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Abstract

A complete convergence result for an array of rowwise independent mean zero
random variables was established by Kruglov et al. (2006). This result was partially
extended to negatively associated and negatively dependent mean zero random
variables by Chen et al. (2007) and Dehua et al. (2011), respectively. In this paper, we
obtain complete extended versions of Kruglov et al.
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1 Introduction
The concept of complete convergence was introduced by Hsu and Robbins [1]. A

sequence {Xn, n ≥ 1} of random variables is said to converge completely to the con-

stant θ if

∞∑
n=1

P(|Xn − θ | > ε) < ∞ for all ε > 0. (1:1)

Hsu and Robbins [1] proved that the sequence of arithmetic means of i.i.d. random

variables converges completely to the expected value if the variance of the summands

is finite. Erdös [2] proved the converse.

The result of Hsu-Robbins-Erdös has been generalized and extended in several direc-

tions by many authors. Sung et al. [3] (see also Hu et al. [4]) obtained the following

complete convergence theorem for arrays of rowwise independent random variables

{Xni, 1 ≤ i ≤ kn, n ≥ 1}, where {kn, n ≥ 1 } is a sequence of positive integers.

Theorem 1.1. Let {Xni, 1 ≤ i ≤ kn, n ≥ 1} be an array of rowwise independent ran-

dom variables and {an, n ≥ 1} a sequence of nonnegative constants. Suppose that the

following conditions hold:

(i)
∑∞

n=1 an
∑kn

i=1 P(|Xni| > ε) < ∞ for all � > 0,

(ii) there exist J ≥ 2 and δ > 0 such that

∞∑
n=1

an

(
kn∑
i=1

EX2
niI(|Xni| ≤ δ)

)J

< ∞, (1:2)
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(iii)
∑kn

i=1 EXniI(|Xni| ≤ δ) → 0 as n ® ∞.

Then
∑∞

n=1 anP(|
∑kn

i=1 Xni| > ε) < ∞ for all � > 0.

Kruglov et al. [5] improved Theorem 1.1 as follows.

Theorem 1.2. Let {Xni, 1 ≤ i ≤ kn, n ≥ 1} be an array of rowwise independent ran-

dom variables and {an, n ≥ 1} a sequence of nonnegative constants. Suppose that the

following conditions hold:

(i)
∑∞

n=1 an
∑kn

i=1 P(|Xni| > ε) < ∞ for all � > 0,

(ii) there exist J ≥ 1 and δ > 0 such that

∞∑
n=1

an

(
kn∑
i=1

Var(XniI(|Xni| ≤ δ))

)J

< ∞. (1:3)

Then
∑∞

n=1 anP(max1≤m≤kn |∑m
i=1(Xni − EXniI(|Xni| ≤ δ))| > ε) < ∞ for all � > 0.

When mean zero condition is imposed in Theorem 1.2, Kruglov et al. [5] established

the following result.

Theorem 1.3. Let {Xni, 1 ≤ i ≤ kn, n ≥ 1} be an array of rowwise independent mean

zero random variables and {an, n ≥ 1} a sequence of nonnegative constants. Suppose

that the following conditions hold:

(i)
∑∞

n=1 an
∑kn

i=1 P(|Xni| > ε) < ∞ for all � > 0,

(ii) there exists J ≥ 1 such that

∞∑
n=1

an

(
kn∑
i=1

EX2
ni

)J

< ∞. (1:4)

Then
∑∞

n=1 anP(max1≤m≤kn |∑m
i=1 Xni| > ε) < ∞ for all � > 0.

The above complete convergence results for independent random variables have

been extended to dependent random variables by many authors.

The concept of negatively associated random variables was introduced by Alam and

Saxena [6] and carefully studied by Joag-Dev and Proschan [7]. A finite family of ran-

dom variables {Xi, 1 ≤ i ≤ n} is said to be negatively associated if for every pair of dis-

joint subsets A and B of {1,2,..., n},

Cov(f1(Xi, i ∈ A), f2(Xj, j ∈ B)) ≤ 0 (1:5)

whenever f1 and f2 are coordinatewise increasing (or coordinatewise decreasing), the

covariance exists. An infinite family of random variables is negatively associated if

every finite subfamily is negatively associated.

