality by introducing a new geometric constant NHX. We show

that NHX = 0 if and only if isosceles orthogonality is homogeneous and NHX = 2 if

and only if the underlying space is not uniformly non-square.

2 Homogeneous directions of isosceles orthogonality
First, we study the relation of homogeneous directions of isosceles orthogonality to

other notions.

2.1 Relations to isometric reflection vectors and L2-summand vectors

A reflection on X is an operator defined as follows: Tx,x∗ : z → z − 2x∗(z) · x, where x Î
X, x* Î X*, and x*(x) = 1. Let x be a point in SX. If there exists a point x∗ ∈ SX∗ such

that the reflection Tx,x∗ is an isometry then x is said to be an isometric reflection vector

and x* is said to be the corresponding isometric reflection functional. For any isometric

reflection vector x, there is a unique isometric reflection functional x* corresponding

to it (cf. [8]). For the relation between isometric reflection vectors and Roberts ortho-

gonality, Chan He et al. proved the following lemma.

Lemma 1 ([9]) Let X be a real Banach space, x Î SX, x∗ ∈ SX∗, and Tx,x∗be a reflec-

tion. Then, Tx,x∗is an isometric reflection if and only if

x⊥RH := {z : z ∈ X, x∗(z) = 0}.

From Lemma 1, one can see that the notions of “homogeneous direction of isosceles

orthogonality” and “isometric reflection vector” are closely connected. One may even
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expect that these two notions coincide. However, this is not true even when the under-

lying space is two-dimensional.

Example 1 Let X = (ℝ2, ||·||∞), x = (0,1), y = (1,0), and z = (2,1). Then, it is not diffi-

cult to verify that x is an isometric reflection vector. However, one can observe that x

∉ HX since x ⊥I z but x �⊥I (z/2).

In the meantime, we have the following proposition.

Proposition 1 Let X be a Minkowski plane and x Î HX. Then, x is an isometric

reflection vector.

Proof Let y be a point in SX such that x ⊥I y. Then, x ⊥R y since x Î HX. Recall that

Roberts orthogonality implies Birkhoff orthogonality. Hence x ⊥B y. Thus, there exists

a functional x∗ ∈ SX∗ such that x*(x) = 1 and x*(y) = 0 (cf. [6]). Then, Tx,x∗ is a reflec-

tion and the set H := {z Î X : x*(z) = 0} is precisely the line passing through -y and y.

Since Roberts orthogonality is homogeneous, we have x ⊥R H. Then, it follows from

Lemma 1 that Tx,x∗ is an isometry and x is an isometric reflection vector. □
Example 1 shows that the converse of Proposition 1 is not true in general, but it

holds when the underlying Minkowski plane is strictly convex. More precisely, we have

the following proposition.

Proposition 2 Let X be a Minkowski plane, x Î SX be an isometric reflection vector.

If there does not exist a nontrivial line segment contained in SX and parallel to the line

passing through -x and x then x Î HX.

Proof Since x is an isometric reflection vector, by Lemma 1, there exists a point y Î
SX such that x ⊥R {ay : a Î ℝ}. On the other hand, by the assumption of the proposi-

tion and Theorem 2.3 in [10] (see also [11]), for each number r > 0, there exist pre-

cisely two points p and -p in X such that ||p|| = r and x ⊥I p hold. Clearly, these two

points have to be the points of intersection of the line {ay : a Î ℝ} and the sphere

rSX. Thus, for each point z Î X satisfying x ⊥I z, we have z = ||z|| y or z = -||z|| y.

Since Roberts orthogonality is homogeneous, this means that x ⊥R z. Thus, x Î HX. □
Proposition 1 does not hold in higher dimensional cases. See the following example.

Example 2 Let X = (ℝ3, ||·||∞) and x = (1,1,1). Then, x Î HX, and it is not an iso-

metric reflection vector.

Proof Let y be an arbitrary point in SX such that x ⊥I y. Then, it is clear that x and y

are linearly independent. Next, we show that x ⊥R y.

Assume that y = (a, b, g). Then, since y Î SX, max{|a|, |b|, |g|} = 1. We only deal

with the case when |a| = 1, and the other two cases can be proved in a similar way.

By replacing y with -y if it is necessary, we may assume that a = 1. Then,

||x + y|| = max{2, |1 + β|, |1 + γ |} = 2

and

||x − y|| = max{|1 − β|, |1 + γ |}.

From the fact that x ⊥I y it follows that

|1 − β| = 2or |1 − γ | = 2.

We only need to consider the subcase when b = - 1, and the other subcase when g =
-1 can be proved similarly.
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For any real number μ, we have the following equations:

||x + μy|| = max{|1 + μ|, |1 − μ|, |1 + μγ |}

and

||x − μy|| = max{|1 − μ|, |1 + μ|, |1 − μγ |}.

