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Abstract

In this paper, we consider a class of impulsive difference equations with distributed
delays. By establishing an impulsive delay difference inequality and using the
properties of “r-cone” and eigenspace of the spectral radius of non-negative
matrices, some new sufficient conditions for global exponential stability of the
impulsive difference equations with distributed delays are obtained. An example is
given to demonstrate the effectiveness of the theory.
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1 Introduction
Difference equations usually appear in the investigation of systems with discrete time or

in the numerical solution of systems with continuous time [1]. In recent years, the stabi-

lity investigation of difference equations has been interesting to many investigators, and

various advanced results on this problem have been reported [2,3]. However, almost all

available results have been focused on systems with discrete delays. In reality, difference

systems with distributed delays become important because it is essential to formulate

the discrete-time analogue of the continuous-time system with distributed delays when

one wants to simulate or compute the continuous-time one after obtaining its dynamical

characteristics. Fortunately, such an issue has been addressed in [4-7].

However, besides the delay effect, an impulsive effect likewise exists in a wide variety

of evolutionary processes in which states are changed abruptly at certain moments of

time, involving such fields as medicine, biology, economics, mechanics, electronics, and

telecommunications. Recently, the asymptotic behaviors of impulsive difference equa-

tions have attracted considerable attention. Many interesting results on impulsive effect

have been obtained [8-11].

It is well known that distributed delay differential equations with impulses or without

impulses have been considered by many authors (see, for instance [12-14]). But, to the

best of our knowledge, there is no concerning on the stability of impulsive difference

equations with distributed delays in literature. Motivated by the above discussion, we

here make a first attempt to arrive at results on the global exponential stability of

impulsive difference equations with distributed delays.
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2 Model description and preliminaries
Let Rn(Rn

+) be the space of n-dimensional (non-negative) real column vectors and

Rm×n(Rm×n
+ ) denotes the set of m × n (non-negative) real matrices. Usually, E denotes

an n × n unit matrix. For A, B Î Rm × n or A, B Î Rn, the notation A ≥ B (A >B)

means that each pair of corresponding elements of A and B satisfies the inequality “ ≥

(>)”. Especially, A Î Rm × n is called a nonnegative matrix if A ≥ 0, and z Î Rn is called

a positive vector if z > 0. Z denotes the integer set, Z∞ = {j Î Z |-∞ < j ≤ 0} and
Z+

∞ = {j ∈ Z|0 ≤ j < ∞}. C denotes the set of all bounded functions �(j) Î Rn, j Î Z∞.

For x Î Rn, A Î Rn×n, � Î C, we define

[x]+ = (|x1|, . . . , |xn|)T , [A]+ = (|aij|)n×n,

[ϕ(m)]∞ = ([ϕ1(m)]∞, . . . , [ϕn(m)]∞)T , [ϕ(m)]+∞ =
[
[ϕ(m)]+

]
∞,

where [ϕi(m)]∞ = sup
s∈Z∞

{ϕi(m + s)}, and introduce the corresponding norm for them

as follows:

||x|| = max
1≤i≤n

{|xi|}, ||A || = max
1≤i≤n

n∑
j=1

|aij |, ||ϕ || = max
1≤i≤n

{
[ϕi(m)]+∞

}
.

In this paper, we mainly consider the following impulsive difference equations with

distributed delays⎧⎪⎪⎨
⎪⎪⎩
xi(m + 1) = aixi(m) +

n∑
j=1

bijfj(xj(m)) +
n∑
j=1

cij
∞∑
k=1

μij(k)gj(xj(m − k)), m ∈ Z+
∞, m �= mk,

xi(m + 1) = Him(x1(m), . . . , xm(m)), m = mk,
xi(m) = ϕi(m), m ∈ Z∞,

(1)

where 0 <i ≤ n and ai, bij, cij are constants. The fixed moments of time mk Î Z, and

satisfy 0 < m1 < m2 < · · · , lim
k→∞

mk = ∞. The constants μij(k) satisfy the following con-

vergence conditions:

(H) :
∞∑
k=1

eλ0k|μij(k)| < ∞, i, j = 1, 2, . . . ,

where l0 is a positive constant.

