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Abstract

In this paper, we investigate a fuzzy version of stability for the functional equation

f (x + y + z) − f (x + y) − f (y + z) − f (x + z) + f (x) + f (y) + f (z) = 0

in the sense of Mirmostafaee and Moslehian.
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Introduction
A classical question in the theory of functional equations is “when is it true that a

mapping, which approximately satisfies a functional equation, must be somehow close

to an exact solution of the equation?”. Such a problem, called a stability problem of

the functional equation, was formulated by Ulam [1] in 1940. In the next year, Hyers

[2] gave a partial solution of Ulam’s problem for the case of approximate additive map-

pings. Subsequently, his result was generalized by Aoki [3] for additive mappings and

by Rassias [4] for linear mappings, for considering the stability problem with

unbounded Cauchy differences. During the last decades, the stability problems of func-

tional equations have been extensively investigated by a number of mathematicians,

see [5-17].

In 1984, Katsaras [18] defined a fuzzy norm on a linear space to construct a fuzzy

structure on the space. Since then, some mathematicians have introduced several types

of fuzzy norm in different points of view. In particular, Bag and Samanta [19], follow-

ing Cheng and Mordeson [20], gave an idea of a fuzzy norm in such a manner that the

corresponding fuzzy metric is of Kramosil and Michalek type [21]. In 2008, Mirmosta-

faee and Moslehian [22] obtained a fuzzy version of stability for the Cauchy functional

equation:

f (x + y) − f (x) − f (y) = 0. (1:1)

In the same year, they [23] proved a fuzzy version of stability for the quadratic func-

tional equation:

f (x + y) + f (x − y) − 2f (x) − 2f (y) = 0. (1:2)
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We call a solution of (1.1) an additive map and a mapping satisfying (1.2) is called a

quadratic map. Now we consider the functional equation:

f (x + y + z) − f (x + y) − f (y + z) − f (x + z) + f (x) + f (y) + f (z) = 0. (1:3)

which is called a mixed type functional equation. We say a solution of (1.3) a quad-

ratic-additive mapping. In 2002, Jung [24] obtained a stability of the functional equa-

tion (1.3) by taking and composing an additive map A and a quadratic map Q to prove

the existence of a quadratic-additive mapping F, which is close to the given mapping f.

In his processing, A is approximate to the odd part f (x)−f (−x)
2

of f and Q is close to the

even part f (x)+f (−x)
2

of it, respectively.

In this paper, we get a general stability result of the mixed type functional equation

(1.3) in the fuzzy normed linear space. To do it, we introduce a Cauchy sequence {Jn f

(x)} starting from a given mapping f , which converges to the desired mapping F in the

fuzzy sense. As we mentioned before, in previous studies of stability problem of (1.3),

they attempted to get stability theorems by handling the odd and even part of f,

respectively. According to our proposal in this paper, we can take the desired approxi-

mate solution F at once. Therefore, this idea is a refinement with respect to the simpli-

city of the proof.

2. Fuzzy stability of the functional equation (1.3)
We use the definition of a fuzzy normed space given in [19] to exhibit a reasonable

fuzzy version of stability for the mixed type functional equation in the fuzzy normed

linear space.

Definition 2.1. ([19]) Let X be a real linear space. A function N : X × ℝ ® [0, 1]

(the so-called fuzzy subset) is said to be a fuzzy norm on x if for all x, y Î X and all s,

t Î ℝ,

(N1) N(x, c) = 0 for c ≤ 0;

(N2) x = 0 if and only if N(x, c) = 1 for all c >0;

(N3) N(cx, t) = N(x, t/|c|) if c ≠ 0;

(N4) N(x + y, s + t) ≥ min{N(x, s), N(y, t)};

(N5) N(x, ·) is a non-decreasing function on ℝ and limt®∞ N (x, t) = 1.

