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Abstract

The Ulam-Hyers stability problems of the following quadratic equation

r2f
(x + y

r

)
+ r2f

(
x − y
r

)
= 2f (x) + 2f (y),

where r is a nonzero rational number, shall be treated. The case r = 2 was
introduced by J. M. Rassias in 1999. Furthermore, we prove the stability of the
quadratic equation by using the fixed point method.
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1. Introduction
In 1940, Ulam [1] proposed the general Ulam stability problem. In 1941, this problem

was solved by Hyers [2] for the case of Banach spaces. Thereafter, this type of stability

is called the Ulam-Hyers stability. In 1950, Aoki [3] provided a generalization of the

Ulam-Hyers stability of mappings by considering variables. For more general function

case, the reader is referred to Forti [4] and Găvruta [5].

Let X be a real normed space and Y be a real Banach space in the case of functional

inequalities, as well as let X and Y be real linear spaces in the case of functional equa-

tions. The quadratic function f(x) = cx2(x Î ℝ), where c is a real constant, clearly satis-

fies the functional equation

f (x + y) + f (x − y) = 2f (x) + 2f (y). (1:1)

Hence, the above equation is called the quadratic functional equation. In particular,

every solution f : X ® Y of equation (1.1) is said to be a quadratic mapping. In 1983,

Skof [6] obtained the first result on the Ulam-Hyers stability of equation (1.1).

In 1989, Aczel and Dhombres [7] obtained the general solution of Equation (1.1) for

a function f from a real linear space over a commutative field F of characteristic 0 to

the field F. In 1995, Kannappan [8] obtained the general solution of the functional

equation

f (λx + y) + f (x − λy) = (1 + λ2)
[
f (x) + f (y)

]
.

The solution of the above equation is connected with bilinear functions. In 1995,

Forti [9] obtained the result on the stability theorem for a class of functional equations
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including Equation (1.1). It is also the first result on the Ulam-Hyers stability of the

quadratic functional equation. Recently, Shakeri, Saadati and Park [10] investigated the

Ulam-Hyers stability of Equation (1.1) in non-Archimedean L -fuzzy normed spaces.

In 1996, Rassias [11] investigated the stability problem for the Euler-Lagrange func-

tional equation

f (ax + by) + f (bx − ay) = (a2 + b2)
[
f (x) + f (y)

]
, (1:2)

where a, b are fixed nonzero reals with a2 + b2 ≠ 1. In 2009, Gordji and Khodaei

[12] investigated the stability problem for the Euler-Lagrange functional equation

f (ax + by) + f (ax − by) = 2a2f (x) + 2b2f (y), (1:3)

where a, b are fixed integers with a, b, a ± b ≠ 0.

In this paper, we will investigate the Ulam-Hyers stability of the Euler-Lagrange

functional equation as follows:

r2f
(x + y

r

)
+ r2f

(
x − y
r

)
= 2f (x) + 2f (y), (1:4)

where r is a nonzero rational number. Equation 1.4 is a special form with a = b = 1
r

of Equation 1.2. Equation 1.4 is similar to Equation 1.3, but it is not a special form of

Equation 1.3 since a ≠ b in Equation 1.3.

In 2009, Ravi et al. [13] obtained the general solution and the Ulam-Hyers stability of

the Euler-Lagrange additive-quadratic-cubic-quartic functional equation

f (x + ay) + f (x − ay) = a2f (x + y) + a2f (x − y) + 2(1 − a2)f (x)

+
a4 − a2

12

[
f (2y) + f (−2y) − 4f (y) − 4f (−y)

] (1:5)

for a fixed integer a with a ≠ 0, ± 1. In [13], one can find the fact that Equation (1.1)

implies Equation 1.5. Recently, Xu, Rassias and Xu [14] investigated the stability pro-

blem for Equation 1.5 in non-Archimedean normed spaces. Euler-Lagrange type func-

tional equations in various spaces have been constantly studied by many authors.

2. Solution of the functional equation (1.4)
Theorem 2.1 Let r be a nonzero rational number and let X and Y be vector spaces. A

mapping f : X ® Y satisfies the functional equation (1.4) if and only if it is quadratic.