For convenience, we shall rewrite (1) in the vector form:⎧⎪⎪⎨
⎪⎪⎩
x(m + 1) = Ax(m) + Bf (x(m)) + C

∞∑
k=1

μ(k)g (x(m − k)), m ∈ Z+
∞, m �= mk,

x(m + 1) = Hm(x(m)), m = mk,
x(m) = ϕ(m), m ∈ Z∞,

(2)

where x (m) = (x1 (m), ..., xn (m))T, A = diag{a1, ..., an}, B = {bij}n × n, C = {cij}n × n, f

(x) = (f1 (x1), ..., fn (xn))
T, g(x) = (g1(x1), ..., gn(xn))

T, μ(k) = (μij(k))n × n, Hm(x(m)) =

(H1m(x(m)), ..., Hnm(x(m)))T, � Î C, and f(x), g(x), Hm(x) Î C[Rn, Rn].

We will assume that there exists one solution of system (2) which is denoted by x(m,

0, �), or, x(m), if no confusion occurs. We will also assume that g(0) = 0, f(0) = 0 and

Hm(0) = 0, m = mk, for the stability purpose of this paper. Then system (2) admits an

equilibrium solution x(m) ≡ 0.

Definition 2.1. The zero solution of Equation 2 is called globally exponentially stable

if there are positive constants l and M ≥ 1 such that for any initial condition � Î C,
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||x(m, 0, ϕ)|| ≤ M ||ϕ||e−λm, m ≥ 0.

Here l is called the exponential convergence rate.

For A ∈ Rn×n
+ , the spectral radius r(A) is an eigenvalue of A and its eigenspace is

denoted by

Wρ(A) � {z ∈ Rn|Az = ρ(A)z},

which includes all positive eigenvectors of A provided that the non-negative matrix A

has at least one positive eigenvector(see [15]).

Lemma 2.1. [16] Suppose that M ∈ Rn×n
+ and r(M) < 1, then there exists a positive

vector z such that

(E − M)z > 0.

For M ∈ Rn×n
+ and r(M) < 1, we denote

�ρ(M) = {z ∈ Rn|(E − M)z > 0, z > 0},

which is a nonempty set by Lemma 2.1, and satisfying that k1z1+k2z2 Î Ωr(M) for

any scalars k1 >0, k2 >0 and vectors z1, z2 Î Ωr(M). So Ωr(M) is a cone without vertex

in Rn, we call it a “r-cone.”
Lemma 2.2. Suppose P ∈ Rn×n

+ and Q(k) = (qij(k))n × n, where qij(k) ≥ 0 and satisfy

∞∑
k=1

eλ1kqij(k) < ∞, i, j = 1, 2, . . . , n,

where l1 is a positive constant. Denote Q = (qij)n×n � (
∑∞

k=1 qij(k))n×n ∈ Rn×n
+ and

let r(P + Q) < 1 and u(m) = (u1(m), . . . , un(m))T ∈ Rn
+ be a solution of the following

inequality with the initial condition u(m0 + m) Î C, m Î Z∞,

u(m + 1) ≤ Pu(m) +
∞∑
k=1

Q(k)u(m − k), m ≥ m0. (3)

Then

u(m) ≤ ze−λ(m−m0), m ≥ m0, (4)

provided that the initial conditions satisfy

u(s) ≤ ze−λ(s−m0), −∞ < s ≤ m0, (5)

where z = (z1, z2, ..., zn)
T Î Ωr(P + Q), m0 Î Z and the positive number l ≤ l1 is

determined by the following inequality(
eλ

(
P +

∞∑
k=1

Q(k)eλk
)

− E

)
z < 0. (6)

Proof. Since r(P + Q) <1 and P +Q ∈ Rn×n
+ , then, by Lemma 2.1, there exists a posi-

tive vector z Î Ωr(P + Q) such that (E - (P + Q))z >0. Using continuity, there must be

a sufficiently small constant l >0 such that

(
eλ

(
P +

∞∑
k=1

Q(k)eλk
)

− E
)
z < 0, i.e.,

inequality (6) has at least one positive solution l ≤ l1.
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Let

y(m) = u(m)eλ(m−m0) or u(m) = y(m)e−λ(m−m0).