Since

|1 + μγ |, |1 − μγ | ≤ max{|1 + μ|, |1 − μ|}

we have that

||x + μy|| = ||x − μy||,

which implies that x ⊥R y.

In the rest of the proof, we show that x is not an isometric reflection vector.

Otherwise, there exists a hyperplane H passing through the origin o such that x ⊥R
H. Let z1 = (-1, -1, 1) and z2 = (-1, 1, -1). Then, it is clear that x ⊥R z1 and x ⊥R z2.

Since z1 is the unique (except for the sign) point in SXx,z1 such that x ⊥R z1, and H

intersects Xx,z1, we have that z1 Î H. Similarly, z2 Î H. However, for the point w =

(z1 + z2)/2, we have

||x + w|| = 1, ||x − w|| = 2,

which imply that x �⊥R w. This is a contradiction to the fact that H is a hyperplane in

X. □
Nevertheless, we have the following lemma.

Lemma 2 If x Î HX is a smooth point of SX then x is an isometric reflection vector,

and therefore, x is Roberts orthogonal to a hyperplane.

Proof By Lemma 1, it suffices to show that x is Roberts orthogonal to a hyperplane.

Since x is a smooth point, there exists a unique hyperplane H such that x ⊥B H. In the

following, we show that x ⊥R H.

For each vector z Î H\{o}, there exists a unit vector z’ Î Xx,z such that x ⊥I z’. From
the relation x Î HX, it follows that x ⊥R z’, which implies x ⊥B z’. Since x is a smooth

point, either z/||z|| = z’ or z/||z|| = -z’ holds. Thus, x ⊥R z. The case when z = o is

trivial. □
Let M be a closed subspace of X. If there exists another closed subspace N of X such

that X = M ⊕ N and that, for each pair of points m Î M and n Î N, the equality

||m + n||2 = ||m||2 + ||n||2

holds, then M is said to be an L2-summand subspace (cf. [12]). Note that, when M is

an L2-summand subspace, N is uniquely determined. Let x be a point in X. If the sub-

space spanned by x is an L2-summand subspace then x is said to be an L2-summand

vector.

Theorem 1 Let x Î SX be an L2-summand vector. Then, x Î HX.

Proof We denote by M the one-dimensional subspace spanned by x, by N the closed

subspace of X such that X = M ⊕ N and that the equality

||m + n||2 = ||m||2 + ||n||2
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holds for each pair of points m Î M and n Î N. Let y be an arbitrary point in X

such that x ⊥I y, yM Î M, and yN Î N be the two points such that y = yM + yN. Then,

||x + y|| =
√

||x + y||2 =
√

||x + yM + yN||2 =
√

||x + yM||2 + ||yN||2

and

||x − y|| =
√

||x − y||2 =
√

||x − yM − yN||2 =
√

||x − yM||2 + ||yN||2.

It follows that

||x + yM|| = ||x − yM||.

This equation holds only if yM = o. Thus, we have that y = yN Î N. Next, we show that,

for each point z Î N, x ⊥I z. Actually, this is an easy consequence of the equations

||x + z|| =
√

||x + z||2 =
√

||x||2 + ||z||2

and

||x − z|| =
√

||x − z||2 =
√

||x||2 + ||z||2.
Since N is a linear subspace of X, it follows that x ⊥R z holds for each point z Î N.

We have shown that, for each point y Î X, x ⊥I y implies that x ⊥R y, i.e., x Î HX. □

2.2 A characterization of Hilbert spaces

Theorem 2 Let X be a Banach space with dimX ≥ 2. Then, X is a Hilbert space if and

only if the relative interior of HX in SX is not empty.

Proof Clearly, if X is a Hilbert space then isosceles orthogonality coincides with

Roberts orthogonality, which implies that HX = SX.

Now assume that the relative interior of HX in SX, which is denoted by P, is not

empty. By Theorem 2.2 in [8], it suffices to show that each point x in P is an isometric

reflection vector. By Lemma 2, we only need to show that each point x in P is a

smooth point.

Let x be an arbitrary point in P. Suppose to the contrary that x is not a smooth

point. Then, there exists a two-dimensional subspace Y containing x such that x is not

a smooth point of SY. Let w be a point in SY such that x ⊥B w. Since x is a relative

interior point of P, it is also a relative interior point of P ∩ SY. Thus, there exist two

points u and v in SY such that x is a relative interior point (with respect to SY) of the

set

arc(u, v) := {λu + μv : λ,μ ≥ 0} ∩ SY ⊂ P.