The pair (X, N) is called a fuzzy normed linear space. Let (X, N) be a fuzzy normed

linear space. Let {xn} be a sequence in X. Then, {xn} is said to be convergent if there

exists x Î X such that limn®∞ N (xn - x, t) = 1 for all t >0. In this case, x is called the

limit of the sequence {xn}, and we denote it by N - limn®∞ xn = x. A sequence {xn} in X

is called Cauchy if for each ε >0 and each t >0 there exists n0 such that for all n ≥ n0
and all p > 0 we have N(xn+p - xn, t) > 1 - ε. It is known that every convergent

sequence in a fuzzy normed space is Cauchy. If each Cauchy sequence is convergent,

then the fuzzy norm is said to be complete and the fuzzy normed space is called a

fuzzy Banach space.

Let (X, N) be a fuzzy normed space and (Y, N’) a fuzzy Banach space. For a given

mapping f : X ® Y, we use the abbreviation

Df (x, y, z) := f (x + y + z) − f (x + y) − f (y + z) − f (x + z) + f (x) + f (y) + f (z)

for all x, y, z Î X. For given q >0, the mapping f is called a fuzzy q-almost quadratic-

additive mapping, if
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N′(Df (x, y, z), s + t + u) ≥ min{N(x, sq),N(y, tq),N(z, uq)} (2:1)

for all x, y, z Î X and all s, t, u Î (0, ∞). Now we get the general stability result in

the fuzzy normed linear setting.

Theorem 2.2. Let q be a positive real number with q �= 1
2 , 1. And let f be a fuzzy q-

almost quadratic-additive mapping from a fuzzy normed space (X, N) into a fuzzy

Banach space (Y, N’). Then there is a unique quadratic-additive mapping F : X ® Y

such that for each x Î X and t >0,

N′(F(x) − f (x), t) ≥

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

supt′<tN
(
x,

(
2−2p
3

)q
t′q

)
if 1 < q,

supt′<tN
(
x,

(
(4−2p)(2−2p)

6

)q
t′q

)
if 1

2 < q < 1,

supt′<tN
(
x,

(
2p−4
3

)q
t′q

)
if 0 < q < 1

2

(2:2)

where p = 1/q.

Proof. It follows from (2.1) and (N4) that

N′(f (0), t) ≥ min
{
N

(
0,

(
t
3

)q)
, N

(
0,

(
t
3

)q)
, N

(
0,

(
t
3

)q)}
= 1

for all t Î (0, ∞). By (N2), we have f(0) = 0. We will prove the theorem in three

cases, q > 1, 12 < q < 1, and 0 < q < 1
2.

Case 1. Let q >1 and let Jn f : X ® Y be a mapping defined by

Jnf (x) =
1
2
(4−n(f (2nx) + f (−2nx)) + 2−n(f (2nx) − f (−2nx)))

for all x Î X. Notice that J0 f (x) = f (x) and

Jjf (x) − Jj+1f (x) =
Df (2jx, 2jx,−2jx)

2 · 4j+1 +
Df (−2jx,−2jx, 2jx)

2 · 4j+1

+
Df (2jx, 2jx,−2jx)

2j+2
− Df (−2jx,−2jx, 2jx)

2j+2

(2:3)

for all x Î X and j ≥ 0. Together with (N3), (N4) and (2.1), this equation implies that

if n + m > m ≥ 0, then

N′

⎛
⎝Jmf (x) − Jn+mf (x),

n+m−1∑
j=m

3
2

(
2p

2

)j

tp

⎞
⎠

= N′

⎛
⎝n+m−1∑

j=m

(Jjf (x) − Jj+1f (x)),
n+m−1∑
j=m

3 · 2jp
2j+1

tp

⎞
⎠

≥ min
j=m,...,n+m−1

{
N′

(
Jjf (x) − Jj+1f (x),

3 · 2jp
2j+1

tp
)}

≥ min
j=m,...,n+m−1

{
min

{
N′

(
(2j+1 + 1)Df (2jx, 2jx,−2jx)

