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Abstract
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normal approximation is shown as O(n-1/9).
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1 Introduction
Assume that {Xn}n≥1 is a sequence of random variables defined on a fixed probability

space (�,F ,P) with a common marginal distribution function F(x) = P(X1 ≤ x). F is a

distribution function (continuous from the right, as usual). For 0 <p < 1, the pth quan-

tile of F is defined as

ξp = inf{x : F(x) ≥ p}

and is alternately denoted by F-1(p). The function F-1(t), 0 <t < 1, is called the inverse

function of F. It is easy to check that ξp possesses the following properties:

(i) F(ξp-) ≤ p ≤ F(ξp);

(ii) if ξp is the unique solution x of F (x-) ≤ p ≤ F(x), then for any ε >0,

F(ξp − ε) < p < F(ξp + ε).

For a sample X1, X2, ..., Xn, n ≥ 1, let Fn represent the empirical distribution function

based on X1, X2,..., Xn, which is defined as Fn(x) = 1
n

∑n
i=1 I(Xi ≤ x), x Î ℝ, where I(A)

denotes the indicator function of a set A and ℝ is the real line. For 0 <p < 1, we define

F−1
n (p) = inf{x : Fn(x) ≥ p} as the pth quantile of sample.

Recall that a finite family {X1,..., Xn} is said to be negatively associated (NA) if for any

disjoint subsets A, B ⊂ {1, 2,..., n}, and any real coordinatewise nondecreasing functions

f on RA, g on RB,

Cov(f (Xk, k ∈ A), g(Xk, k ∈ B)) ≤ 0.

A sequence of random variables {Xi}i≥1 is said to be NA if for every n ≥ 2, X1, X2,...,

Xn are NA.

From 1960s, many authors have obtained the asymptotic results for the sample quan-

tiles, including the well-known Bahadur representation. Bahadur [1] firstly introduced
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an elegant representation for the sample quantiles in terms of empirical distribution

function based on independent and identically distributed (i.i.d.) random variables. Sen

[2], Babu and Singh [3] and Yoshihara [4] gave the Bahadur representation for the

sample quantiles under j-mixing sequence and a-mixing sequence, respectively. Sun

[5] established the Bahadur representation for the sample quantiles under a-mixing

sequence with polynomially decaying rate. Ling [6] investigated the Bahadur represen-

tation for the sample quantiles under NA sequence. Li et al. [7] investigated the Baha-

dur representation of the sample quantile based on negatively orthant-dependent

(NOD) sequence, which is weaker than NA sequence. Xing and Yang [8] also studied

the Bahadur representation for the sample quantiles under NA sequence. Wang et al.

[9] revised the results of Sun [5] and got a better bound. For more details about Baha-

dur representation, one can refer to Serfling [10].

For a fixed p Î (0, 1), let ξp = F-1(p), ξp,n = F−1
n (p)and F(t) be the distribution func-

tion of a standard normal variable. In [[10], p. 81], the Berry-Esséen bound of the sam-

ple quantiles for i.i.d. random variables is given as follows:

Theorem A Let 0 <p < 1 and {Xn}n≥1 be a sequence of i.i.d. random variables. Sup-

pose that in a neighborhood of ξp, F possesses a positive continuous density f and a

bounded second derivative F″. Then

sup
−∞<t<∞

∣∣∣∣∣P
(

n1/2(ξp,n − ξp)

[p(1 − p)]1/2/f (ξp)
≤ t

)
− �(t)

∣∣∣∣∣ = O(n−1/2), n → ∞.

In this paper, we investigate the Berry-Esséen bound of the sample quantiles for NA

random variables under some weak conditions. The rate of normal approximation is

shown as O(n-1/9).

Berry-Esséen theorem, which is known as the rate of convergence in the central limit

theorem, can be found in many monographs such as Shiryaev [11], Petrov [12]. For the

case of i.i.d. random variables, the optimal rate is O(n− 1
2 ), and for the case of martin-

gale, the rate is O(n− 1
4 log n) [[13], Chapter 3]. For other papers about Berry-Esséen

bound, for example, under the association sample, Cai and Roussas [14,15] studied the

Berry-Esséen bounds for the smooth estimator of quantiles and the smooth estimator

of a distribution function, respectively; Yang [16] obtained the Berry-Esséen bound of

the regression weighted estimator for NA sequence; Wang and Zhang [17] provided

the Berry-Esséen bound for linear negative quadrant-dependent (LNQD) sequence;

Liang and Baek [18] gave the Berry-Esséen bounds for density estimates under NA

sequence; Liang and Uña-Álvarez [19] studied the Berry-Esséen bound in kernel den-

sity estimation for a-mixing censored sample; Lahiri and Sun [20] obtained the Berry-

Esséen bound of the sample quantiles for a-mixing random variables, etc.

