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Abstract

In this article, we are concerned with a nondifferentiable minimax fractional
programming problem. We derive the sufficient condition for an optimal solution to
the problem and then establish weak, strong, and strict converse duality theorems
for the problem and its dual problem under B-(p, r)-invexity assumptions. Examples
are given to show that B-(p, r)-invex functions are generalization of (p, r)-invex and
convex functions
AMS Subject Classification: 90C32; 90C46; 49J35.

Keywords: nondifferentiable fractional programming, optimality conditions, B-(p, r)-
invex function, duality theorems

1 Introduction
The mathematical programming problem in which the objective function is a ratio of

two numerical functions is called a fractional programming problem. Fractional pro-

gramming is used in various fields of study. Most extensively, it is used in business

and economic situations, mainly in the situations of deficit of financial resources. Frac-

tional programming problems have arisen in multiobjective programming [1,2], game

theory [3], and goal programming [4]. Problems of these type have been the subject of

immense interest in the past few years.

The necessary and sufficient conditions for generalized minimax programming were

first developed by Schmitendorf [5]. Tanimoto [6] applied these optimality conditions

to define a dual problem and derived duality theorems. Bector and Bhatia [7] relaxed

the convexity assumptions in the sufficient optimality condition in [5] and also

employed the optimality conditions to construct several dual models which involve

pseudo-convex and quasi-convex functions, and derived weak and strong duality theo-

rems. Yadav and Mukhrjee [8] established the optimality conditions to construct the

two dual problems and derived duality theorems for differentiable fractional minimax

programming. Chandra and Kumar [9] pointed out that the formulation of Yadav and

Mukhrjee [8] has some omissions and inconsistencies and they constructed two modi-

fied dual problems and proved duality theorems for differentiable fractional minimax

programming.

Lai et al. [10] established necessary and sufficient optimality conditions for non-dif-

ferentiable minimax fractional problem with generalized convexity and applied these

optimality conditions to construct a parametric dual model and also discussed duality
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theorems. Lai and Lee [11] obtained duality theorems for two parameter-free dual

models of nondifferentiable minimax fractional problem involving generalized convex-

ity assumptions.

Convexity plays an important role in deriving sufficient conditions and duality for non-

linear programming problems. Hanson [12] introduced the concept of invexity and estab-

lished Karush-Kuhn-Tucker type sufficient optimality conditions for nonlinear

programming problems. These functions were named invex by Craven [13]. Generalized

invexity and duality for multiobjective programming problems are discussed in [14], and

inseparable Hilbert spaces are studied by Soleimani-damaneh [15]. Soleimani-damaneh [16]

provides a family of linear infinite problems or linear semi-infinite problems to characterize

the optimality of nonlinear optimization problems. Recently, Antczak [17] proved optimality

conditions for a class of generalized fractional minimax programming problems involving B-

(p, r)-invexity functions and established duality theorems for various duality models.

In this article, we are motivated by Lai et al. [10], Lai and Lee [11], and Antczak [17]

to discuss sufficient optimality conditions and duality theorems for a nondifferentiable

minimax fractional programming problem with B-(p, r)-invexity. This article is orga-

nized as follows: In Section 2, we give some preliminaries. An example which is B-(1,

1)-invex but not (p, r)-invex is exemplified. We also illustrate another example which

(-1, 1)-invex but convex. In Section 3, we establish the sufficient optimality conditions.

Duality results are presented in Section 4.

2 Notations and prelominaries
Definition 1. Let f : X ® R (where X ⊆ Rn) be differentiable function, and let p, r be

arbitrary real numbers. Then f is said to be (p, r)-invex (strictly (p, r)-invex) with

respect to h at u Î X on X if there exists a function h : X × X ® Rn such that, for all

x Î X, the inequalities

1
r
er(f (x) ≥ 1

r
er(f (u)

[
1 +

r
p
∇f (u)(epη(x,u) − 1)

]
(> if x �= u) for p �= 0, r �= 0,

1
r
er(f (x) ≥ 1

r
er(f (u)

[
1 + r∇f (u)(epη(x,u) − 1)

]
(> ifx �= u) for p = 0, r �= 0,

f (x) − f (u) ≥ 1
p
∇f (u)(epη(x,u) − 1)(> if x �= u) for p �= 0, r = 0,

f (x) − f (u) ≥ ∇f (u)η(x, u)(> if x �= u) for p = 0, r = 0,

hold.