The concept of negatively dependent random variables was introduced by Lehmann

[8]. A finite family of random variables {Xi, 1 ≤ i ≤ n} is said to be negatively depen-

dent (or negatively orthant dependent) if the following two inequalities hold:
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P(X1 ≤ x1, . . . ,Xn ≤ xn) ≤
n∏
i=1

P(Xi ≤ xi),

P(X1 > x1, . . . ,Xn > xn) ≤
n∏
i=1

P(Xi > xi)

(1:6)

for all real numbers x1,..., xn. An infinite family of random variables is negatively

dependent if every finite subfamily is negatively dependent.

Chen et al. [9] extended Theorem 1.2 to negatively associated random variables.

Theorem 1.4. Let {Xni, 1 ≤ i ≤ kn, n ≥ 1} be an array of rowwise negatively associated

random variables and {an, n ≥ 1} a sequence of nonnegative constants. Suppose that

the following conditions hold:

(i)
∑∞

n=1 an
∑kn

i=1 P(|Xni| > ε) < ∞ for all � > 0,

(ii) there exist J ≥ 1 and δ > 0 such that

∞∑
n=1

an

(
kn∑
i=1

Var(XniI(|Xni| ≤ δ))

)J

< ∞. (1:7)

Then
∑∞

n=1 anP(max1≤m≤kn |∑m
i=1(Xni − EXniI(|Xni| ≤ δ))| > ε) < ∞ for all � > 0.

When mean zero condition is imposed in Theorem 1.4, Chen et al. [9] obtained a

partially extended version of Theorem 1.3 for negatively associated random variables.

The partially extended version means that condition (iii) of Theorem 1.5 is added.

Theorem 1.5. Let {Xni, 1 ≤ i ≤ kn, n ≥ 1} be an array of rowwise negatively associated

mean zero random variables and {an, n ≥ 1} a sequence of nonnegative constants. Sup-

pose that the following conditions hold:

(i)
∑∞

n=1 an
∑kn

i=1 P(|Xni| > ε) < ∞ for all � > 0,

(ii) there exists J ≥ 1 such that

∞∑
n=1

an

(
kn∑
i=1

EX2
ni

)J

< ∞. (1:8)

(iii)
∑kn

i=1 EX
2
ni → 0 as n ®∞.

Then
∑∞

n=1 anP(max1≤m≤kn |∑m
i=1 Xni| > ε) < ∞ for all � > 0.

Recently, Dehua et al. [10] obtained a version of Theorem 1.2 for negatively depen-

dent random variables.

Theorem 1.6. Let {Xni, 1 ≤ i ≤ kn, n ≥ 1} be an array of rowwise negatively depen-

dent random variables and {an, n ≥ 1} a sequence of nonnegative constants. Suppose

that the following conditions hold:

(i)
∑∞

n=1 an
∑kn

i=1 P(|Xni| > ε) < ∞ for all � > 0,
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(ii) there exist J ≥ 1 and δ > 0 such that

∞∑
n=1

an

(
kn∑
i=1

Var(XniI(|Xni| ≤ δ))

)J

< ∞. (1:9)

Then
∑∞

n=1 anP(|
∑kn

i=1(Xni − EXniI(|Xni| ≤ δ))| > ε) < ∞ for all � > 0.

When mean zero condition is imposed in Theorem 1.6, Dehua et al. [10] established

a complete convergence result. However, the proof of Theorem 2 in Dehua et al. is

mistakenly based on the following relation.{∣∣∣∣∣
kn∑
i=1

(XniI(|Xni| > δ) − EXniI(|Xni| > δ))

∣∣∣∣∣ > ε/2

}
⊂ ∪kn

i=1(|Xni| > δ). (1:10)

Note that the above relation is true only if |∑kn
i=1 EXniI(|Xni| > δ)| ≤ ε/2.

