
RESEARCH Open Access

Local stability of the Pexiderized Cauchy and
Jensen’s equations in fuzzy spaces
Abbas Najati1, Jung Im Kang2* and Yeol Je Cho3

* Correspondence: jikang@nims.re.
kr
2National Institute for Mathematical
Sciences, KT Daeduk 2 Research
Center, 463-1 Jeonmin-dong,
Yuseong-gu, Daejeon 305-811,
Korea
Full list of author information is
available at the end of the article

Abstract

Lex X be a normed space and Y be a Banach fuzzy space. Let D = {(x, y) Î X × X : ||
x|| + ||y|| ≥ d} where d > 0. We prove that the Pexiderized Jensen functional equation
is stable in the fuzzy norm for functions defined on D and taking values in Y. We
consider also the Pexiderized Cauchy functional equation.
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1. Introduction
The functional equation (ξ) is stable if any function g satisfying the equation (ξ)

approximately is near to the true solution of (ξ).

The stability problem of functional equations originated from a question of Ulam [1]

concerning the stability of group homomorphisms:

Let G1 be a group and let G2 be a metric group with the metric d(·,·). Given ε > 0,

does there exist δ > 0 such that if a function h : G1 ® G2 satisfies the inequality d(h

(xy), h(x)h(y)) <δ for all x, y Î G1, then there exists a homomorphism H : G1 ® G2

with d(h(x), H(x)) < ε for all x Î G1?

In other words, we are looking for situations when the homomorphisms are stable, i.

e., if a mapping is almost a homomorphism, then there exists a true homomorphism

near it. If we turn our attention to the case of functional equations, then we can ask

the question: When the solutions of an equation differing slightly from a given one

must be close to the true solution of the given equation.

In 1941, Hyers [2] gave a partial solution of Ulam’s problem for the case of approxi-

mate additive mappings under the assumption that G1 and G2 are Banach spaces. In

1950, Aoki [3] provided a generalization of the Hyers’ theorem for additive mappings,

and in 1978, Th.M. Rassias [4] succeeded in extending the result of Hyers for linear

mappings by allowing the Cauchy difference to be unbounded (see also [5]). The stabi-

lity phenomenon that was introduced and proved by Th.M. Rassias is called the gener-

alized Hyers-Ulam stability. Forti [6] and Gǎvruta [7] have generalized the result of

Th.M. Rassias, which permitted the Cauchy difference to become arbitrary unbounded.

The stability problems of several functional equations have been extensively investi-

gated by a number of authors, and there are many interesting results concerning this

problem. A large list of references can be found, for example, in [8-29].

Najati et al. Journal of Inequalities and Applications 2011, 2011:78
http://www.journalofinequalitiesandapplications.com/content/2011/1/78

© 2011 Najati et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

mailto:jikang@nims.re.kr
mailto:jikang@nims.re.kr
http://creativecommons.org/licenses/by/2.0


Following [30], we give the following notion of a fuzzy norm.

Definition 1.1. [30] Let X be a real vector space. A function N : X × ℝ ® [0, 1] is

called a fuzzy norm on X if, for all x, y Î X and s, t Î ℝ,

(N1) N(x, t) = 0 for all t ≤ 0;

(N2) x = 0 if and only if N(x, t) = 1 for all t > 0;

(N3) N(cx, t) = N(x,
t
|c| ) if c ≠ 0;

(N4) N(x + y, s + t) ≥ min{N(x, s), N(y, t)};

(N5) N(x,·) is a nondecreasing function on ℝ and limt®∞ N(x, t) = 1;

(N6) for x ≠ 0, N(x,·) is continuous on ℝ.

The pair (X, N) is called a fuzzy normed vector space.

Example 1.2. Let (X, ||·||) be a normed linear space and let a, b > 0. Then,

N(x, t) =

⎧⎨
⎩

αt
αt + β‖x‖ , t > 0, x ∈ X,

0, t ≤ 0, x ∈ X

is a fuzzy norm on X.

Example 1.3. Let (X, ||·||) be a normed linear space and let b >a > 0. Then,

N(x, t) =

⎧⎪⎪⎨
⎪⎪⎩
0, t ≤ α‖x‖,

t
t + (β − α)‖x‖ , α‖x‖ < t ≤ β‖x‖;
1, t > β‖x‖

is a fuzzy norm on X.