Definition 2 [17]. The differentiable function f : X ® R (where X ⊆ Rn) is said to be

(strictly) B-(p, r)-invex with respect to h and b at u Î X on X if there exists a function

h : X × X ® Rn and a function b : X × X ® R+ such that, for all x Î X, the following

inequalities

1
r
b(x, u)(er(f (x)−f (u)) − 1) ≥ 1

p
∇f (u)(epη(x,u) − 1)(> if x �= u) for p �= 0, r �= 0,

1
r
b(x, u)(er(f (x)−f (u)) − 1) ≥ ∇f (u)η(x, u)(> ifx �= u) forp = 0, r �= 0,

b(x, u)(f (x) − f (u)) ≥ 1
p
∇f (u)(epη(x,u) − 1)(> ifx �= u) for p �= 0, r = 0,

b(x, u)(f (x) − f (u)) ≥ ∇f (u)η(x, u)(> ifx �= u) for p = 0, r = 0,
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hold. f is said to be (strictly) B-(p, r)-invex with respect to h and b on X if it is B-(p,

r)-invex with respect to same h and b at each u Î X on X.

Remark 1 [17]. It should be pointed out that the exponentials appearing on the right-

hand sides of the inequalities above are understood to be taken componentwise and 1

= (1, 1, ..., 1) Î Rn.

Example 1. Let X = [8.75, 9.15] ⊂ R. Consider the function f : X ® R defined by

f (x) = log(sin2 x).

Let h : X × X ® R be given by

η(x, u) = 12(1 + u).

To prove that f is (-1, 1)-invex, we have to show that

1
r
erf (x) − 1

r
erf (u)

[
1 +

r
p
∇f (u)

(
epη(x,u) − 1

)]
≥ 0, forp = −1and r = 1.

Now, consider

ϕ = ef (x) − ef (u)
[
1 − ∇f (u)

(
e−η(x,u) − 1

)]
= sin2 x + sin 2u

(
e−12(1+u) − 1

)
− sin2 u

≥ 0∀x, u ∈ X,

as can be seen form Figure 1.

Hence, f is (-1, 1)-invex.

Further, for x = 8.8 and u = 9.1, we have

ϑ = f (x) − f (u) − (x − u)T∇f (u)

= 2 log
(
sin x

sin u

)
− (x − u) sin 2u

sin2 u

= −0.570057225 < 0

Thus f is not convex function on X.

Example 2. Let X = [0.25, 0.45] ⊂ R. Consider the function f : X ® R defined by

f (x) = −x2 + log(8
√
x).

Let h : X × X ® R and b : X × X ® R+ be given by

η(x, u) = log(1 + 2u2)

and

b(x, u) = 4 sin2 x + sin2 u,

respectively.

The function f defined above is B-(1, 1)-invex as

φ = b(x, u)(e(f (x)−f (u)) − 1) − ∇f (u)(eη(x,u) − 1)

=
[
4 sin2 x + sin2 u

] [
e(u

2−x2)
√

x
u − 1

]
− [

u − 4u3
]

≥ 0 ∀x, u ∈ X,

as can be seen from Figure 2.
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Figure 1 � = sin2x + sin 2u(e-12(1+u) - 1) - sin2u.

Figure 2 φ =
[
4 sin2 x + sin2 u

] [
e(u

2−x2)
√

x
u − 1

]
− [

u − 4u3
]
.
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However, it is not (p, r) invex for all p, r Î (-1017, 1017) as

ψ = 1
r e

rf (x) − 1
r e

rf (u)
[
1 + r

p∇f (u)(epη(x,u) − 1)
]

= 1
r e

1.461296176×r − 1
r e

1.469291258×r
[
1 + 0.45 × r

p

(
e0.3021765186×p − 1

)]
(for x = 0.4 and u = 0.42)

<0 as can be seen from Figure 3.

Hence f is B-(1, 1)-invex but not (p, r)-invex.

In this article, we consider the following nondifferentiable minimax fractional pro-

gramming problem:

(FP)

min
x∈Rn

sup
y∈Y

l(x, y) + (xTDx)1/2

m(x, y) − (xTEx)1/2

subject to g(x) ≤ 0, x ∈ X

where Y is a compact subset of Rm, l(., .): Rn × Rm ® R, m(., .): Rn × Rm ® R, are C1

functions on Rn × Rm and g(.): Rn ® Rp is C1 function on Rn. D and E are n × n posi-

tive semidefinite matrices.