Chen et al. [9] and Dehua et al. [10] obtained complete convergence results (Theo-

rems 1.4 and 1.6, respectively) for negatively associated and negatively dependent ran-

dom variables and then they proved the case of mean zero by using these results.

However, this approach is not good. For the case of negatively associated mean zero,

an additional condition is assumed in Theorem 1.5. For the case of negatively depen-

dent mean zero, the proof is not correct.

In this paper, we obtain complete convergence results for negatively associated and

negatively dependent mean zero random variables. As corollaries of these results, we

can obtain Theorems 1.4 and 1.6.

2 Main results
In this section, we will establish complete convergence theorems for negatively asso-

ciated and negatively dependent mean zero random variables.

The following lemma is an exponential inequality for negatively dependent random

variables which was proved by Dehua et al. [10] (see also Fakoor and Azarnoosh [11]).

Lemma 2.1. Let {Xi, 1 ≤ i ≤ n} be a sequence of negatively dependent random vari-

ables with EXi = 0 and EX2
i < ∞ for 1 ≤ i ≤ n. Then, for any x > 0 and y > 0,

P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ > x

)
≤ 2P

(
max
1≤i≤n

|Xi| > y
)
+ 2 exp(x/y)

(
1 +

xy∑n
i=1 EX

2
i

)−x/y

. (2:1)

The following lemma is an exponential inequality for negatively associated random

variables which was proved by Shao [12].

Lemma 2.2. Let {Xi, 1 ≤ i ≤ n} be a sequence of negatively associated random vari-

ables with EXi = 0 and EX2
i < ∞ for 1 ≤ i ≤ n and let Bn =

∑n
i=1 EX

2
i . Then, for any x

> 0 and y > 0,

P

(
max
1≤m≤n

∣∣∣∣∣
m∑
i=1

Xi

∣∣∣∣∣ > x

)
≤ 2P

(
max
1≤i≤n

|Xi| > y
)
+ 4 exp

(
− x2

8Bn

)

+ 4
(

Bn

4(xy + Bn)

)x/(12y)

.

(2:2)

Lemma 2.3. Let {Xi, 1 ≤ i ≤ n} be a sequence of negatively associated random vari-

ables with EXi = 0 and EX2
i < ∞ for 1 ≤ i ≤ n and let Bn =

∑n
i=1 EX

2
i . Then, for any x
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> 0 and y > 0,

P

(
max
1≤m≤n

∣∣∣∣∣
m∑
i=1

Xi

∣∣∣∣∣ > x

)
≤ 2P

(
max
1≤i≤n

|Xi| > y
)
+ 8

(
2Bn

3xy

)x/(12y)

. (2:3)

Proof. Since e−x ≤ 1
1 + x

≤ 1
x
for x > 0, we get that for x > 0 and y > 0,

exp
(

− x2

8Bn

)
= exp

(
− 3xy

2Bn

)x/(12y)

≤
(
2Bn

3xy

)x/(12y)

. (2:4)

We also get that

(
Bn

4(xy + Bn)

)x/(12y)

≤
(

Bn

4xy

)x/(12y)

≤
(
2Bn

3xy

)x/(12y)

. (2:5)

Hence, the result follows from Lemma 2.2. ■
Now, we state and prove one of our main results.

Theorem 2.4. Let {Xni, 1 ≤ i ≤ kn, n ≥ 1} be an array of rowwise negatively depen-

dent random variables with EXni = 0 and EX2
ni < ∞, 1 ≤ i ≤ kn, n ≥ 1. Let {an, n ≥ 1}

be a sequence of nonnegative constants. Suppose that the following conditions hold:

(i)
∑∞

n=1 an
∑kn

i=1 P(|Xni| > ε) < ∞ for all � > 0,

(ii) there exists J ≥ 1 such that

∞∑
n=1

an

(
kn∑
i=1

EX2
ni

)J

< ∞. (2:6)

Then
∑∞

n=1 anP(|
∑kn

i=1 Xni| > ε) < ∞ for all � > 0.