Throughout the paper, C, C1, C2, C3,..., d denote some positive constants not

depending on n, which may be different in various places. ⌊x⌋ denotes the largest inte-

ger not exceeding x, and the second-order stationarity means that

(X1,X1+k)
d=(Xi,Xi+k), i ≥ 1, k ≥ 1.

Inspired by Serfling [10], Cai and Roussas [14,15], Yang [16], Liang and Uña-Álvarez

[19], Lahiri and Sun [20], etc., we obtain Theorem 1.1 in Section 1. Two preliminary
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lemmas are given in Section 2, and the proof of Theorem 1.1 is given in Section 3.

Next, we give the main result as follows:

Theorem 1.1 Let 0 <p < 1 and {Xn}n≥1 be a second-order stationary NA sequence

with common marginal distribution function F and EXn = 0 for n = 1, 2, . . .. Assume

that in a neighborhood of ξp, F possesses a positive continuous density f and a bounded

second derivative F″. If there exists an ε0 >0 such that for × Î [ξp - ε0, ξp + ε0],∑∞
j=2

j|Cov[I(X1 ≤ x), I(Xj ≤ x)]| < ∞, (1:1)

and

Var[I(X1 ≤ ξp)] + 2
∑∞

j=2
Cov[I(X1 ≤ ξp), I(Xj ≤ ξp)] := σ 2(ξp) > 0, (1:2)

then

sup
−∞<t<∞

∣∣∣∣∣P
(
n1/2(ξp,n − ξp)

σ (ξp)/f (ξp)
≤ t

)
− �(t)

∣∣∣∣∣ = O(n−1/9), n → ∞. (1:3)

Remark 1.1 Assumption (1.2) is a general condition, see for example Cai and Roussas

[14]. For the stationary sequences of associated and negatively associated, Cai and

Roussas [15] gave the notation μ(n) =
∑∞

j=n |Cov(X1,Xj+1)|1/3 and supposed that μ(1) <

∞. In addition, they supposed that μ(n) = O(n-a) for some a >0 or δ(1) < ∞, where

δ(i) =
∑∞

j=i μ(j), then obtained the Berry-Esséen bounds for smooth estimator of a dis-

tribution function. Under the assumptions
∑∞

j=n+1 {Cov(X1,Xj)}1/3 = O(n−(r−1)) for

some r >1 or
∑∞

n=1 n
7Cov(X1,Xn) < ∞, Chaubey et al. [21] studied the smooth esti-

mation of survival and density functions for a stationary-associated process using Pois-

son weights. In this paper, for x Î [ξp - ε0, ξp + ε0], the assumption (1.1) has some

restriction on the covariances of Cov[I(X1 ≤ x), I(Xj ≤ x)] in the neighborhood of ξp.

2 Preliminaries
Lemma 2.1 Let {Xn}n≥1 be a stationary NA sequence with EXn = 0, |Xn| ≤ d <∞ for n =

1, 2, . . .. There exists some b ≥ 1 such that
∑∞

j=bn |Cov(X1,Xj)| = O(b−β
n )for all 0 <bn ®

∞ as n ® ∞. If

lim inf
n→∞ n−1Var(

∑n

i=1
Xi) = σ 2

0 > 0,

then

sup
−∞<t<∞

∣∣∣∣∣∣∣P
⎛
⎜⎝

∑n
i=1 Xi√

Var(
∑n

i=1 Xi)
≤ t

⎞
⎟⎠ − �(t)

∣∣∣∣∣∣∣ = O(n−1/9), n → ∞. (2:1)

Proof We employ Bernstein’s big-block and small-block procedure. Partition the set

{1, 2,..., n} into 2kn + 1 subsets with large blocks of size μ = μn and small block of size

υ = υn. Define

μn = [n2/3], νn = [n1/3], k = kn :=
⌊

n
μn + νn

⌋
= [n1/3], (2:2)
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and Zn,i = Xi/
√
Var(

∑n
i=1 Xi). Let hj, ξj, ζj be defined as follows:

ηj :=
j(μ+ν)+μ∑
i=j(μ+ν)+1

Zn,i, 0 ≤ j ≤ k − 1, (2:3)

ξj :=
(j+1)(μ+ν)∑

i=j(μ+ν)+μ+1

Zn,i, 0 ≤ j ≤ k − 1, (2:4)

ζk :=
n∑

i=k(μ+ν)+1

Zn,i. (2:5)

Write

Sn :=

∑n
i=1 Xi√

Var(
∑n

i=1 Xi)
=

∑k−1

j=0
ηj +

∑k−1

j=0
ξj + ζk := S′

n + S′′
n + S′′′

n . (2:6)

By Lemma A.3, we can see that

sup
−∞<t<∞

|P(Sn ≤ t) − �(t)|

= sup
−∞<t<∞

|P(S′
n + S′′

n + S′′′
n ≤ t) − �(t)| ≤ sup

−∞<t<∞
|P(S′

n ≤ t) − �(t)|

+
2n− 1

9√
2π

+ P(|S′′
n| > n− 1

9 ) + P(|S′′′
n| > n− 1

9 ).