Moreover, we may assume, without loss of generality, that v Î arc(x, w) and that

each point of arc(u, v)\{x} is a smooth point. The points u and v are also chosen in a

way such that there exist two numbers a0 ≥ 0, b0 ≤ 0 and that the relations u ⊥B (a0x

+ w) and v ⊥B (b0x + w) hold. I.e., we assume that the supporting lines of BY at u and

v both intersect the line passing through w and parallel to 〈-x,x〉. Let {un} and {vn} be

two sequences such that

{un} ⊂ arc(u, x) := {λu + μx : λ,μ > 0} ∩ SY ,

{υn} ⊂ arc(v, x) := {λv + μx : λ,μ > 0} ∩ SY ,
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and

lim
n→∞ un = lim

n→∞ vn = x.

Then, there exist two sequences of numbers {an} and {bn} such that

un⊥B(αnx + w) and vn⊥B(βnx + w).

By extracting two subsequences if it is necessary, we may assume, without loss of

generality, that there exist two numbers A and B such that

lim
n→∞ αn = B and lim

n→∞ βn = A.

Then, since SY is a closed convex curve, B ≥ A. Now, we have that

x⊥B(Bx + w) and x⊥B(Ax + w).

Since x is not a smooth point, B >A. Recall that Roberts orthogonality implies Birkh-

off orthogonality. Thus,

un⊥R(αnx + w) and vn⊥R(βnx + w).

This implies that

un⊥I(αnx + w) and vn⊥I(βnx + w).

Thus,

x⊥I(Bx + w) and x⊥I(Ax + w).

Since x Î HX, we have

x⊥I

(
Bx + w

||Bx + w||
)

and x⊥I

(
Ax + w

||Ax + w||
)
.

Due to the uniqueness property of isosceles orthogonality on the unit sphere, this is

impossible. It follows that x is a smooth point. □

3 A measure of non-homogeneity of isosceles orthogonality
In this section, we introduce the following measures of non-homogeneity of isosceles

orthogonality: the constant

NHX = sup
α>0

{ ||x + αy|| − ||x − αy||
α

: x, y ∈ SX, x⊥Iy
}

and its local version for x Î SX

NHX(x) = sup
α>0

{ ||x + αy|| − ||x − αy||
α

: y ∈ SX, x⊥Iy
}
.

Now, the following result follows from Theorem 2 and the observation that x Î HX

if and only if NHX(x) = 0.

Theorem 3 Let X be a Banach space with dimX ≥ 2. If the relative interior of {x Î SX
: NHX(x) = 0} in SX is not empty then X is a Hilbert space.

For the discussion in this section, we need to introduce the so called non-square

constant (or, James constant. Cf. [13] and [14]; see also [15] for a generalized version):
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J(X) := sup{min{||x + y||, ||x − y||} : x, y ∈ SX}
= sup{||x − y|| : x, y ∈ SX , x⊥Iy}.

For any Banach space X, we have
√
2 ≤ J(X) ≤ 2. It is well known that a Banach

space X is uniformly non-square if and only if J(X) < 2. Some preliminaries about ultra-

power are also necessary. Let U be an ultrafilter on N. A sequence {xn} in X converges

to x with respect to U , denoted by limUxn = x, if, for each neighborhood U of x,

{i ∈ N : xi ∈ U} ∈ U. The ultrapower of X, which is denoted by X̃, is the quotient space

l∞(X)/NU (X) equipped with the quotient norm, where

l∞(X) =
{
(xn) ⊂ X : ||(xn)|| = sup

n∈N
||xn|| < ∞}

}
,

NU (X) =
{
(xn) ∈ l∞(X) : lim

U
||xn|| = 0

}
,

and ||x̃|| = lim
U

||xn|| for x̃ = (xn)U ∈ X̃. For more information about ultra-techniques

in Banach space theory, we refer to [16] and [17].

First, we prove the following inequality between NHX and J(X).

Lemma 3 Let X be a Banach space with dimX ≥ 2. Then,

NHX ≤ 2(J(X) − 1).

Proof Let x and y be two arbitrary unit vectors that are isosceles orthogonal to each

other and a be an arbitrary positive real number. Without loss of generality, we may

assume that ||x + ay|| ≥ ||x - ay||. In the following, we distinguish two cases.

Case 1: 0 <a ≤ 1. It follows from the convexity of f(a) = ||x + ay|| that

||x + αy|| − ||x − αy||
2α

≤ ||x + y|| − ||x||
1

≤ J(X) − 1.

Thus

||x + αy|| − ||x − αy||
α

≤ 2(J(X) − 1).

Case 2: a > 1. By the triangle inequality, we have

||x + αy|| − ||x − αy||
α

≤ ||x + y|| + (α − 1)||y|| − ||x − y||
α

= 1 − 1
α
.

Similarly, we have

||x + αy|| − ||x − αy||
α

≤ 2
α
.