Proof Suppose that f satisfies Equation (1.4). Letting x = y = 0 in (1.4), we gain f(0) =

0. Putting y = 0 in (1.4), we get

r2f
(x
r

)
= f (x)

for all x Î X. By (1.4) and the above equation, we have

f (x + y) + f (x − y) = r2f
(x + y

r

)
+ r2f

(
x − y
r

)
= 2f (x) + 2f (y)

for all x, y Î X.
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Conversely, suppose that f is quadratic. Then we have

f (rx) = r2f (x)

for all x Î X. Thus we obtain

r2f
(x + y

r

)
+ r2f

(
x − y
r

)
= f (x + y) + f (x − y) = 2f (x) + 2f (y)

for all x, y Î X. □
Remark 2.2 Let r be a nonzero real number and let X and Y be vector spaces. Let f :

X ® Y be a mapping satisfying the functional equation (1.4). By the same reasoning as

the proof of Theorem 2.1, it is quadratic.

Remark 2.3 Let r be a nonzero real number and let X and Y be vector spaces. Let f :

X ® Y be a quadratic mapping and let, for all x Î X, the mapping gx : ℝ ® Y given by

gx (t):= f(tx) (t Î ℝ) be continuous. Then the mapping f satisfies the functional equa-

tion (1.4).

3. Stability of the quadratic equation (1.4)
For r = 1, the stability problem of Equation (1.4) has been investigated by Cholewa

[15]. For r = 2, the stability problem of Equation (1.4) has been proved by Rassias [16].

From now on, let r be a nonzero rational number with |r| ≠ 2.

In this section, we investigate the generalized Hyers-Ulam stability of the functional

equation (1.4) in the spirit of Găvruta. Let X be a normed space and Y a Banach space.

For a mapping f : X ® Y, we define a mapping D f : X × X ® Y by

D f (x, y) := r2f
(x + y

r

)
+ r2f

(
x − y
r

)
− 2f (x) − 2f (y) (3:1)

for all x, y Î X. Assume that � : X × X ® [0, ∞) is a function satisfying

�(x, y) :=

⎧⎨
⎩

∑∞
k=1

( 2
r

)2k
ϕ

(( r
2

)k
x,

( r
2

)k
y
)

< ∞ if |r| > 2,∑∞
k=0

( r
2

)2k
ϕ

(( 2
r

)k
x,

( 2
r

)k
y
)

< ∞ if |r| < 2,
(3:2)

for all x, y Î X.

Lemma 3.1 Let a mapping f : X ® Y satisfy f(0) = 0 and the inequality∥∥D f (x, y)
∥∥ ≤ ϕ(x, y) (3:3)

for all x, y Î X. Then⎧⎨
⎩

∥∥∥(2
r

)2n
f
(( r

2

)n
x
) − f (x)

∥∥∥ ≤ 1
4

∑n
k=1

( 2
r

)2k
ϕ

(( r
2

)k
x,

( r
2

)k
x
)

if |r| > 2,∥∥∥(
r
2

)2n
f
(( 2

r

)n
x
)

− f (x)
∥∥∥ ≤ 1

4

∑n−1
k=0

( r
2

)2k
ϕ

((2
r

)k
x,

( 2
r

)k
x
)
if |r| < 2,

(3:4)

for all n Î N and x Î X.

Proof Let |r| > 2. Now we are going to prove our assertion by induction on n. Repla-

cing y by x in (3.3), we obtain∥∥∥∥ r24 f
(
2
r
x
)

− f (x)

∥∥∥∥ ≤ 1
4

ϕ(x, x) (3:5)
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for all x Î X. Replacing x by r
2x in (3.5) and multiplying 4

r2 to the resulting inequal-

ity, we have∥∥∥∥ 4
r2
f
( r
2
x
)

− f (x)

∥∥∥∥ ≤ 1
r2

ϕ
( r
2
x,

r
2
x
)

(3:6)

for all x Î X. Thus inequality (3.4) holds for n = 1. We assume that the assertion is

true for a fixed natural number n. Replacing x by
( r
2

)n
x in (3.6) and multiplying

( 2
r

)2n
to the resulting inequality, we have∥∥∥∥∥

(
2
r

)2(n+1)

f
( r
2

)n+1
x
)

−
(
2
r

)2n

f
( r
2

)n
x

)∥∥∥∥∥
≤ 1

4

(
2
r

)2(n+1)