Let S = {x Î X : g(x) ≤ 0} denote the set of all feasible solutions of (FP).

Any point x Î S is called the feasible point of (FP). For each (x, y) Î Rn × Rm, we

define

φ(x, y) =
l(x, y) + (xTDx)1/2

m(x, y) − (xTEx)1/2
,

Figure 3 ψ = 1
r e

1.461296176×r − 1
r e

1.469291258×r
[
1 + 0.45 × r

p

(
e0.3021765186×p − 1

)]
.
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such that for each (x, y) Î S × Y,

l(x, y) + (xTDx)1/2 ≥ 0 and m(x, y) − (xTEx)1/2 > 0.

For each x Î S, we define

H(x) = {h ∈ H : gh(x) = 0},

where

H = {1, 2, . . . , p},

Y(x) =
{
y ∈ Y : l(x,y)+(xTDx)1/2

m(x,y)−(xTEx)1/2
= sup

z∈Y
l(x,z)+(xTDx)1/2

m(x,z)−(xTEx)1/2

}
.

K(x) =
{
(s, t, ỹ) ∈ N × Rs

+ × Rms : 1 ≤ s ≤ n + 1, t = (t1, t2, . . . , ts) ∈ Rs
+

with
s∑

i=1
ti = 1, ỹ = (ȳ1, ȳ2, . . . , ȳs)withȳi ∈ Y(x)(i = 1, 2, . . . , s)

}
.

Since l and m are continuously differentiable and Y is compact in Rm, it follows that

for each x* Î S, Y (x*) ≠ ∅, and for any ȳi ∈ Y(x∗), we have a positive constant

k◦ = φ(x∗, ȳi) =
l(x∗, ȳi) + (x∗TDx∗)1/2

m(x∗, ȳi) − (x∗TEx∗)1/2
.

2.1 Generalized Schwartz inequality

Let A be a positive-semidefinite matrix of order n. Then, for all, x, w Î Rn,

xTAw ≤ (xTAx)
1
2 (wTAw)

1
2 . (1)

Equality holds if for some l ≥ 0,

Ax = λAw.

Evidently, if (wTAw)
1
2 ≤ 1, we have

xTAw ≤ (xTAx)
1
2 .

If the functions l, g, and m in problem (FP) are continuously differentiable with

respect to x Î Rn, then Lai et al. [10] derived the following necessary conditions for

optimality of (FP).

Theorem 1 (Necessary conditions). If x* is a solution of (FP) satisfying x*TDx* >0,

x*TEx* >0, and ∇gh(x*), h Î H(x*) are linearly independent, then there exist

(s, t∗, ȳ) ∈ K(x∗), ko Î R+, w, v Î Rn and μ∗ ∈ Rp
+ such that

s∑
i=1

t∗i
{∇l(x∗, ȳi) +Dw − k◦(∇m(x∗, ȳi) − Ev)

}
+ ∇

p∑
h=1

μ∗
hgh(x

∗) = 0, (2)

l(x∗, ȳi) + (x∗TDx∗)
1
2 − k◦

(
m(x∗, ȳi) − (x∗TEx∗)

1
2

)
= 0, i = 1, 2, . . . , s, (3)

p∑
h=1

μ∗
hgh(x

∗) = 0, (4)
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t∗i ≥ 0(i = 1, 2, . . . , s),
s∑

i=1

t∗i = 1, (5)

⎧⎪⎨
⎪⎩
wTDw ≤ 1, vTEv ≤ 1,

(x∗TDx∗)1/2 = x∗TDw,

(x∗TEx∗)1/2 = x∗TEv.
(6)

Remark 2. All the theorems in this article will be proved only in the case when p ≠ 0,

r ≠ 0. The proofs in the other cases are easier than in this one. It follows from the

form of inequalities which are given in Definition 2. Moreover, without limiting the

generality considerations, we shall assume that r > 0.