Thus,

||x + αy|| − ||x − αy||
α

≤ min
α>1

(
1 − 1

α
,
2
α

)
≤ 2

3
≤ 2(J(X) − 1).

The desired inequality now follows directly from the definitions of NHX and J(X). □
Lemma 4 Let X be a Banach space with dimX ≥ 2. If NHX = 2 then J(X) = 2.

Proof If NHX = 2 then 2 = NHX ≤ 2(J(X) - 1) ≤ 2. Thus J(X) = 2. □
For the lower and upper bounds of NHX and NHX(x), we have the following

theorem.
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Theorem 4 Let X be a Banach space with dimX ≥ 2. Then,

0 ≤ NHX ≤ 2 and 0 ≤ NHX(x) ≤ 2,∀x ∈ SX.

NHX = 0 if and only if X is a Hilbert space and NHX = 2 if and only if X is not uni-

formly non-square.

Proof To prove the inequalities 0 ≤ NHX ≤ 2, it suffices to show that 0 ≤ NHX(x) ≤ 2 hold

for each x Î SX, which follow from the following observation: for each number a > 0,

||x + αy|| − ||x − αy||
α

≤ |||x + αy|| − ||x − αy|||
α

≤ min{2, 2α}
α

≤ 2.

By Theorem 3, it is clear that if NHX = 0 then X is a Hilbert space. Conversely, if X

is Hilbert space then isosceles orthogonality coincides with Roberts orthogonality,

which implies that NHX = 0. In the following, we prove that NHX = 2 if and only if J

(X) = 2. By Lemma 4, we only need to show the implication J(X) = 2 ⇒ NHX = 2.

Suppose that J(X) = 2 holds. Then, there exist {xn}, {yn} ⊂ SX such that xn ⊥I yn holds

for each n and

lim
n→∞ ||xn + yn|| = 2.

Let x̃ = (xn)U and ỹ = (yn)U. Then, x̃, ỹ ∈ SX̃ and ||x̃ + ỹ|| = ||x̃ − ỹ|| = 2. Thus, the unit

circle of the two-dimensional subspace X̃x̃,ỹ of X̃ is the parallelogram with x̃, ỹ,−ỹ, and

−ỹ as vertices. Then, for any number a, b ≥ 0 satisfying a + b >0, we have

||αx̃ + β ỹ|| = (α + β)

∥∥∥∥ α

α + β
x̃ +

β

α + β
ỹ

∥∥∥∥ = α + β .

For each sufficiently large k Î N and each n Î N, let vn,k be a point in the unit circle

of Xxn ,yn such that |vn,k − xn|| = 1
k and that xn Î arc(vn,k,yn); let un,k be a point in arc(xn,

yn) such that un,k ⊥I vn,k. Then, there exist {an,k}, {bn, k}, {gn,k}, and {hn, k} ⊂ (0, +∞)

such that xn = an,kvn,k + bn,kyn and un,k = gn,kxn + hn,kyn. By extracting subsequences if

it is necessary, we may assume that {un,k}, {vn,k}, {an,k}, {bn,k}, {gn,k}, and {hn,k} all con-

verge as k tends to infinity.

Let ũk = (un,k)U and ṽk = (vn,k)U . Then, ũk, ṽk ∈ SX̃x̃,ỹ, ũk⊥Iṽk, and ||ṽk − x̃|| = 1
k. More-

over, x̃ ∈ arc(ṽk, ỹ) and ũk ∈ arc(x̃, ỹ). It is not difficult to verify the following two equal-

ities

ṽk = − 1
2k

ỹ +
(
1 − 1

2k

)
x̃ and ũk =

(
1 − 1

2k

)
ỹ +

1
2k

x̃.

For sufficiently large k and α ≤ 1
2k, we have

1
α
(||ũk + αṽk|| − ||ũk − αṽk||)

=
1
α

(∥∥∥∥
(
1 − 1

2k
− α

2k

)
ỹ +

(
1
2k

+ α − α

2k

)
x̃

∥∥∥∥
−

∥∥∥∥
(
1 − 1

2k
+

α

2k

)
ỹ +

(
1
2k

− α +
α

2k

)
x̃

∥∥∥∥
)

=
1
α

(
1 − 1

2k
− α

2k
+

1
2k

+ α − α

2k
−

(
1 − 1

2k
+

α

2k
+

1
2k

− α +
α

2k

))

= 2 − 2
k
.
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Thus,

NHX ≥ lim
n→∞

1
α
(||un,k + αvn,k|| − ||un,k − αvn,k||)

= lim
U

1
α
(||un,k + αvn,k|| − ||un,k − αvn,k||)

=
1
α
(||ũk + αṽk|| − ||ũk − αũk||) = 2 − 2

k
.

Since 1/k tends to 0 when k tends to infinity, we have NHX = 2.
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