ϕ
( r
2

)n+1
x,

( r
2

)n+1
x
) (3:7)

for all x Î X. Thus we have∥∥∥∥∥
(
2
r

)2(n+1)

f
( r
2

)n+1
x
)

− f (x)

∥∥∥∥∥
≤

∥∥∥∥∥
(
2
r

)2(n+1)

f
( r
2

)n+1
x
)

−
(
2
r

)2n

f
( r
2

)n
x

)∥∥∥∥∥
+

∥∥∥∥∥
(
2
r

)2n

f
( r
2

)n
x
)

− f (x)

∥∥∥∥∥
≤ 1

4

n+1∑
k=1

(
2
r

)2k

ϕ
( r
2

)k
x,

( r
2

)k
x

)

for all x Î X. Hence inequality (3.4) holds for all n Î N.

The proof of the case |r| < 2 is similar to the above proof. □
In the following theorem we find that for some conditions there exists a true quadra-

tic mapping near an approximately quadratic mapping.

Theorem 3.2 Assume that a mapping f : X ® Y satisfies f(0) = 0 and inequality (3.3).

Then there exists a unique quadratic mapping Q : X ® Y satisfying

∥∥f (x) − Q(x)
∥∥ ≤ 1

4
�(x, x) (3:8)

for all x Î X.

Proof Let |r| > 2. For each n Î N, define a mapping Qn : X ® Y by

Qn(x) := (2r )
2nf (( r

2)
nx) for all x Î X. For each x Î X, in order to prove the conver-

gence of the sequence {Qn(x)},we have to show that {Qn(x)} is a Cauchy sequence in Y.

By inequality (3.7), for all integers l, m with 0 ≤ l < m, we get∥∥∥∥∥
(
2
r

)2l

f
( r
2

)l
x
)

−
(
2
r

)2m

f
( r
2

)m
x
)∥∥∥∥∥

≤ 1
4

m−1∑
n=l

(
2
r

)2(n+1)

ϕ
( r
2

)n+1
x,

( r
2

)n+1
x
)
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for all x Î X. Taking l, m ® ∞ in the above in the above inequality, by inequality

(3.2), we may conclude that the sequence {Qn(x)} is a Cauchy sequence in the Banach

space Y for each x Î X. This implies that the sequence {Qn(x)} converges for each x Î
X. Hence one can define a function Q : X ® Y by

Q(x) := lim
n→∞

(
2
r

)2n

f
( r
2

)n
x

)

for all x Î X. By letting n ® ∞ in (3.4), we arrive at the formula (3.8). Now we show

that Q satisfies the functional equation (1.4) for all x, y Î X. By the definition of Q,∥∥∥∥r2Q( x + y
r

)
+ r2Q

(
x − y
r

)
− 2Q(x) − 2Q(y)

∥∥∥∥
= lim

n→∞

(
2
r

)2n ∥∥∥∥ r2f
(
2
r

)n x + y
r

)
+ r2f

(
2
r

)n x − y
r

)

−2f
( r
2

)n
x
)

− 2f
( r
2

)n
y
)∥∥∥

≤ lim
n→∞

(
2
r

)2n

ϕ
( r

2

)n
x,

( r

2

)n
y

)
= 0

for all x, y Î X. Hence Q is quadratic by Theorem 2.1. It only remains to claim that

Q is unique. Let Q’: X ® Y be another quadratic mapping satisfying inequality (3.8).

Since Q and Q’ are quadratic mapping, we can easily show that

Q
(( r

2

)n
x
)
=

( r
2

)2n
Q (x) and Q′ (( r

2

)n
x
)
=

( r
2

)2n
Q′ (x) for all n Î ℓ and all x Î X. Thus

we see that∥∥Q(x) − Q′(x)
∥∥

≤
(
2
r

)2n ∥∥∥Q ( r

2

)n
x
)

− f
( r

2

)n
x
) ∥∥∥∥∥ +

(
2
r

)2n
∥∥∥∥∥ f

( r

2

)n
x
)

− Q′
( r

2

)n
x
)∥∥∥

≤ 1
2

(
2
r

)2n

�
( r

2

)n
x,

( r

2

)n
x

)

for all n Î N and all x Î X. By letting n ® ∞, we get that Q(x) = Q’(x) for all x Î X.