(2:7)

Firstly, we estimate E(S′′
n)

2 and E(S′′′
n )

2, which will be used to estimate P(|S′′
n| > n− 1

9 )

and P(|S′′′
n | > n−1

9 ) in (2.7). By the conditions |Xi| ≤ d and

lim inf
n→∞

n−1Var(
∑n

i=1 Xi) = σ 2
0 > 0, it is easy to see that |Zn,i| ≤ C1√

n
. And E(ξj)

2 ≤ Cυn/

n follows from EZn,i = 0 and Lemma A.1. Combining the definition of NA with the

definition of ξj, j = 0, 1, ..., k - 1, we can easily prove that {ξ0, ξ1, ..., ξk-1} is NA. There-

fore, it follows from (2.2), (2.4), (2.6) and Lemma A.1 that

E(S′′
n)

2 ≤ C1

∑k−1

j=0
Eξ2j ≤ C2

knνn
n

≤ C3
n

μn + νn

νn

n
≤ C4

νn

μn
= O(n−1/3). (2:8)

On the other hand, we can get that

E(S′′′
n)2 ≤ C5

n
E
(∑n

i=k(μ+ν)+1
Xi

)2

≤ C6

n

∑n

i=k(μ+ν)+1
EX2

i

≤ C7

n
(n − kn(μn + νn)) ≤ C8

μn + νn

n
= O(n−1/3)

(2:9)

from (2.5), lim inf
n→∞ n−1Var(

∑n
i=1 Xi) = σ 2

0 > 0, |Xi| ≤ d and Lemma A.1. Consequently,

by Markov’s inequality, (2.8) and (2.9),

P
(

|S′′
n| > n− 1

9

)
≤ n

2
9 · E(S′′

n)
2 = O(n−1/9), (2:10)
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P
(

|S′′′
n| > n− 1

9

)
≤ n

2
9 · E(S′′′

n )
2 = O(n−1/9). (2:11)

In the following, we will estimate sup
−∞<t<∞

|P(S′
n ≤ t) − �(t)|. Define

s2n :=
∑k−1

j=0
Var(ηj), 
n :=

∑
0≤i<j≤k−1

Cov(ηi, ηj).

Here, we first estimate the growth rate |s2n − 1|. Since ES2n = 1 and

E(S′
n)

2 = E[Sn − (S′′
n + S′′′

n )]
2 = 1 + E(S′′

n + S′′′
n )

2 − 2E[Sn(S′′
n + S′′′

n )],

by (2.8) and (2.9), it has

|E(S′
n)

2 − 1| = |E(S′′
n + S′′′

n )
2 − 2E[Sn(S′′

n + S′′′
n )]|

≤ E(S′′
n)

2 + E(S′′′
n )

2 + 2[E(S′′
n)

2]1/2[E(S′′′
n )

2]1/2

+ 2[E(S2n)]
1/2[E(S′′

n)
2]1/2 + 2[E(S2n)]

1/2[E(S′′′
n )

2]1/2

= O(n−1/3) +O(n−1/6) = O(n−1/6).

(2:12)

Notice that

s2n = E(S′
n)

2 − 2
n. (2:13)

With lj = j(μn + υn),

2
n = 2
∑

0≤i<j≤k−1

μn∑
l1=1

μn∑
l2=1

Cov(Zn,λi+l1 ,Zn,λj+l2),

but since i ≠ j, |li - lj + l1 - l2| ≥ υn, it has that

|2
n| ≤ 2
∑

1≤i<j≤n
j−i≥νn

|Cov(Zn,i,Zn,j)| ≤ C1

n

∑
1≤i<j≤n
j−i≥νn

|Cov(Xi,Xj)|

≤ C2

∑
k≥νn

|Cov(X1,Xk)| = O(n−β/3) = O(n−1/3)

(2:14)

following from (2.2) and the conditions of stationary,

lim inf
n→∞ n−1Var(

∑n
i=1 Xi) = σ 2

0 > 0 and
∑∞

j=bn |Cov(X1,Xj)| = O(b−β
n ), b ≥ 1. So, by (2.12),

(2.13) and (2.14), we can get that

|s2n − 1| = O(n−1/6) +O(n−1/3) = O(n−1/6). (2:15)

For j = 0, 1,..., k - 1, let η′
j be the independent random variables and

|s2n − 1| = O(n−1/6) +O(n−1/3) = O(n−1/6). have the same distribution as hj, j = 0, 1,...,

k - 1. Define Hn =
∑k−1

j=0 η′
j. It can be found that

sup
−∞<t<∞

|P(S′
n ≤ t) − �(t)|

≤ sup
−∞<t<∞

|P(S′
n ≤ t) − P(Hn ≤ t)| + sup

−∞<t<∞
|P(Hn ≤ t) − �(t/sn)|

+ sup
−∞<t<∞

|�(t/sn) − �(t)| := D1 +D2 +D3.