3 Sufficient conditions
Under smooth conditions, say, convexity and generalized convexity as well as differ-

entiability, optimality conditions for these problems have been studied in the past few

years. The intrinsic presence of nonsmoothness (the necessity to deal with nondifferen-

tiable functions, sets with nonsmooth boundaries, and set-valued mappings) is one of

the most characteristic features of modern variational analysis (see [18,19]). Recently,

nonsmooth optimizations have been studied by some authors [20-23]. The optimality

conditions for approximate solutions in multiobjective optimization problems have

been studied by Gao et al. [24] and for nondifferentiable multiobjective case by Kim et

al. [25]. Now, we prove the sufficient condition for optimality of (FP) under the

assumptions of B-(p, r)-invexity.

Theorem 2 (Sufficient condition). Let x* be a feasible solution of (FP) and there exist

a positive integer s, 1 ≤ s ≤ n + 1, t∗ ∈ Rs
+, ȳi ∈ Y(x∗)(i = 1, 2, . . . s), ko Î R+, w, v Î Rn

and μ∗ ∈ Rp
+ satisfying the relations (2)-(6). Assume that

(i)
s∑

i=1
t∗i (l(., ȳi) + (.)TDw − k◦(m(., ȳi) − (.)TEv)) is B-(p, r)-invex at x* on S with

respect to h and b satisfying b(x, x*) > 0 for all x Î S,

(ii)
p∑

h=1
μ∗
hgh(.) is Bg-(p, r)-invex at x* on S with respect to the same function h, and

with respect to the function bg, not necessarily, equal to b.

Then x* is an optimal solution of (FP).

Proof. Suppose to the contrary that x* is not an optimal solution of (FP). Then there

exists an x̄ ∈ S such that

sup
y∈Y

l(x̄, y) + (x̄TDx̄)1/2

m(x̄, y) − (x̄TEx̄)1/2
< sup

y∈Y

l(x∗, y) + (x∗TDx∗)1/2

m(x∗, y) − (x∗TEx∗)1/2
.

We note that

sup
y∈Y

l(x∗, y) + (x∗TDx∗)1/2

m(x∗, y) − (x∗TEx∗)1/2
=

l(x∗, ȳi) + (x∗TDx∗)1/2

m(x∗, ȳi) − (x∗TEx∗)1/2
= k◦,
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for ȳi ∈ Y(x∗), i = 1, 2, ..., s and

l(x̄, ȳi) + (x̄TDx̄)1/2

m(x̄, ȳi) − (x̄TEx̄)1/2
≤ sup

y∈Y

l(x̄, y) + (x̄TDx̄)1/2

m(x̄, y) − (x̄TEx̄)1/2
.

Thus, we have

l(x̄, ȳi) + (x̄TDx̄)1/2

m(x̄, ȳi) − (x̄TEx̄)1/2
< k◦, for i = 1, 2, . . . , s.

It follows that

l(x̄, ȳi) + (x̄TDx̄)1/2 − k◦(m(x̄, ȳi) − (x̄TEx̄)1/2) < 0, for i = 1, 2, . . . , s. (7)

From (1), (3), (5), (6) and (7), we obtain

s∑
i=1

t∗i {l(x̄, ȳi) + x̄TDw − k◦(m(x̄, ȳi) − x̄TEv)}

≤
s∑

i=1

t∗i {l(x̄, ȳi) + (x̄TDx̄)
1
2 − k◦(m(x̄, ȳi) − (x̄TEx̄)

1
2 )}

< 0 =
s∑

i=1

t∗i {l(x∗, ȳi) + (x∗TDx∗)
1
2 − k◦(m(x∗, ȳi) − (x∗TEx∗)

1
2 )}

=
s∑

i=1

t∗i {l(x∗, ȳi) + x∗TDw − k◦(m(x∗, ȳi) − x∗TEv)}.

It follows that

s∑
i=1

t∗i {l(x̄, ȳi) + x̄TDw − k◦(m(x̄, ȳi) − x̄TEv)}

<

s∑
i=1

t∗i {l(x∗, ȳi) + x∗TDw − k◦(m(x∗, ȳi) − x∗TEv)}.
(8)

As
s∑

i=1
t∗i (l(., ȳi) + (.)TDw − k◦(m(., ȳi) − (.)TEv)) is B-(p, r)-invex at x* on S with

respect to h and b, we have

1
r b(x, x

∗)

{
e
r
[

s∑
i=1

t∗i (l(x,ȳi)+x
TDw−k◦(m(x,ȳi)−xTEv)) −

s∑
i=1

t∗i (l(x
∗,ȳi)+x∗TDw−k◦(m(x∗,ȳi)−x∗TEv))