Definition 1.4. Let (X, N) be a fuzzy normed space. A sequence {xn} in X is said to

be convergent if there exists x Î X such that limn®∞ N(xn - x, t) = 1 for all t > 0. In

this case, x is called the limit of the sequence {xn}, and we denote it by N - lim xn = x.

The limit of the convergent sequence {xn} in (X, N) is unique. Since if N - lim xn = x

and N-lim xn = y for some x, y Î X, it follows from (N4) that

N(x − y, t) ≥ min
{
N

(
x − xn,

t
2

)
,N

(
xn − y,

t
2

)}

for all t > 0 and n Î N. So, N(x - y, t) = 1 for all t > 0. Hence, (N2) implies that x = y.

Definition 1.5. Let (X, N) be a fuzzy normed space. A sequence {xn} in X is called a

Cauchy sequence if, for any ε > 0 and t > 0, there exists M ∈ N such that, for all n ≥ M

and p > 0,

N(xn+p − xn, t) > 1 − ε.

It follows from (N4) that every convergent sequence in a fuzzy normed space is a

Cauchy sequence. If, in a fuzzy normed space, every Cauchy sequence is convergent,
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then the fuzzy norm is said to be complete, and the fuzzy normed space is called a

fuzzy Banach space.

Example 1.6. [21] Let N : ℝ × ℝ ® [0, 1] be a fuzzy norm on ℝ defined by

N(x, t) =

⎧⎨
⎩

t

t + |x| , t > 0,

0, t ≤ 0.

Then, (ℝ, N) is a fuzzy Banach space.

Recently, several various fuzzy stability results concerning a Cauchy sequence, Jensen

and quadratic functional equations were investigated in [17-20].

2. A local Hyers-Ulam stability of Jensen’s equation
In 1998, Jung [16] investigated the Hyers-Ulam stability for Jensen’s equation on a

restricted domain. In this section, we prove a local Hyers-Ulam stability of the Pexider-

ized Jensen functional equation in fuzzy normed spaces.

Theorem 2.1. Let X be a normed space, (Y, N) be a fuzzy Banach space, and f, g, h :

X® Y be mappings with f(0) = 0. Suppose that δ > 0 is a positive real number, and z0
is a fixed vector of a fuzzy normed space (Z, N’) such that

N
(
2f

(x + y
2

)
− g(x) − h(y), t + s

)
≥ min{N′(δz0, t),N′(δz0, s)} (2:1)

for all x, y Î X with ||x|| + ||y|| ≥ d and positive real numbers t, s. Then, there exists

a unique additive mapping T : X® Y such that

N(f (x) − T(x), t) ≥ N′(40δz0, t), (2:2)

N(T(x) − g(x) + g(0), t) ≥ N′(30δz0, t), (2:3)

N(T(x) − h(x) + h(0), t) ≥ N′(30δz0, t) (2:4)

for all x Î X and t > 0.

Proof. Suppose that ||x|| + ||y|| <d holds. If ||x|| + ||y|| = 0, let z Î X with ||z|| = d.

Otherwise,

z :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(d + ‖x‖) x
‖x‖ , if ‖x‖ ≥ ‖y‖,

(d + ‖y‖) y
‖y‖ , if ‖x‖ < ‖y‖.

It is easy to verify that

‖x − z‖ + ‖y + z‖ ≥ d, ‖2z‖ + ‖x − z‖ ≥ d, ‖y‖ + ‖2z‖ ≥ d,

‖y + z‖ + ‖z‖ ≥ d, ‖x‖ + ‖z‖ ≥ d.
(2:5)
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It follows from (N4), (2.1) and (2.5) that

N
(
2f

(x + y
2

)
− g(x) − h(y), t + s

)

≥ min
{
N

(
2f

(x + y
2

)
− g(y + z) − h(x − z),

t + s
5

)
,

N
(
2f

(x + z
2

)
− g(2z) − h(x − z),

t + s
5

)
,

N
(
2f

(
y + 2z
2

)
− g(2z) − h(y),

t + s
5

)
,

N
(
2f

(
y + 2z
2

)
− g(y + z) − h(z),

t + s
5

)
,

N
(
2f

(x + z
2

)
− g(x) − h(z),

t + s
5

)}

≥ min{N′(5δz0, t),N′(5δz0, s)}

for all x, y Î X with ||x|| + ||y|| <d and positive real numbers t, s. Hence, we have