2 · 4j+1 ,
3(2j+1 + 1)2jptp

2 · 4j+1
)
,

N′
(
1 − (2j+1)Df (−2jx,−2jx, 2jx)

2 · 4j+1 ,
3(2j+1 − 1)2jptp

2 · 4j+1
)}}

≥ min
j=m,...,n+m−1

{N(2jx, 2jt)}

= N(x, t)

(2:4)
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for all x Î X and t >0. Let ε >0 be given. Since limt®∞ N (x, t) = 1, there is t0 > 0

such that

N(x, t0) ≥ 1 − ε.

We observe that for some t̃ > t0, the series
∑∞

j=0
3·2jp
2j+1 t̃

p converges for p = 1
q < 1. It

guarantees that, for an arbitrary given c >0, there exists some n0 ≥ 0 such that

n+m−1∑
j=m

3 · 2jp
2j+1

t̃p < c

for each m ≥ n0 and n >0. By (N5) and (2.4), we have

N′(Jmf (x) − Jn+mf (x), c) ≥ N′

⎛
⎝Jmf (x) − Jn+mf (x),

n+m−1∑
j=m

3 · 2jp
2j+1

t̃p

⎞
⎠

≥ N(x, t̃)

≥ N(x, t0)

≥ 1 − ε

for all x Î X. Hence {Jn f (x)} is a Cauchy sequence in the fuzzy Banach space (Y, N’),

and so, we can define a mapping F : X ® Y by

F(x) := N′ − lim
n→∞ Jnf (x)

for all x Î X. Moreover, if we put m = 0 in (2.4), we have

N′(f (x) − Jnf (x), t) ≥ N

⎛
⎜⎝x,

tq(∑n−1
j=0

3·2jp
2j+1

)q

⎞
⎟⎠ (2:5)

for all x Î X. Next we will show that F is quadratic additive. Using (N4), we have

N′(DF(x, y, z), t) ≥ min
{
N′

(
(F − Jnf )(x + y + z),

t
28

)
, N′

(
(F − Jnf )(x),

t
28

)
,

N′
(
(F − Jnf )(y),

t
28

)
, N′

(
(F − Jnf )(z),

t
28

)

N′
(
(Jnf − F)(x + y),

t
28

)
, N′

(
(Jnf − F)(x + z),

t
28

)
,

N′
(
(Jnf − F)(y + z),

t
28

)
, N′

(
DJnf (x, y, z),

3t
4

)}
(2:6)

for all x, y, z Î X and n Î N. The first seven terms on the right-hand side of (2.6)

tend to 1 as n ® ∞ by the definition of F and (N2), and the last term holds

N′
(
DJnf (x, y, z),

3t
4

)

≥ min
{
N′

(
Df (2nx, 2ny, 2nz)

2 · 4n ,
3t
16

)
, N′

(
Df (−2nx,−2ny,−2nz)

2 · 4n ,
3t
16

)
,

N′
(
Df (2nx, 2ny, 2nz)

2 · 2n ,
3t
16

)
, N′

(
Df (−2nx,−2ny,−2nz)

2 · 2n ,
3t
16

)}
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for all x, y, z Î X. By (N3) and (2.1), we obtain

N′
(
Df (±2nx,±2ny,±2nz)

2 · 4n ,
3t
16

)

= N′
(
Df (±2nx,±2ny,±2nz),

3 · 4nt
8

)

≥ min
{
N

(
2nx,

(
4nt
8

)q)
, N

(
2ny,

(
4nt
8

)q)
, N

(
2nz,

(
4nt
8

)q)}

≥ min
{
N

(
x, 2(2q−1)n−3qtq

)
, N

(
y, 2(2q−1)n−3qtq

)
, N

(
z, 2(2q−1)n−3qtq

)}
and

N′
(
Df (±2nx,±2ny,±2nz)