Then, from (5), we have

y(s) ≤ z, −∞ < s ≤ m0. (7)

By (3), we have

y(m+1) = u(m+1)eλ(m+1−m0) ≤
(
Pu(m) +

∞∑
k=1

Q(k)u(m − k)

)
eλ(m+1−m0), m ≥ m0. (8)

Since P +Q ∈ Rn×n
+ , we derive that

y(m + 1) ≤
(
Py(m)e−λ(m−m0) +

∞∑
k=1

Q(k)y(m − k)e−λ(m−k−m0)

)
eλ(m+1−m0)

≤
(
Py(m) +

∞∑
k=1

Q(k)y(m − k)eλk
)
eλ.

(9)

We next show for any m ≥ m0

y(m) ≤ z. (10)

If this is not true, then there must be a positive constant m* ≥ m0 and some integer i

such that

yi(m∗ + 1) > z and y(m) ≤ z, −∞ < m ≤ m∗. (11)

By (6), (9), and the second inequality of (11), we obtain that

y(m∗ + 1) ≤
(
Py(m∗) +

∞∑
k=1

Q(k)y(m∗ − k)eλk
)
eλ

≤
(
P +

∞∑
k=1

Q(k)eλk
)

eλz ≤ z,

which contradicts the first inequality of (11). Thus (10) holds for all m ≥ m0. There-

fore, we have

u(m) ≤ ze−λ(m−m0), m ≥ m0,

and the proof is completed.

3 Main results
To obtain the global exponential stability of the zero solution of system (2), we intro-

duce the following assumptions.

(A1) For any x Î Rn, there exist non-negative diagonal matrices U and V such that

[f (x)]+ ≤ U[x]+, [g(x)]+ ≤ V[x]+.

(A2) For any x Î Rn, there exist non-negative matrices Rk such that

[Hmk(x)]
+ ≤ Rk[x]+, k = 1, 2, . . . .

(A3) Let P = [A]+ + [B]+U, Q = [C]+
∑∞

k=1 [μ(k)]
+V , and r(P + Q) < 1.
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(A4) The set � =
⋂∞

k=1 [Wρ(Rk)]
⋂

�ρ(P +Q) is nonempty.

(A5) Let

γ k ≥ max{1, ρ(Rk)}, (12)

and there exists a constant g such that

ln γk

mk − mk−1
≤ γ < λ, k = 1, 2, . . . , (13)

where the positive number l ≤ l0 is determined by the following inequality(
eλ

(
P +

∞∑
k=1

Q(k)eλk
)

− E

)
z < 0, for a given z ∈ �. (14)

Theorem 3.1. Assume that the hypothesis (H) and Conditions (A1)-(A5) hold. Then

the zero solution of (2) is globally exponentially stable and the exponential convergent

rate equals l - g.
Proof. Since r(P + Q) < 1 and P +Q ∈ Rn×n

+ , then, by Lemma 2.1, there exists a posi-

tive vector z Î Ωr(P + Q) such that (E - (P + Q))z > 0. Using continuity and hypoth-

esis (H), there must be a sufficiently small constant l > 0 such that

(eλ(P +
∑∞

k=1 Q(k)eλk) − E)z < 0, i.e., inequality (14) has at least one positive solution l
≤ l0.
From (2), Conditions (A1) and (A3), we have

[x(m + 1)]+ ≤ [Ax(m)]+ + [Bf (x(m))]+ +

[
C

∞∑
k=1

μ(k)g(x(m − k))

]+

≤ [A]+[x(m)]+ + [B]+U[(x(m))]+ + [C]+V
∞∑
k=1

[μ(k)]+[x(m − k)]+

= P[x(m)]+ + [C]+V
∞∑
k=1

[μ(k)]+[x(m − k)]+, mk−1 ≤ m ≤ mk, k = 1, 2, 3 . . . ,

(15)

where m0 = 0.

For the initial conditions: x(s) = �(s), -∞ < s ≤ 0, where � Î C, we can get

[x(m)]+ ≤ d||ϕ||e−λ(m−m0), −∞ < m ≤ 0, (16)

where

d =
1

min
1≤i≤n

zi
z, z ∈ �.

By the property of “r-cone” and z Î Ω ⊆ Ωr(P + Q), we have d ||�||Î Ωr(P + Q).