(2:16)

Let j(t) and ψ(t) be the characteristic functions of S′
n and Hn, respectively. By Esséen

inequality [[12], Theorem 5.3], for any T >0,
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D1 ≤
∫ T

−T
|φ(t) − ψ(t)

t
|dt + T sup

−∞<t<∞

∫
|u|≤C

T

|P(Hn ≤ u + t) − P(Hn ≤ t)|du

:= D1n +D2n.

(2:17)

With lj = j(μn + υn) and similar to the proof of Lemma 3.4 of Yang [16], we have

that

|ϕ(t) − ψ(t)| =
∣∣∣∣∣∣E exp

⎛
⎝it

k−1∑
j=0

ηj

⎞
⎠ −

k−1∏
j=0

E exp(itηj)

∣∣∣∣∣∣
≤ 4t2

∑
0≤i<j≤k−1

μn∑
l1=1

μn∑
l2=1

|Cov(Zn,λi+l1 ,Zn,λj+l2 )|

≤ C1t2

n

∑
1≤i<j≤n
j−i≥νn

|Cov(Xi,Xj)|

≤ C2t
2
∑
j≥νn

|Cov(X1,Xj)| ≤ C3t
2n−β/3

(2:18)

by (2.2) and the conditions of stationary, lim inf
n→∞ n−1Var(

∑n
i=1 Xi) = σ 2

0 > 0 and∑∞
j=bn |Cov(X1,Xj)| = O(b−β

n ). Set T = n (3b - 1)/18 for b ≥ 1, we have by (2.18) that

D1n =
∫ T

−T
|ϕ(t) − ψ(t)

t
|dt ≤ Cn−β/3 · T2 = O(n−1/9). (2:19)

It follows from the Berry-Esséen inequality [[12], Theorem 5.7], that

sup
−∞<t<∞

|P(Hn/sn ≤ t) − �(t)| ≤ C
s3n

∑k−1

j=0
E|η′

j|3 =
C
s3n

∑k−1

j=0
E|ηj|3. (2:20)

By (2.3) and Lemma A.1,

∑k−1

j=0
E|ηj|3 =

∑k−1

j=0
E

∣∣∣∣∑j(μ+ν)+μ

i=j(μ+ν)+1
Zn,i

∣∣∣∣
3

≤ C1

n3/2
∑k−1

j=0
E

∣∣∣∣∑j(μ+ν)+μ

i=j(μ+ν)+1
Xi

∣∣∣∣
3

≤ C2

n3/2
∑k−1

j=0

{∑j(μ+ν)+μ

i=j(μ+ν)+1
E|Xi|3 + (

∑j(μ+ν)+μ

i=j(μ+ν)+1
E|Xi|2)3/2

}

≤ C3

n3/2
∑k−1

j=0
(μ + μ3/2) ≤ C4kμ3/2

n3/2
= O(n−1/6).

(2:21)

Combining (2.20) with (2.21), we obtain that

sup
−∞<t<∞

|P(Hn

sn
≤ t) − �(t)| = O(n−1/6), (2:22)
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since sn ® 1 as n ® ∞ by (2.15). It follows from (2.22) that

sup
−∞<t<∞

|P(Hn ≤ u + t) − P(Hn ≤ t)|

≤ sup
−∞<t<∞

∣∣∣∣P
(
Hn

sn
≤ u + t

sn

)
− �

(
u + t
sn

)∣∣∣∣
+ sup

−∞<t<∞

∣∣∣∣P
(
Hn

sn
≤ t

sn

)
− �(

t

sn
)

∣∣∣∣ + sup
−∞<t<∞

∣∣∣∣�
(
u + t

sn

)
− �

(
t

sn

)∣∣∣∣
≤ 2 sup

−∞<t<∞

∣∣∣∣P
(
Hn

sn
≤ t

)
− �(t)| + sup

−∞<t<∞

∣∣∣∣ �
(
u + t

sn

)
− �

(
t

sn

)
|

= O(n−1/6) +O
( |u|
sn

)
,

which implies that

D2n = T sup
−∞<t<∞

∫
|u|≤C/T

|P(Hn ≤ u + t) − P(Hn ≤ t)|du

≤ C1

n1/6
+
C2

T
= O(n−1/6) +O(n−1/9) = O(n−1/9),

(2:23)

where T = n (3b - 1)/18. It is known that [[12], Lemma 5.2],

sup
−∞<x<∞

|�(px) − �(x)| ≤ (p − 1)I(p ≥ 1)

(2πe)1/2
+
(p−1 − 1)I(0 < p < 1)

(2πe)1/2
.