2 · 2n ,
3t
16

)

≥ min
{
N

(
x, 2(q−1)n−3qtq

)
, N

(
y, 2(q−1)n−3qtq

)
, N

(
z, 2(q−1)n−3qtq

)}
for all x, y, z Î X and n Î N. Since q >1, together with (N5), we can deduce that the

last term of (2.6) also tends to 1 as n ® ∞. It follows from (2.6) that

N′ (DF(x, y, z), t) = 1

for all x, y, z Î X and t >0. By (N2), this means that DF(x, y, z) = 0 for all x, y, z Î
X.

Now we approximate the difference between f and F in a fuzzy sense. For an arbi-

trary fixed x Î X and t >0, choose 0 <ε <1 and 0 <t’ <t. Since F is the limit of {Jn f

(x)}, there is n Î N such that

N′(F(x) − Jnf (x), t − t′) ≥ 1 − ε.

By (2.5), we have

N′(F(x) − f (x), t) ≥ min{N′(F(x) − Jnf (x), t − t′),N′(Jnf (x) − f (x), t′)}

≥ min

⎧⎪⎨
⎪⎩1 − ε, N

⎛
⎜⎝x,

t′q(∑n−1
j=0

3·2jp
2j+1

)q

⎞
⎟⎠

⎫⎪⎬
⎪⎭

≥ min
{
1 − ε, N

(
x,

(
(2 − 2p)t′

3

)q)}
.

Because 0 <ε < 1 is arbitrary, we get the inequality (2.2) in this case.

Finally, to prove the uniqueness of F, let F’ : X ® Y be another quadratic-additive

mapping satisfying (2.2). Then by (2.3), we get⎧⎪⎪⎪⎨
⎪⎪⎪⎩
F(x) − JnF(x) =

n−1∑
j=0

(JjF(x) − Jj+1F(x)) = 0

F′(x) − JnF′(x) =
n−1∑
j=0

(JjF′(x) − Jj+1F′(x)) = 0
(2:7)
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for all x Î X and n Î N. Together with (N4) and (2.2), this implies that

N′(F(x) − F′(x), t)
= N′ (JnF(x) − JnF′(x), t)

≥ min
{
N′

(
JnF(x) − Jnf (x),

t
2

)
,N′

(
Jnf (x) − JnF′(x),

t
2

)}

≥ min
{
N′

(
(F − f )(2nx)

2 · 4n ,
t
8

)
, N′

(
(f − F′)(2nx)

2 · 4n ,
t
8

)
,

N′
(
(F − f )(−2nx)

2 · 4n ,
t

8

)
, N′

(
(f − F′)(−2nx)

2 · 4n ,
t

8

)
,

N′
(
(F − f )(2nx)

2 · 2n ,
t
8

)
, N′

(
(f − F′)(2nx)

2 · 2n ,
t
8

)
,

N′
(
(F − f )(−2nx)

2 · 2n ,
t
8

)
, N′

(
(f − F′)(−2nx)

2 · 2n ,
t
8

)}

≥ sup
t′<t

N
(
x, 2(q−1)n−2q

(
2 − 2p

3

)q

t′q
)

for all xÎ X and n Î N. Observe that, for q = 1
p > 1, the last term of the above

inequality tends to 1 as n ® ∞ by (N5). This implies that N’(F(x) - F’(x), t) = 1, and

so, we get

F(x) = F′(x)

for all x Î X by (N2).