]
− 1

}

≥ 1
p

{
s∑

i=1

t∗i (∇l(x∗, ȳi) +Dw − k◦(∇m(x∗, ȳi) − Ev))

}
{epη(x,x∗) − 1}

holds for all x Î S, and so for x = x̄. Using (8) and b(x̄, x∗) > 0 together with the

inequality above, we get

1
p

{
s∑

i=1

t∗i (∇l(x∗, ȳi) +Dw − k◦(∇m(x∗, ȳi) − Ev))

}
{epη(x̄,x∗) − 1} < 0. (9)

From the feasibility of x̄ together with μ∗
h ≥ 0, h Î H, we have

p∑
h=1

μ∗
hgh(x̄) ≤ 0. (10)
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By Bg-(p, r)-invexity of
p∑

h=1
μ∗
hgh(.) at x* on S with respect to the same function h, and

with respect to the function bg, we have

1
r bg(x̄, x

∗)

⎧⎨
⎩e

r
[ p∑
h=1

μ∗
hgh(x̄) −

p∑
h=1

μ∗
hgh(x

∗)
]

− 1

⎫⎬
⎭ ≥ 1

p

p∑
h=1

∇μ∗
hgh(x

∗)
{
epη(x̄,x

∗) − 1
}
.

Since bg(x, x*) ≥ 0 for all x Î S then by (4) and (10), we obtain

1
p

p∑
h=1

∇μ∗
hgh(x

∗){epη(x̄,x∗) − 1} ≤ 0. (11)

By adding the inequalities (9) and (11), we have

1
p

{
s∑

i=1

t∗i (∇l(x∗, ȳi) +Dw − k◦(∇m(x∗, ȳi) − Ev)) +
p∑

h=1

∇μ∗
hgh(x

∗)

}

{epη(x̄,x∗) − 1} < 0,

which contradicts (2). Hence the result. □

4 Duality results
In this section, we consider the following dual to (FP):

(FD) max
(s,t,ȳ)∈K(a)

sup
(a,μ,k,v,w)∈H1(s,t,ȳ)

k ,

where H1(s, t, ȳ) denotes the set of all (a,μ, k, v,w) ∈ Rn × Rp
+ × R+ × Rn × Rn satisfy-

ing

s∑
i=1

ti{∇l(a, ȳi) +Dw − k(∇m(a, ȳi) − Ev)} + ∇
p∑

h=1

μhgh(a) = 0, (12)

s∑
i=1

ti{l(a, ȳi) + aTDw − k(m(a, ȳi) − aTEv)} ≥ 0, (13)

p∑
h=1

μhgh(a) ≥ 0, (14)

(s, t, ȳ) ∈ K(a), (15)

wTDw ≤ 1, vTEv ≤ 1. (16)

If, for a triplet (s, t, ȳ) ∈ K(a), the set H1(s, t, ȳ) = ∅, then we define the supremum

over it to be -∞. For convenience, we let

ψ1(.) =
s∑

i=1

ti{l(., ȳi) + (.)TDw − k(m(., ȳi) − (.)TEv)}.
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Let SFD denote a set of all feasible solutions for problem (FD). Moreover, let S1
denote

S1 = {a ∈ Rn : (a,μ, k, v,w, s, t, ȳ) ∈ SFD}.

Now we derive the following weak, strong, and strict converse duality theorems.

Theorem 3 (Weak duality). Let x be a feasible solution of (P) and (a,μ, k, v,w, s, t, ȳ)

be a feasible of (FD). Let

(i)
s∑

i=1
ti(l(., ȳi) + (.)TDw − k(m(., ȳi) − (.)TEv)) is B-(p, r)-invex at a on S ∪ S1 with

respect to h and b satisfying b(x, a) > 0,

(ii)
p∑

h=1
μhgh(.) is Bg-(p, r)-invex at a on S ∪ S1 with respect to the same function h

and with respect to the function bg, not necessarily, equal to b.

Then,

sup
y∈Y

l(x, y) + (xTDx)1/2

m(x, y) − (xTEx)1/2
≥ k. (17)

Proof. Suppose to the contrary that

sup
y∈Y

l(x, y) + (xTDx)1/2

m(x, y) − (xTEx)1/2
< k.