Thus, by (2.15),

D3 = sup
−∞<t<∞

|�(t/sn) − �(t)|

≤ (2πe)−1/2(sn − 1)I(sn ≥ 1) + (2πe)−1/2(s−1
n − 1)I(0 < sn < 1)

≤ (2πe)−1/2 max(|sn − 1|, |sn − 1|/sn)
≤ C1 max(|sn − 1|, |sn − 1|/sn) · (sn + 1) (note that sn → 1)

≤ C2|s2n − 1| = O(n−1/6),

(2:24)

and by (2.22),

D2 = sup
−∞<t<∞

∣∣∣∣P
(
Hn

sn
≤ t

sn

)
− �

(
t
sn

)∣∣∣∣ = O(n−1/6). (2:25)

Therefore, it follows from (2.16), (2.17), (2.19), (2.23), (2.24) and (2.25) that

sup
−∞<t<∞

|P(S′
n ≤ t) − �(t)| = O(n−1/9) +O(n−1/6) = O(n−1/9). (2:26)

Finally, by (2.7), (2.10), (2.11) and (2.26), (2.1) holds true. □
Lemma 2.2 Let {Xn}n≥1 be a second-order stationary NA sequence with common mar-

ginal distribution function and EXn = 0, |Xn| ≤ d< ∞, n = 1,2,.... We give an assumption

such that
∑∞

j=2 j|Cov(X1,Xj)| < ∞. If Var(X1) + 2
∑∞

j=2 Cov(X1,Xj) = σ 2
1 > 0, then

sup
−∞<t<∞

∣∣∣∣P
(∑n

i=1 Xi√
nσ1

≤ t
)

− �(t)

∣∣∣∣ = O(n−1/9), n → ∞. (2:27)

Proof Define σ 2
n = Var(

∑n
i=1 Xi), σ 2(n, σ 2

1 ) = nσ 2
1 and g(k) = Cov (Xi+k, Xi) for k = 0, 1,

2,.... For the second-order stationarity process {Xn}n≥1 with common marginal
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distribution function, it can be found by the condition
∑∞

j=1 j|γ (j)| < ∞ that

|σ 2
n − σ 2(n, σ 2

1 )| =
∣∣∣∣nγ (0) + 2n

∑n−1

j=1

(
1 − j

n

)
γ (j) − nγ (0) − 2n

∑∞
j=1

γ (j)

∣∣∣∣
=

∣∣∣∣2n∑n−1

j=1

j
n
γ (j) − 2n

∑∞
j=n

γ (j)

∣∣∣∣
≤ 2

∑∞
j=1

j|γ (j)| + 2n
∑∞

j=n
|γ (j)|

≤ 4
∑∞

j=1
j|γ (j)| = O(1).

(2:28)

On the other hand,

sup
−∞<t<∞

∣∣∣∣P
( ∑n

i=1 Xi

σ (n, σ 2
1 )

≤ t
)

− �(t)

∣∣∣∣
≤ sup

−∞<t<∞

∣∣∣∣P
(∑n

i=1 Xi

σn
≤ σ (n, σ 2

1 )
σn

t
)

− �

(
σ (n, σ 2

1 )
σn

t
)∣∣∣∣

+ sup
−∞<t<∞

∣∣∣∣�
(

σ (n, σ 2
1 )

σn
t
)

− �(t)

∣∣∣∣
:= D1 +D2.

(2:29)

Obviously, if bn ® ∞ as n ® ∞, then it follows from
∑∞

j=2 j|Cov(X1,Xj)| < ∞ that

∑∞
j=bn

|Cov(X1,Xj)| ≤ 1
bn

∑∞
j=bn

j|Cov(X1,Xj)| = o(b−1
n ).

(2.28) and the fact σ 2(n, σ 2
1 ) = nσ 2

1 → ∞ yield that lim
n→∞ σ 2

n /σ
2(n, σ 2

1 ) = 1. Thus, by

Lemma 2.1,

D1 = O(n−1/9). (2:30)

By (2.28) again and similar to the proof of (2.24), it follows

D2 ≤ C

∣∣∣∣ σ 2
n

σ 2(n, σ 2
1 )

− 1

∣∣∣∣ = C

σ 2(n, σ 2
1 )

∣∣σ 2
n − σ 2(n, σ 2

1 )
∣∣ = O(n−1). (2:31)

Finally, by (2.29), (2.30) and (2.31), (2.27) holds true. □
Remark 2.1 Under the conditions of Lemma 2.2, we have (27). Furthermore, by the

proof of Lemma 2.2, we can obtain that

sup
−∞<t<∞

∣∣∣∣P
(∑n

i=1 Xi√
nσ1

≤ t
)

− �(t)

∣∣∣∣ ≤ C(σ 2
1 )n

−1/9, n → ∞, (2:32)

where C(σ 2
1 ) is a positive constant depending only on σ 2

1 .