Proof. By Lemma 2.1 with x = � and y = �/J, we have that

P

(∣∣∣∣∣
kn∑
i=1

Xni

∣∣∣∣∣ > ε

)
≤ 2P

(
max
1≤i≤kn

|Xni| > ε/J
)
+ 2eJ

(
1 +

ε2/J∑kn
i=1 EX

2
ni

)−J

≤ 2
kn∑
i=1

P(|Xni| > ε/J) + 2eJJJε−2J

(
kn∑
i=1

EX2
ni

)J

.

(2:7)

Hence, the result follows by conditions (i) and (ii). ■
Remark 2.5. As noted in the Introduction, Dehua et al. [10] have proved Theorem

2.4, but their proof is not correct.

Theorem 2.6. Let {Xni, 1 ≤ i ≤ kn, n ≥ 1} be an array of rowwise negatively associated

random variables with EXni = 0 and EX2
ni < ∞, 1 ≤ i ≤ kn, n ≥ 1. Let {an, n ≥ 1} be a

sequence of nonnegative constants. Suppose that the following conditions hold:

(i)
∑∞

n=1 an
∑kn

i=1 P(|Xni| > ε) < ∞ for all � > 0,

(ii) there exists J ≥ 1 such that

∞∑
n=1

an

(
kn∑
i=1

EX2
ni

)J

< ∞. (2:8)
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Then
∑∞

n=1 anP(max1≤m≤kn |∑m
i=1 Xni| > ε) < ∞ for all � > 0.

Proof. By Lemma 2.3 with x = � and y = �/(12J), we have that

P

(
max

1≤m≤kn

∣∣∣∣∣
m∑
i=1

Xni

∣∣∣∣∣ > ε

)

≤ 2P
(
max
1≤i≤kn

|Xni| > ε/(12J)
)
+ 8

(
24J
3ε2

)J
(

kn∑
i=1

EX2
ni

)J

≤ 2
kn∑
i=1

P(|Xni| > ε/(12J)) + 8J+1JJε−2J

(
kn∑
i=1

EX2
ni

)J

.

(2:9)

Hence, the result follows by conditions (i) and (ii). ■
Remark 2.7. As noted in the Introduction, Chen et al. [9] have proved Theorem 2.6

under an additional condition (see also Theorem 1.5).

It can be proved Theorem 1.6 by using Theorem 2.4. But it is not easy to prove The-

orem 2.4 by using Theorem 1.6. So Theorem 2.4 is more general than Theorem 1.6.

Proof of Theorem 1.6. The set of all natural numbers is partitioned into two subsets

A′ =

{
n :

kn∑
i=1

P(|Xni| > δ) ≤ 1

}
,A′′ =

{
n :

kn∑
i=1

P(|Xni| > δ) > 1

}
. (2:10)

Applying (i), we obtain

∑
n∈A′′

an ≤
∑
n∈A′′

an

kn∑
i=1

P(|Xni| > δ) < ∞. (2:11)

Observing that

P

(∣∣∣∣∣
kn∑
i=1

(Xni − EXniI(|Xni| ≤ δ))

∣∣∣∣∣ > ε

)

≤
kn∑
i=1

P(|Xni| > δ) + P

(∣∣∣∣∣
kn∑
i=1

(XniI(|Xni| ≤ δ) − EXniI(|Xni| ≤ δ))

∣∣∣∣∣ > ε

)
,

(2:12)

it is enough to show that

I1 =:
∑
n∈A′

anP

(∣∣∣∣∣
kn∑
i=1

(XniI(|Xni| ≤ δ) − EXniI(|Xni| ≤ δ))

∣∣∣∣∣ > ε

)
< ∞. (2:13)

For 1 ≤ i ≤ kn and n ≥ 1, define

Uni = δI(Xni > δ) + XniI(|Xni| ≤ δ) − δI(Xni < −δ),

U′
ni = δI(Xni > δ) − δI(Xni < −δ).

(2:14)

Then

I1 ≤
∑
n∈A′

anP

(∣∣∣∣∣
kn∑
i=1

(U′
ni − EU′

ni)

∣∣∣∣∣ > ε/2

)
+

∑
n∈A′

anP

(∣∣∣∣∣
kn∑
i=1

(Uni − EUni)

∣∣∣∣∣ > ε/2

)

=: I2 + I3.