Then, we have

l(x, ȳi) + (xTDx)1/2 − k(m(x, ȳi) − (xTEx)1/2) < 0, for all ȳi ∈ Y.

It follows from (5) that

ti{l(x, ȳi) + (xTDx)1/2 − k(m(x, ȳi) − (xTEx)1/2} ≤ 0, (18)

with at least one strict inequality, since t = (t1, t2, ..., ts) ≠ 0.

From (1), (13), (16) and (18), we have

ψ1(x) =
s∑

i=1

ti{l(x, ȳi) + xTDw − k(m(x, ȳi) − xTEv)}

≤
s∑

i=1

ti{l(x, ȳi) + (xTDx)
1
2 − k(m(x, ȳi) − (xTEx)

1
2 )}

< 0 ≤
s∑

i=1

ti{l(a, ȳi) + aTDw − k(m(a, ȳi) − aTEv)}

= ψ1(a).

Hence

ψ1(x) < ψ1(a). (19)

Since
s∑

i=1
ti(l(., ȳi) + (.)TDw − k(m(., ȳi) − (.)TEv)) is B-(p, r)-invex at a on S ∪ S1 with

respect to h and b, we have
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1
r b(x, a)

{
e
r
[

s∑
i=1

ti(l(x,ȳi)+xTDw−k(m(x,ȳi)−xTEv)) −
s∑

i=1
ti(l(a,ȳi)+aTDw−k(m(a,ȳi)−aTEv))

]
− 1

}

≥ 1
p

{
s∑

i=1

ti(∇l(a, ȳi) +Dw − k(∇m(a, ȳi) − Ev))

}
{epη(x,a) − 1}.

From (19) and b(x, a) > 0 together with the inequality above, we get

1
p

{
s∑

i=1

ti(∇l(a, ȳi) +Dw − k(∇m(a, ȳi) − Ev))

}
{epη(x,a) − 1} < 0. (20)

Using the feasibility of x together with μh ≥ 0, h Î H, we obtain

p∑
h=1

μhgh(x) ≤ 0. (21)

From hypothesis (ii), we have

1
r bg(x, a)

⎧⎨
⎩e

r
[ p∑
h=1

μhgh(x) −
p∑

h=1
μhgh(a)

]
− 1

⎫⎬
⎭ ≥ 1

p

p∑
h=1

∇μhgh(a){epη(x,a) − 1}.

As bg(x, a) ≥ 0 then by (14) and (21), we obtain

1
p

p∑
h=1

∇μhgh(a){epη(x,a) − 1} ≤ 0. (22)

Thus, by (20) and (22), we obtain the inequality

1
p

{
s∑

i=1

ti(∇l(a, ȳi) +Dw − k(∇m(a, ȳi) − Ev)) +
p∑

h=1

∇μhgh(a)

}
{epη(x,a) − 1} < 0,

which contradicts (12). Hence (17) holds. □
Theorem 4 (Strong duality). Let x* be an optimal solution of (FP) and ∇gh(x*), h Î H

(x*) is linearly independent. Then there exist (s̄, t̄, ȳ∗) ∈ K(x∗) and

(x∗, μ̄, k̄, v̄, w̄) ∈ H1(s̄, t̄, ȳ∗) such that (x∗, μ̄, k̄, v̄, w̄, s̄, t̄, ȳ∗) is a feasible solution of (FD).

Further, if the hypotheses of weak duality theorem are satisfied for all feasible solutions

(a,μ, k, v,w, s, t, ȳ) of (FD), then (x∗, μ̄, k̄, v̄, w̄, s̄, t̄, ȳ∗) is an optimal solution of (FD), and

the two objectives have the same optimal values.

Proof. If x* be an optimal solution of (FP) and ∇gh(x*), h Î H(x*) is linearly indepen-

dent, then by Theorem 1, there exist (s̄, t̄, ȳ∗) ∈ K(x∗) and (x∗, μ̄, k̄, v̄, w̄) ∈ H1(s̄, t̄, ȳ∗)
such that (x∗, μ̄, k̄, v̄, w̄, s̄, t̄, ȳ∗) is feasible for (FD) and problems (FP) and (FD) have the

same objective values and

k̄ =
l(x∗, ȳ∗i ) + (x∗TDx∗)1/2

m(x∗, ȳ∗i ) − (x∗TEx∗)1/2
.