N
(
2f

(x + y
2

)
− g(x) − h(y), t + s

)
≥ min{N′(5δz0, t),N′(5δz0, s)} (2:6)

for all x, y Î X and positive real numbers t, s. Letting x = 0 (y = 0) in (2.6), we get

N
(
2f

( y
2

)
− g(0) − h(y), t + s

)
≥ min{N′(5δz0, t),N′(5δz0, s)},

N
(
2f

( x
2

)
− g(x) − h(0), t + s

)
≥ min{N′(5δz0, t),N′(5δz0, s)}

(2:7)

for all x, y Î X and positive real numbers t, s. It follows from (2.6) and (2.7) that

N
(
2f

(x + y
2

)
− 2f

( x
2

)
− 2f

( y
2

)
, t + s

)

≥ min
{
N

(
2f

(x + y
2

)
− g(x) − h(y),

t + s
4

)
,

N
(
2f

( x
2

)
− g(x) − h(0),

t + s
4

)
,

N
(
2f

( y
2

)
− g(0) − h(y),

t + s
4

)
,N(g(0) + h(0),

t + s
4

}

≥ min{N′(20δz0, t),N′(20δz0, s)}

for all x, y Î X and positive real numbers t, s. Hence,

N
(
f (x + y) − f (x) − f (y), t + s

) ≥ min{N′(10δz0, t),N′(10δz0, s)} (2:8)

for all x, y Î X and positive real numbers t, s. Letting y = x and t = s in (2.8), we

infer that

N
( f (2x)

2
− f (x), t

)
≥ N′(10δz0, t) (2:9)

for all x Î X and positive real number t. replacing x by 2nx in (2.9), we get

N
(
f (2n+1x)
2n+1

− f (2nx)
2n

,
t
2n

)
≥ N′(10δz0, t) (2:10)
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for all x Î X, n ≥ 0 and positive real number t. It follows from (2.10) that

N
( f (2nx)

2n
− f (2mx)

2m
,
n−1∑
k=m

t

2k

)
≥ min

n−1⋃
k=m

{
N

( f (2k+1x)
2k+1

− f (2kx)
2k

,
t

2k

)

≥ N′(10δz0, t)

(2:11)

for all x Î X, t > 0 and integers n ≥ m ≥ 0. For any s, ε > 0, there exist an integer l >

0 and t0 > 0 such that N’(10δz0, t0) > 1 - ε and
∑n−1

k=m
t0
2k

> s for all n ≥ m ≥ l. Hence, it

follows from (2.11) that

N
( f (2nx)

2n
− f (2mx)

2m
, s

)
> 1 − ε

for all n ≥ m ≥ l. So { f (2
nx)

2n
} is a Cauchy sequence in Y for all x Î X. Since (Y, N) is

complete, { f (2
nx)

2n
} converges to a point T(x) Î Y. Thus, we can define a mapping T :

X ® Y by T(x) := N − limn→∞
f (2nx)
2n

. Moreover, if we put m = 0 in (2.11), then we

observe that

N
( f (2nx)

2n
− f (x),

n−1∑
k=0

t

2k

)
≥ N′(10δz0, t).

Therefore, it follows that

N
( f (2nx)

2n
− f (x), t

)
≥ N′

(
10δz0,

t∑n−1
k=0 2−k

) (2:12)

for all x Î X and positive real number t.

Next, we show that T is additive. Let x, y Î X and t > 0. Then, we have

N
(
T(x + y) − T(x) − T(y), t

)

≥ min
{
N′

(
T(x + y) − f (2n(x + y))

2n
,
t
4

)
,

N′
( f (2nx)

2n
− T(x),

t
4

)
,N′

( f (2ny)
2n

− T(y),
t
4

)
,

N′
( f (2n(x + y))

2n
− f (2nx)

2n
− f (2ny)

2n
,
t
4

)}
.

(2:13)

Since, by (2.8),

N′
( f (2n(x + y))

2n
− f (2nx)

2n
− f (2ny)

2n
,
t
4

)
≥ N′(40δz0, 2nt),

we get

lim
n→∞N′

( f (2n(x + y))
2n

− f (2nx)
2n

− f (2ny)
2n

,
t
4

)
= 1.

By the definition of T, the first three terms on the right hand side of the inequality

(2.13) tend to 1 as n ® ∞. Therefore, by tending n ® ∞ in (2.13), we observe that T is

additive.
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Next, we approximate the difference between f and T in a fuzzy sense. For all x Î X

and t > 0, we have

N(T(x) − f (x), t) ≥ min
{
N

(
T(x) − f (2nx)

2n
,
t
2

)
,N

( f (2nx)
2n

− f (x),
t
2

)}
.