(2:15)
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For I2, we have by Markov’s inequality and (i) that

I2 ≤ 4
ε

∑
n∈A′

an

kn∑
i=1

E|U′
ni| =

4δ

ε

∑
n∈A′

an

kn∑
i=1

P(|Xni| > δ) < ∞. (2:16)

For I3, we will apply Theorem 2.4 to random variable Uni - EUni. Note that {Uni -

EUni, 1 ≤ i ≤ kn, n ≥ 1} is an array of rowwise negatively dependent random variables

with mean zero and finite second moments. By the cr-inequality, we obtain that

∑
n∈A′

an

(
kn∑
i=1

E(Uni − EUni)2
)J

=
∑
n∈A′

an

(
kn∑
i=1

E(XniI(|Xni| ≤ δ) − EXniI(|Xni| ≤ δ) +U′
ni − EU′

ni)
2

)J

≤ 22J−1
∑
n∈A′

an

(
kn∑
i=1

Var(XniI(|Xni| ≤ δ))

)J

+ 22J−1
∑
n∈A′

an

(
kn∑
i=1

Var(U′
ni)

)J

≤ 22J−1
∑
n∈A′

an

(
kn∑
i=1

Var(XniI(|Xni| ≤ δ))

)J

+ 22J−1δ2J
∑
n∈A′

an

(
kn∑
i=1

P(|Xni| > δ)

)J

≤ 22J−1
∑
n∈A′

an

(
kn∑
i=1

Var(XniI(|Xni| ≤ δ))

)J

+ 22J−1δ2J
∑
n∈A′

an

kn∑
i=1

P(|Xni| > δ).

(2:17)

The last inequality follows by J ≥ 1 and the definition of A’. Hence, condition (ii) of

Theorem 2.4 holds.

Finally, it remains to show that condition (i) of Theorem 2.4 holds. That is,

∑
n∈A′

an

kn∑
i=1

P(|Uni − EUni| > ε) < ∞ for all ε > 0. (2:18)

Let � > 0 be given. Without loss of generality, we may assume that 0 < � < 4δ. For 1

≤ i ≤ kn and n ≥ 1, define

X′
ni = XniI(|Xni| ≤ ε/4),

X′′
ni = δI(Xni > δ) + XniI(ε/4 < |Xni| ≤ δ) − δI(Xni < −δ).

(2:19)

It follows that

kn∑
i=1

P(|Uni − EUni| > ε) ≤
kn∑
i=1

P(|X′
ni − EX′

ni| > ε/2) +
kn∑
i=1

P(|X′′
ni − EX′′

ni| > ε/2)

=
kn∑
i=1

P(|X′′
ni − EX′′

ni| > ε/2) ≤ 4
ε

kn∑
i=1

E|X′′
ni|

≤ 4δ

ε

kn∑
i=1

P(|Xni| > δ) +
4δ

ε

kn∑
i=1

P(|Xni| > ε/4),

(2:20)

which entails that (2.18) holds by (i). Hence, the result is proved. ■
It can be proved Theorem 1.4 by using Theorem 2.6. But it is not easy to prove The-

orem 2.6 by using Theorem 1.4. So Theorem 2.6 is more general than Theorem 1.4.
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Proof of Theorem 1.4. Note that

P

(
max

1≤m≤kn

∣∣∣∣∣
m∑
i=1

(Xni − EXniI(|Xni| ≤ δ))

∣∣∣∣∣ > ε

)

≤
kn∑
i=1

P(|Xni| > δ)

+ P

(
max

1≤m≤kn

∣∣∣∣∣
m∑
i=1

(XniI(|Xni| ≤ δ) − EXniI(|Xni| ≤ δ))

∣∣∣∣∣ > ε

)
.

(2:21)

The rest of the proof is same as that of Theorem 1.6 except using Theorem 2.6

instead of Theorem 2.4 and is omitted. ■
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