The proof of the case |r| < 2 is similar to the above proof. □
Corollary 3.3 Let |r| > 2 and let ε, p, q Î N with p, q <2 and ε ≥ 0. If a mapping f :

X ® Y satisfies f(0) = 0 and the inequality∥∥D f (x, y)
∥∥ ≤ ε(‖x‖p + ∥∥y∥∥q)

for all x, y Î X, then there exists a unique quadratic mapping Q : X ® Y such that

∥∥f (x) − Q(x)
∥∥ ≤ ε

‖x‖p
2pr2−p − 4

+
‖x‖q

2qr2−q − 4

)

for all x Î X.

Corollary 3.4 Let |r| > 2 and let ε, s, t Î ℝ with s + t <2 and h ≥ 0. If a mapping f :

X ® Y satisfies f(0) = 0 and the inequality∥∥D f (x, y)
∥∥ ≤ η‖x‖s∥∥y∥∥t
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for all x, y Î X, then there exists a unique quadratic mapping Q : X ® Y such that

∥∥f (x) − Q(x)
∥∥ ≤ η‖x‖s+t

2s+tr2−s−t − 4

for all x Î X.

Let |r| > 2 and let ε be a nonnegative real number. If a mapping f : X ® Y satisfies f

(0) = 0 and the inequality∥∥Df (x, y)
∥∥ ≤ η

for all x, y Î X, then there exists a unique quadratic mapping Q : X ® Y such that

∥∥f (x) − Q(x)
∥∥ ≤ η

r2 − 4

for all x Î X.

Corollary 3.5 Let |r| < 2 and let ε, p, q Î ℝ with p, q >2 and ε ≥ 0. If a mapping f :

X ® Y satisfies f(0) = 0 and the inequality∥∥Df (x, y)
∥∥ ≤ ε(‖x‖p + ∥∥y∥∥q)

for all x, y Î X, then there exists a unique quadratic mapping Q : X ® Y such that

∥∥f (x) − Q(x)
∥∥ ≤ ε

‖x‖p
4 − 2pr2−p

+
‖x‖q

4 − 2qr2−q

)

for all x Î X.

Corollary 3.6 Let |r| < 2 and let ε, s, t Î ℝ with s + t >2 and h ≥ 0. If a mapping f :

X ® Y satisfies f(0) = 0 and the inequality∥∥Df (x, y)
∥∥ ≤ η‖x‖s∥∥y∥∥t

for all x, y Î X, then there exists a unique quadratic mapping Q : X ® Y such that

∥∥f (x) − Q(x)
∥∥ ≤ η‖x‖s+t

4 − 2s+tr2−s−t

for all x Î X.

Let |r| < 2 and let h be a nonnegative real number. If a mapping f : X ® Y satisfies f

(0) = 0 and the inequality∥∥Df (x, y)
∥∥ ≤ η

for all x, y Î X, then there exists a unique quadratic mapping Q : X ® Y such that

∥∥f (x) − Q(x)
∥∥ ≤ η

4 − r2

for all x Î X.

4. Stability using alternative fixed point
In this section, we will investigate the stability of the given quadratic functional equa-

tion (3.1) using alternative fixed point. Before proceeding the proof, we will state the

theorem, alternative fixed point.
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Theorem 4.1 (The alternative fixed point [17,18]) Suppose that we are given a com-

plete generalized metric space (Ω, d) and a strictly contractive mapping T : Ω ® Ω

with Lipschitz constant L. Then (for each given x Î Ω), either d(Tnx, Tn+1x) = ∞ for all

n ≥ 0 or there exists a natural number n0 such that

(1) d(Tnx, Tn+1x) < ∞ for all n ≥ n0;

(2) the sequence (Tnx) is convergent to a fixed point y* of T;

(3) y* is the unique fixed point of T in the set � = {y ∈ �|d(Tn0x, y) < ∞} ;
(4) d(y, y∗) ≤ 1

1−L d(y, Ty) for all y Î Δ.

From now on, let � : X × X ® [0, ∞) be a function

lim
n→∞

ϕ(λn
i x,λ

n
i y)

λ2n
i

= 0 (i = 0, 1)

for all x, y Î X, where λi = r
2 if i = 0 and λi = 2

r if i = 1.