3 Proof of the main result
Proof of Theorem 1.1 The proof is inspired by the proofs of Theorem A and Theorem

C of Serfling [[10], pp. 77-84]. Denote A = s (ξp) / f (ξp) and

Gn(t) = P(n1/2(ξp,n − ξp)/A ≤ t).
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Let Ln = (log n log log n)1/2, we have

sup
|t|>Ln

|Gn(t) − �(t)| = max

{
sup
t<−Ln

|Gn(t) − �(t)|, sup
t>Ln

|Gn(t) − �(t)|
}

≤ max{Gn(−Ln) + �(−Ln), 1 − Gn(Ln) + 1 − �(Ln)}
≤ Gn(−Ln) + 1 − Gn(Ln) + 1 − �(Ln)

≤ P(|ξp,n − ξp| ≥ ALnn
−1/2) + 1 − �(Ln).

(3:1)

Since 1 − �(x) ≤ (2π)−1/2

x e−x2/2, x > 0 it follows

1 − �(Ln) ≤ (2π)−1/2

Ln
e− log n log log n/2 = O(n−1). (3:2)

Let εn = (A - ε0) (log n log log n)1/2 n-1/2, where 0 <ε0 <A. Seeing that

P(|ξp,n − ξp| ≥ A(log n log log n)1/2n−1/2) ≤ P(|ξp,n − ξp| > εn)

and

P(|ξp,n − ξp| > εn) = P(ξp,n > ξp + εn) + P(ξp,n < ξp − εn),

by Lemma A.4 (iii), we obtain

P(ξp,n > ξp + εn) = P(p > Fn(ξp + εn)) = P(1 − Fn(ξp + εn) > 1 − p)

= P
(∑n

i=1
I(Xi > ξp + εn) > n(1 − p)

)
= P

(∑n

i=1
(Vi − EVi) > nδn1

)
,

where Vi = I (Xi > ξp + ξn) and δn1 = F(ξp + εn) - p. Likewise,

P(ξp,n < ξp − εn) ≤ P(p ≤ Fn(ξp − εn)) = P
(∑n

i=1
(Wi − EWi) ≥ nδn2

)
,

where Wi = I (Xi > ξp - ξn) and δn2 = p - F(ξp - εn). It is easy to see that {Vi - EVi}

1≤i≤n. and {Wi - EVi}1≤i≤n are still NA sequences. Obviously, |Vi - EVi| ≤ 1,∑n
i=1 E(Vi − EVi)

2 ≤ n, |Wi - EWi| ≤ 1,
∑n

i=1 E(Wi − EWi)
2 ≤ n. By Lemma A.2, we

have that

P(ξp,n > ξp + εn) ≤ 2 exp
{
− nδ2n1
2(2 + δn1)

}
,

P(ξp,n < ξp − εn) ≤ 2 exp
{
− nδ2n2
2(2 + δn2)

}
.

Consequently,

P(|ξp,n − ξp| > εn) ≤ 4 exp

{
− n[min(δn1, δn2)]

2

2(2 + max(δn1, δn2))

}
. (3:3)

Since F (x) is continuous at ξp with F’ (ξp) > 0, ξp is the unique solution of F (x-) ≤ p

≤ F (x) and F (ξp) = p. By the assumption on f’(x) and Taylor’s expansion,

F(ξp + εn) − p = F(ξp + εn) − F(ξp) = f (ξp)εn + o(εn),

p − F(ξp − εn) = F(ξp) − F(ξp − εn) = f (ξp)εn + o(εn).
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Therefore, we can get that for n large enough,

f (ξp)εn
2

=
f (ξp)(A − ε0)(log n log log n)1/2

2n1/2
≤ F(ξp + εn) − p,

f (ξp)εn
2

=
f (ξp)(A − ε0)(log n log log n)1/2

2n1/2
≤ p − F(ξp − εn).

Note that max(δn1, δn2) ® 0. as n ® ∞. So with (3), for n large enough,

P(|ξp,n − ξp| > εn) ≤ 4 exp
{
− f 2(ξp)(A − ε0)2 log n log log n

8(2 + max(δn1, δn2))

}
= O(n−1). (3:4)

Next, we define

σ 2(n, t) = Var(Z1) + 2
∑∞

j=2
Cov(Z1,Zj),

where Zi = I [Xi ≤ ξp + tAn-1/2] - EI [Xi ≤ ξp + tAn-1/2]. Seeing that

σ 2(ξp) = Var[I(X1 ≤ ξp)] + 2
∑∞

j=2
Cov[I(X1 ≤ ξp), I(Xj ≤ ξp)],

we will estimate the convergence rate of |s2 (n, t) - s2 (ξp)|. By the condition (1.1),

we can see that s2 (ξp) < ∞. Since that F possesses a positive continuous density f and

a bounded second derivative F’, for |t| ≤ Ln = (log n log log n)1/2, we will obtain by

Taylor’s expansion that

|Var(Z1) − Var[I(X1 ≤ ξp)]|
= |Var[I(X1 ≤ ξp + tAn−1/2)] − Var[I(X1 ≤ ξp)]|
= |F(ξp + tAn−1/2) − F(ξp) + [F2(ξp) − F2(ξp + tAn−1/2)]|
≤ f (ξp) · |t|An−1/2 + o(|t|An−1/2)

+|F(ξp) + F(ξp + tAn−1/2)| · [f (ξp) · |t|An−1/2 + o(|t|An−1/2)]

= O((log n log log n)1/2n−1/2).