Then, all the conditions of Lemma 2.2 are satisfied by (15), (16), and Condition (A3),

we derive that

[x(m)]+ ≤ d||ϕ||e−λ(m−m0), m0 ≤ m ≤ m1. (17)

Suppose for all q = 1, ..., k, the inequalities

[x(m)]+ ≤ γ0 · · · γq−1d||ϕ||e−λ(m−m0), mq−1 ≤ m ≤ mq, (18)
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hold, where g0 = 1. Then, from Condition (A2) and (18), we have

[x(mq + 1)]+ = [Hmq(x(mq))]+

≤ Rq[x(mq)]+

≤ Rqdγ0 · · · γq−1||ϕ||e−λ(m−m0).

(19)

Since d Î Ω ⊆ Wr(Rq), we have Rqd = r(Rq)d. Therefore, from (12) and (19), we

obtain

[x(mq + 1)]+ ≤ γ0 · · · γq−1γqd||ϕ||e−λ(m−m0). (20)

This, together with (18), leads to

[x(m)]+ ≤ γ0 · · · γk−1γkd||ϕ||e−λ(m−m0), −∞ < m ≤ mk + 1. (21)

By the property of “r-cone” again, the vector g0 ... gk-1gkd Î Ωr(P + Q). It follows

from (21) and Lemma 2.2 that

[x(m)]+ ≤ γ0 · · · γk−1γkd||ϕ||e−λ(m−m0), mk + 1 ≤ m ≤ mk+1.

yielding, together with (18), that

[x(m)]+ ≤ γ0 · · · γk−1γkd||ϕ||e−λ(m−m0), mk ≤ m ≤ mk+1.

By mathematical induction, we can conclude that

[x(m)]+ ≤ γ0 · · · γk−1d||ϕ||e−λ(m−m0), mk−1 ≤ m ≤ mk, k = 1, 2, . . . . (22)

Noticing that γk ≤ eγ (mk−mk−1) by (13), we can use (22) to conclude that

[x(m)]+ ≤ eγ (m1−m0) · · · eγ (mk−1−mk−2)d||ϕ||e−λ(m−m0)

≤ d||ϕ||eγ (m−m0)e−λ(m−m0)

= d||ϕ||e−(λ−γ )(m−m0), mk−1 ≤ m ≤ mk, k = 1, 2, . . . ,

which implies that the conclusions of the theorem hold.

Remark 3.1. In Theorem 3.1, we may properly choose the matrix Rk in the condition

(A2) such that Ω ≡ ∅ Especially, when Rk = akE (ak are non-negative constants), Ω is cer-

tainly nonempty. So, by using Theorem 3.1, we can easily obtain the following corollary.

Remark 3.2. The conditions (A1)-(A5) is conservative. For example, we get the abso-

lute value of all coefficients of (2). Recently, the delay-fractioning or delay-partitioning

approach [17,18] is widely used that has shown the potential of reducing conservatism.

We will combine delay-partitioning approach with difference inequality approach in

our future work to reduce the conservatism.

Corollary 3.1. Assume that (H), (A1), (A3), and (A5) hold. For any x Î Rn, there exist

non-negative constants ak such that

[Hmk(x)]
+ ≤ αk[x]+, k = 1, 2, . . . . (23)

And let gk ≥ {1, ak}, where the scalar 0 < l < l0 is determined by (14). Then the zero

solution of (2) is globally exponentially stable and the exponential convergent rate

equals l - g.
Proof. Noticing that (23) is a special case of Condition (A2). Since r(Rk) = ak, then

Wr(Rk) = Rn. So, we have � =
⋂∞

k=1
[Wρ(Rk)]

⋂
�ρ(P +Q) = �ρ(P +Q). Since the
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“r-cone” Ωr(P + Q) is nonempty by Lemma 2.1, (A4) obviously holds. Thus we can

deduce the conclusion in terms of Theorem 3.1.

Remark 3.3. If Hk(x) = x, then Equation 2 becomes difference equations with distrib-

uted delays without impulses in vector form

x(m + 1) = Ax(m) + Bf (x(m)) + C
∞∑
k=1

μkg (x(m − k)), (24)

which contains many popular models such as discrete-time Hopfield neural networks,

discrete-time cellular neural networks, and discrete-time recurrent neural networks, and

so on.