Theorem 4.2 Suppose that a mapping f : X ® Y satisfies the functional inequality∥∥D f (x, y)
∥∥ ≤ ϕ(x, y) (4:1)

for all x, y Î X and f(0) = 0. If there exists L = L(i) <1 such that the function

x 	→ (x) := ϕ(x, x) (4:2)

has the property

(x) ≤ L · λ2
i ·

(
x
λi

)
(4:3)

for all x Î X, then there exists a unique quadratic mapping Q : X ® Y such that the

inequality

∥∥f (x) − Q(x)
∥∥ ≤ L1−i

4(1 − L)
(x) (4:4)

holds for all x Î X.

Proof Consider the set Ω:= {g | g : X ® Y, g(0) = 0} and introduce the generalized

metric d on Ω given by

d(g, h) = d (g, h) := inf{k ∈ (0, ∞)|∥∥g(x) − h(x)
∥∥ ≤ k(x) for all x ∈ X}

for all g, h Î Ω. It is easy to show that (Ω, d) is complete. Now we define a mapping

T : Ω ® Ω by Tg(x) = 1
λ2
i
g(λix) for all x Î X. Note that for all g, h Î Ω,

d(g, h) < k ⇒ ∥∥g(x) − h(x)
∥∥ ≤ k (x) for all x ∈ X

⇒
∥∥∥∥ 1

λ2
i

g(λix) − 1

λ2
i

h(λix)

∥∥∥∥ ≤ 1

λ2
i

k (λix) for all x ∈ X

⇒
∥∥∥∥ 1

λ2
i

g(λix) − 1

λ2
i

h(λix)

∥∥∥∥ ≤ Lk (x) for all x ∈ X

⇒ d(Tg, Th ) ≤ Lk.
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Hence we have that d(Tg, Th) ≤ Ld(g, h) for all g, h Î Ω, that is, T is a strictly con-

tractive mapping of Ω with Lipschitz constant L.

We have inequality (3.6) as in the proof of Lemma 3.1. By inequalities (3.6) and (4.3)

with the case i = 0, we get∥∥∥∥∥
(
2
r

)2

f
( r
2
x
)

− f (x)

∥∥∥∥∥ ≤ 1
r2

( r
2
x
)

≤ 1
4
L (x)

for all x, that is,

d(f , T f ) ≤ L
4
=
L1

4
< ∞.

Similarly, we get

d(f , T f ) ≤ 1
4
=
L0

4
< ∞

for the case i = 1. In both cases we can apply the fixed point alternative and since

limn®∞ d(Tnf, Q) = 0, there exists a fixed point Q of T in Ω such that

Q(x) = lim
n→∞

f (λn
i x)

λ2n
i

for all x Î X. Letting x = λn
i x, y = λn

i y in Equation (4.1) and dividing by λ2n
i ,

∥∥DQ(x, y)
∥∥ = lim

n→∞
Df (λn

i x,λ
n
i y)

λ2n
i

≤ lim
n→∞

ϕ(λn
i x,λ

n
i y)

λ2n
i

= 0

for all x, y Î X. That is, Q satisfies Equation (1.4). By Theorem 2.1, Q is quadratic.

Also, the fixed point alternative guarantees that such Q is the unique mapping such

that ||f(x) - Q(x)|| ≤ k (x) for all x Î X and some k >0. Again using the fixed point

alternative, we have d(f , Q) ≤ 1
1−L d(f , T f ) . Hence we may conclude that

d(f , Q) ≤ L1−i

4(1 − L)
,

which implies inequality (4.4). □
Corollary 4.3 Let p, q, s, t be real numbers such that p, q, s + t <2 or p, q, s + t >2

and let ε, h be nonnegative real numbers. Suppose that a mapping f : X ® Y satisfies

the functional inequality∥∥Df (x, y)
∥∥ ≤ ε(‖x‖p + ∥∥y∥∥q) + η‖x‖s∥∥y∥∥t

for all x, y Î X and f(0) = 0. Then there exists a unique quadratic mapping Q : X ®
Y such that the inequality

∥∥f (x) − Q(x)
∥∥ ≤ L1−iε

4(1 − L)

[
ε(‖x‖p + ‖x‖q) + η‖x‖s+t]

holds for all x Î X, where L : = max{λp
i , λ

q
i , λs+t−2

i } (i = 0, 1) , λ0 = r
2if p, q, s + t < 2;

λ1 = 2
r if p, q, s + t > 2.
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