(3:5)

Similarly, for j ≥ 2 and |t| ≤ Ln,

|E[I(X1 ≤ ξp + tAn−1/2)I(Xj ≤ ξp + tAn−1/2)] − E[I(X1 ≤ ξp + tAn−1/2)I(Xj ≤ ξp)]|
≤ E|I(Xj ≤ ξp + tAn−1/2) − I(Xj ≤ ξp)|
= [F(ξp + tAn−1/2) − F(ξp)]I(t ≥ 0) + [F(ξp) − F(ξp + tAn−1/2)]I(t < 0)

= O((log n log log n)1/2n−1/2),

Therefore, by a similar argument, for j ≥ 2 and |t| ≤ Ln,

|Cov(Z1,Zj) − Cov[I(X1 ≤ ξp), I(Xj ≤ ξp)]|
≤ |E[I(X1 ≤ ξp + tAn−1/2)I(Xj ≤ ξp + tAn−1/2)] − E[I(X1 ≤ ξp)I(Xj ≤ ξp)]|

+|E[I(X1 ≤ ξp + tAn−1/2)]E[I(Xj ≤ ξp + tAn−1/2)] − E[I(X1 ≤ ξp)]E[I(Xj ≤ ξp)]|
≤ |E[I(X1 ≤ ξp + tAn−1/2)I(Xj ≤ ξp + tAn−1/2)]

−E[I(X1 ≤ ξp + tAn−1/2)I(Xj ≤ ξp)]|
+|E[I(X1 ≤ ξp + tAn−1/2)I(Xj ≤ ξp)] − E[I(X1 ≤ ξp)I(Xj ≤ ξp)]|
+|E[I(X1 ≤ ξp + tAn−1/2)]E[I(Xj ≤ ξp + tAn−1/2)]

−E[I(X1 ≤ ξp + tAn−1/2)]E[I(Xj ≤ ξp)]|
+|E[I(X1 ≤ ξp + tAn−1/2)]E[I(Xj ≤ ξp)] − E[I(X1 ≤ ξp)]E[I(Xj ≤ ξp)]|

= O((log n log log n)1/2n−1/2).

(3:6)
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Consequently, by the conditions (1.1) and (3.5), (3.6), for |t| ≤ Ln,

|σ 2(n, t) − σ 2(ξp)|
≤ |Var(Z1) − Var[I(X1 ≤ ξp)]|

+2
∑[n1/5]

j=2
|Cov(Z1,Zj) − Cov[I(X1 ≤ ξp), I(Xj ≤ ξp)]|

+2
∑∞

j=[n1/5]+1
|Cov(Z1,Zj)| + 2

∑∞
[j=n1/5]+1

|Cov[I(X1 ≤ ξp),I(Xj ≤ ξp)]|
≤ C1(log n log log n)1/2n−1/2 + C2n

1/5(log n log log n)1/2n−1/2 + o(n−1/5)

= o(n−1/5).

(3:7)

By Lemma A.4 (iii) again, it has

Gn(t) = P(ξp,n ≤ ξp + tAn−1/2) = P[p ≤ Fn(ξp + tAn−1/2)]

= P
[
np ≤

∑n

i=1
I(Xi ≤ξp + tAn−1/2)

]

= P

[
n1/2(p − F(ξp + tAn−1/2))

σ (n, t)
≤

∑n
i=1 Zi√

nσ (n, t)

]
.

Thus,

Gn(t) = P
[ ∑n

i=1 Zi√
nσ (n, t)

≥ −cnt

]
= 1 − P

[ ∑n
i=1 Zi√

nσ (n, t)
< −cnt

]
,

where

cnt =
n1/2(F(ξp + tAn−1/2) − p)

σ (n, t)
.

It is easy to check that

�(t) − Gn(t) = �(t) − 1 + P
[ ∑n

i=1 Zi√
nσ (n, t)

< −cnt

]

= P
[ ∑n

i=1 Zi√
nσ (n, t)

< −cnt

]
− [1 − �(t)]

= P
[ ∑n

i=1 Zi√
nσ (n, t)

< −cnt

]
− �(−cnt) + �(t) − �(cnt).

(3:8)

By (3.7), it has that lim σ 2(n,t)
σ 2(ξp)

→ 1 as n ® ∞, which implies that 0 <s2 (n, t) for |t| ≤

Ln and n large enough. Obviously, {Zi} is a second-order stationary NA sequence.