The optimality of this feasible solution for (FD) thus follows from Theorem 3. □
Theorem 5 (Strict converse duality). Let x* and (ā, μ̄, k̄, v̄, w̄, s̄, t̄, ȳ∗) be the optimal

solutions of (FP) and (FD), respectively, and ∇gh(x*), h Î H(x*) is linearly independent.
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Suppose that
s∑

i=1
ti(l(., ȳi) + (.)TDw − k̄(m(., ȳi) − (.)TEv)) is strictly B-(p, r)-invex at a

on S ∪ S1 with respect to h and b satisfying b(x, a) > 0 for all x Î S. Furthermore,

assume that
p∑

h=1
μhgh(.) is Bg-(p, r)-invex at a on S ∪ S1 with respect to the same func-

tion h and with respect to the function bg, but not necessarily, equal to the function b.

Then x∗ = ā, that is, ā is an optimal point in (FP) and

sup
y∈Y

l(ā, ȳ∗) + (āTDā)1/2

m(ā, ȳ∗) − (āTEā)1/2
= k̄.

Proof. We shall assume that x∗ �= ā and reach a contradiction. From the strong dua-

lity theorem (Theorem 4), it follows that

sup
y∈Y

l(x∗, ȳ∗) + (x∗TDx∗)1/2

m(x∗, ȳ∗) − (x∗TEx∗)1/2
= k̄. (23)

By feasibility of x* together with μh ≥ 0, h Î H, we obtain

p∑
h=1

μhgh(x∗) ≤ 0. (24)

By assumption,
p∑

h=1
μhgh(.) is Bg-(p, r)-invex at a on S ∪ S1 with respect to h and with

respect to the bg. Then, by Definition 2, there exists a function bg such that bg(x, a) ≥ 0

for all x Î S and a Î S1. Hence by (14) and (24),

1
r bg(x

∗, ā)

⎧⎨
⎩e

r
[ p∑
h=1

μhgh(x∗) −
p∑

h=1
μhgh(ā)

]
− 1

⎫⎬
⎭ ≤ 0.

Then, from Definition 2, we get

1
p

p∑
h=1

∇μhgh(ā){epη(x∗,ā) − 1} ≤ 0. (25)

Therefore, by (25), we obtain the inequality

1
p

{
s∑

i=1

ti(∇l(ā, ȳi) +Dw − k̄(∇m(ā, ȳi) − Ev))

}
{epη(x∗,ā) − 1} ≥ 0.

As
s∑

i=1
ti(l(., ȳi) + (.)TDw − k̄(m(., ȳi) − (.)TEv)) is strictly B-(p, r)-invex with respect to

h and b at ā on S ∪ S1. Then, by the Definition of strictly B-(p, r)-invexity and from

above inequality, it follows that

1
r b(x

∗, ā)×{
e
r
[

s∑
i=1

ti(l(x∗,ȳi)+x∗TDw−k̄(m(x∗,ȳi)−x∗TEv))−
s∑

i=1
ti(l(ā,ȳi)+āTDw−k̄(m(ā,ȳi)−āTEv))

]
− 1

}
> 0.
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From the hypothesis b(x∗, ā) > 0, and the above inequality, we get

s∑
i=1

ti(l(x∗, ȳi) + x∗TDw − k̄(m(x∗, ȳi) − x∗TEv))

−
s∑

i=1

ti(l(ā, ȳi) + āTDw − k̄(m(ā, ȳi) − āTEv)) > 0.

Therefore, by (13),

s∑
i=1

ti(l(x∗, ȳi) + x∗TDw − k̄(m(x∗, ȳi) − x∗TEv)) > 0.

Since ti ≥ 0, i = 1, 2, ..., s, therefore there exists i* such that

l(x∗, ȳ∗i ) + x∗TDw − k̄(m(x∗, ȳ∗i ) − x∗TEv) > 0.

Hence, we obtain the following inequality

l(x∗, ȳ∗i ) + (x∗TDx∗)1/2

m(x∗, ȳ∗i ) − (x∗TEx∗)1/2
> k̄,

which contradicts (23). Hence the results. □

5 Concluding remarks
It is not clear that whether duality in nondifferentiable minimax fractional program-

ming with B-(p, r)-invexity can be further extended to second-order case.
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