Corollary 3.2. Assume that (H), (A1), and (A3) hold. Then Equation 24 has exactly

one equilibrium point, which is globally exponentially stable.

4 An illustrate example
In this section, we will give an example to illustrate the global exponential stability of

Equation 1 further.

Example. Consider the following difference equation with distributed delays:

x1(m + 1) =
1
4
x1(m) +

1
5
sin(x1(m)) +

1
10

x2(m)

−1
6

∞∑
k=1

e−k|x1(m − k)| + 1
8

∞∑
k=1

e−k|x2(m − k)|, m �= mk,

x2(m + 1) =
1
5
x1(m) +

1
6
sin(x1(m)) +

1
8
x2(m)

−1
3

∞∑
k=1

e−k|x1(m − k)| + 1
10

∞∑
k=1

e−k|x2(m − k)|

(25)

with

x1(mk + 1) = H1mk(x1(mk), x2(mk)),

x2(mk + 1) = H2mk(x1(mk), x2(mk))
(26)

and m1 = 4, mk = mk-1 + k for k = 2, 3,.... One can check that all the properties given

in (H) are satisfied provided that 0 <l0 < 1.

Case 1. If Himk(x1, x2) = xi for i = 1, 2 and k = 1, 2,..., then Equation 25 becomes dif-

ference equation with distributed delays without impulses. The parameters of Condi-

tions (A1) and (A3) are as follows:

A =
( 1

4 0
0 1

5

)
, B =

( 1
5

1
10

1
6

1
8

)
, C =

(− 1
6

1
8

− 1
3

1
10

)
, U =

(
1 0
0 1

)
,

V =
(
1 0
0 1

)
, μk =

(
e−k 0
0 e−k

)
, P =

( 9
20

1
10

)
,

Q =

(
1

6(e−1)
1

8(e−1)
1

3(e−1)
1

10(e−1)

)
, P +Q =

(
1

6(e−1) +
9
20

1
8(e−1) +

1
10

1
3(e−1) +

1
6

1
10(e−1) +

13
40

)
,

where P = A + [B]+U, Q = [C]+
∑m

k=1 |μ(k)|V . We can easily observe that r(P + Q) =

0.8345 < 1. By Corollary 3.2, Equation 25 has exactly one globally exponentially stable

equilibrium (0, 0)T.
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Case 2. Next we consider the case where

H1mk = e0.04kx1, H2mk = e0.04kx2.

We can verify that point (0, 0)T is also an equilibrium point of the impulsive differ-

ence equation with distributed delays (25)-(26) and the parameters of Conditions (A2)

and (A4) as follows:

Rk = e0.04k
(
1 0
0 1

)
, ρ(Rk) = e0.04k, Wρ(Rk) =

{
(z1, z2)

T |z1, z2 ∈ R
}
,

�ρ(P +Q) =
{
(z1, z2)

T > 0

∣∣∣∣ 40(e − 1) + 40
81(e − 1) − 12

z1 < z2 <
30(e − 1) − 10
6(e − 1) + 30

z1

}
.

So Ω = {(z1, z2)
T >0 |z2 = z1} is not empty. Let z = (1, 1)T Î Ω and l = 0.05 which

satisfies the inequality ((eλ(P + [C]+V
∑m

k=1 |μk|eλk)) − E)z < 0. We can obtain that for

k = 1, 2,...

γk = e0.04k ≥ max{1, e0.04k}, ln γk

mk − mk−1
≤ ln e0.04k

k
= 0.04 < λ.

Clearly, all conditions of Theorem 3.1 are satisfied, so the equilibrium (0, 0)T is glob-

ally exponentially stable and the exponential convergent rate is equal to 0.01.

5 Conclusion
In this paper, we consider a class of impulsive difference equations with distributed

delays. By establishing an impulsive delay difference inequality and using the properties

of “r-cone” and eigenspace of the spectral radius of non-negative matrices, some new

sufficient conditions for global exponential stability of the impulsive difference equa-

tions with distributed delays are obtained. The conditions (A1)-(A5) are conservative.

For example, we get the absolute value of all coefficients of (2). We will combine

delay-partitioning approach with difference inequality approach in our future work to

reduce the conservatism.
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