Since T(x) := N − limn→∞
f (2nx)
2n

, letting n ® ∞ in the above inequality and using

(N) and (2.12), we get (2.2). It follows from the additivity of T and (2.7) that

N(T(x) − g(x) + g(0), t) ≥ min
{
N

(
2T

( x
2

) − 2f
( x
2

)
,
t
3

)
,

N
(
2f

( x
2

) − g(x) − h(0),
t
3

)
,

N
(
g(0) + h(0),

t
3

)}

≥ N′(30δz0, t)

for all x Î X and t > 0. So, we get (2.3). Similarly, we can obtain (2.4).

To prove the uniqueness of T, let S : X® Y be another additive mapping satisfying

the required inequalities. Then, for any x Î X and t > 0, we have

N(T(x) − S(x), t) ≥ min
{
N

(
T(x) − f (x),

t
2

)
,N

(
f (x) − S(x),

t
2

)

≥ N′(80δz0, t).

Therefore, by the additivity of T and S, it follows that

N(T(x) − S(x), t) = N(T(nx) − S(nx),nt) ≥ N′(80δz0,nt)

for all x Î X, t > 0 and n ≥ 1. Hence, the right hand side of the above inequality

tends to 1 as n ® ∞. Therefore, T(x) = S(x) for all x Î X. This completes the proof.

□
The following is a local Hyers-Ulam stability of the Pexiderized Cauchy functional

equation in fuzzy normed spaces.

Theorem 2.2. Let X be a normed space, (Y, N) be a fuzzy Banach space, and f, g, h :

X® Y be mappings with f(0) = 0. Suppose that δ > 0 is a positive real number, and z0
is a fixed vector of a fuzzy normed space (Z, N’) such that

N(f (x + y) − g(x) − h(y), t + s) ≥ min{N′(δz0, t),N′(δz0, s)} (2:14)

for all x, y Î X with ||x|| + ||y|| ≥ d and positive real numbers t, s. Then, there exists

a unique additive mapping T : X® Y such that

N(f (x) − T(x), t) ≥ N′(80δz0, t),

N(T(x) − g(x) + g(0), t) ≥ N′(60δz0, t),

N(T(x) − h(x) + h(0), t) ≥ N′(60δz0, t)

for all x Î X and t > 0.

Proof. For the case ||x|| + ||y|| <d, let z be an element of X which is defined in the

proof of Theorem 2.1. It follows from (N4), (2.5) and (2.14) that
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N(f (x + y) − g(x) − h(y), t + s)

≥ min
{
N

(
f (x + y) − g(y + z) − h(x − z),

t + s
5

)
,

N
(
f (x + z) − g(2z) − h(x − z),

t + s

5

)
,

N
(
f (y + 2z) − g(2z) − h(y),

t + s

5

)
,

N
(
f (y + 2z) − g(y + z) − h(z),

t + s
5

)
,

N
(
f (x + z) − g(x) − h(z),

t + s
5

)}

≥ min{N′(5δz0, t),N′(5δz0, s)}

for all x, y Î X with ||x|| + ||y|| <d and positive real numbers t, s. Hence, we have

N
(
f (x + y) − g(x) − h(y), t + s

)
≥ min{N′(5δz0, t),N′(5δz0, s)} (2:15)

for all x, y Î X and positive real numbers t, s. Letting x = 0 (y = 0) in (2.15), we get

N(f (y) − g(0) − h(y), t + s) ≥ min{N′(5δz0, t),N′(5δz0, s)},
N(f (x) − g(x) − h(0), t + s) ≥ min{N′(5δz0, t),N′(5δz0, s)}

(2:16)

for all x, y Î X and positive real numbers t, s. It follows from (2.15) and (2.16) that

N(f (x + y) − f (x) − f (y), t + s)

≥ min
{
N

(
f (x + y) − g(x) − h(y),

t + s
4

)
,

N
(
f (x) − g(x) − h(0),

t + s

4

)
,

N
(
f (y) − g(0) − h(y),

t + s

4

)
,

N(g(0) + h(0),
t + s
4

)
}

≥ min{N′(20δz0, t),N′(20δz0, s)}

for all x, y Î X and positive real numbers t, s. The rest of the proof is similar to the

proof of Theorem 2.1, and we omit the details. □
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