Thus, for a fixed t, |t| ≤ Ln, by the Lemma 2.2, (2.32) in Remark 2.1 and (3.7), it has

for n large enough that∣∣∣∣P
[ ∑n

i=1 Zi√
nσ (n, t)

< −cnt

]
− �(−cnt)

∣∣∣∣
≤ sup

−∞<x<∞

∣∣∣∣P
[ ∑n

i=1 Zi√
nσ (n, t)

< x
]

− �(x)

∣∣∣∣
≤ C(σ 2(n, t))n−1/9 = C(σ 2(ξp) + o(n−1/5))n−1/9

≤ C1n−1/9,
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where C1 does not depend on t for |t| ≤ Ln. Therefore, for n large enough, we have

sup
|t|≤Ln

∣∣∣∣P
[ ∑n

i=1 Zi√
nσ (n, t)

< −cnt

]
− �(−cnt)

∣∣∣∣ ≤ C1n
−1/9.

By (3.8) and the inequality above, we can get that for n large enough,

sup
|t|≤Ln

|Gn(t) − �(t)|

≤ sup
|t|≤Ln

∣∣∣∣P
[ ∑n

i=1 Zi√
nσ (n, t)

< −cnt

]
− �(−cnt)

∣∣∣∣ + sup
|t|≤Ln

|�(t) − �(cnt)|

≤ Cn−1/9 + sup
|t|≤Ln

|�(t) − �(cnt)|.

(3:9)

On the other hand,

sup
|t|≤Ln

|�(t) − �(cnt)| ≤ sup
−∞<t<∞

∣∣∣∣�(t) − �

(
σ (ξp)

σ (n, t)
t
)∣∣∣∣

+ sup
|t|≤Ln

∣∣∣∣�
(

σ (ξp)

σ (n, t)
t
)

− �(cnt)

∣∣∣∣ := H1 +H2.

(3:10)

By (3.7) again and similar to the proof of (2.31), we have

H1 ≤ C

∣∣∣∣σ 2(n, t)
σ 2(ξp)

− 1

∣∣∣∣ = Cσ−2(ξp)|σ 2(n, t) − σ 2(ξp)| = o(n−1/5). (3:11)

By Taylor’s expansion again, we obtain that

cnt = t · A
σ (n, t)

· F(ξp + tAn−1/2) − F(ξp)

tAn−1/2

= t · A

σ (n, t)
· F

′(ξp)tAn−1/2 + 1
2F

′′(ξp,t)(tAn−1/2)2

tAn−1/2

= t
σ (ξp)

σ (n, t)
+ t2

A2F′′(ξp,t)
2σ (n, t)

n−1/2,

(3:12)

where ξp,t lies between ξp and ξp + Atn-1/2. It is known that [[12], Lemma 5.2],

sup
x

|�(x + q) − �(x)| ≤ |q| · (2π)−1/2, for everyq. (3:13)

Therefore, by (3.12), (3.13) and the condition that F’ is bounded in a neighborhood

of ξp, we get for n large enough that

H2 = sup
|t|≤Ln

∣∣∣∣�
(

σ (ξp)

σ (n, t)
t
)

− �(cnt)

∣∣∣∣ ≤ CL2nn
−1/2 = O(log n · log log n · n−1/2), (3:14)

since s2 (ξp) < ∞ and lim
n→∞

σ 2(n,t)
σ 2(ξp)

= 1 for |t| ≤ Ln. Therefore, it follows from (3.9),

(3.10), (3.11) and (3.14) that

sup
|t|≤Ln

|Gn(t) − �(t)| = O(n−1/9). (3:15)

Finally, the desired result (1.3) follows from (3.1), (3.2), (3.4) and (3.15) immediately.

□
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Appendix
Lemma A.1 [[22], Theorem 1] Let {Xn}n≥1 be NA random variables, EXi = 0, E|Xi|

p <

∞, where i = 1, 2,..., n and p ≥ 2. Then, there exists some constant cp depending only on

p such that

E|
∑n

i=1
Xi|p ≤ cp{

∑n

i=1
E|Xi|p + (

∑n

i=1
EX2

i )
p/2}.

Lemma A.2 [[16], Lemma 3.5] Let {Xn}n≥1 be a NA sequence with EXi = 0, |Xi| ≤ b,

a.s. i = 1, 2,..., Denote �n =
∑n

i=1 EX
2
i . Then for ∀ ε > 0,

P(|
∑n

i=1
Xi| > ε) ≤ 2 exp{− ε2

2(2�n + bε)
}.

Lemma A.3 [[23], Lemma 2] Let × and Y be random variables, then for any a > 0,

sup
t

|P(X + Y ≤ t) − �(t)| ≤ sup
t

|P(X ≤ t) − �(t)| + a√
2π

+ P(|Y| > a).

Lemma A.4 [[10], Lemma 1.1.4] Let F(x) be a right-continuous distribution function.

The inverse function F-1(t), 0 <t < 1, is nondecreasing and left-continuous, and satisfies

(i) F-1 (F(x)) ≤ x, - ∞ <x < ∞;

(ii) F (F-1 (t)) ≥ t, 0 <t < 1;

(ii) F (x) ≥ t if and only if × ≥ F-1 (t).
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