Case 2. Let 1
2 < q < 1 and let Jn f : X ® Y be a mapping defined by

Jnf (x) =
1
2

(
4−n(f (2nx) + f (−2nx)) + 2n

(
f
( x

2n

)
−f

(
− x

2n

)))

for all x Î X. Then we have J0 f (x) = f (x) and

Jjf (x) − Jj+1f (x) =
Df (−2jx,−2jx, 2jx)

2 · 4j+1 +
Df (2jx, 2jx,−2jx)

2 · 4j+1
− 2j−1

(
Df

(
x

2j+1
,

x
2j+1

,
−x
2j+1

)
− Df

( −x
2j+1

,
−x
2j+1

,
x

2j+1

))

for all x Î X and j ≥ 0. If n + m > m ≥ 0, then we have

N′

⎛
⎝Jmf (x) − Jn+mf (x),

n+m−1∑
j=m

(
3
4

(
2p

4

)j

+
3
2p

(
2
2p

)j
)
tp

)

≥ min
j=m,...,n+m−1

{
min

{
N′

(
Df (2jx, 2jx,−2jx)

2 · 4j+1 ,
3 · 2jptp
2 · 4j+1

)
,

N′
(
Df (−2jx,−2jx, 2jx)

2 · 4j+1 ,
3 · 2jptp
2 · 4j+1

)
,

N′
(

−2j−1Df
(

x
2j+1

,
x

2j+1
,

−x
2j+1

)
,
3 · 2j−1tp

2(j+1)p

)
,

N′
(
2j−1Df

( −x
2j+1

,
−x
2j+1

,
x

2j+1

)
,
3 · 2j−1tp

2(j+1)p

)}}

≥ min
j=m,...,n+m−1

{
N(2jx, 2jt), N

(
x

2j+1
,

t
2j+1

)}
= N(x, t)
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for all x Î X and t >0. In the similar argument following (2.4) of the previous case,

we can define the limit F(x) := N’ - limn®∞ Jn f (x) of the Cauchy sequence {Jn f (x)} in

the Banach fuzzy space Y. Moreover, putting m = 0 in the above inequality, we have

N′(f (x) − Jnf (x), t) ≥ N

⎛
⎜⎝x,

tq(∑n−1
j=0

(
3
4(

2p
4 )

j
+ 3

2p (
2
2p )

j
))q

⎞
⎟⎠ (2:8)

for each x Î X and t >0. To prove that F is a quadratic-additive function, we have

enough to show that the last term of (2.6) in Case 1 tends to 1 as n ® ∞. By (N3) and

(2.1), we get

N′
(
DJnf (x, y, z),

3t
4

)

≥ min
{
N′

(
Df (2nx, 2ny, 2nz)

2 · 4n ,
3t
16

)
, N′

(
Df (−2nx,−2ny,−2nz)

2 · 4n ,
3t
16

)
,

N′
(
2n−1Df

( x

2n
,

y

2n
,

z

2n

)
,
3t
16

)
, N′

(
2n−1Df

(−x

2n
,

−y

2n
,

−z

2n

)
,
3t
16

)}

≥ min
{
N

(
x, 2(2q−1)n−3qtq

)
, N

(
y, 2(2q−1)n−3qtq

)
, N

(
z, 2(2q−1)n−3qtq

)
,

N
(
x, 2(1−q)n−3qtq

)
, N

(
y, 2(1−q)n−3qtq

)
, N

(
z, 2(1−q)n−3qtq

)}

for each x, y, z Î X and t >0. Observe that all the terms on the right-hand side of

the above inequality tend to 1 as n ® ∞, since 1
2 < q < 1. Hence, together with the

similar argument after (2.6), we can say that DF(x, y, z) = 0 for all x, y, z Î X. Recall,

in Case 1, the inequality (2.2) follows from (2.5). By the same reasoning, we get (2.2)

from (2.8) in this case. Now to prove the uniqueness of F, let F’ be another quadratic-

additive mapping satisfying (2.2). Then, together with (N4), (2.2), and (2.7), we have

N′(F(x) − F′(x), t)
= N′ (JnF(x) − JnF

′(x), t)

≥ min
{
N′

(
JnF(x) − Jnf (x),

t
2

)
,N′

(
Jnf (x) − JnF′(x),

t
2

)}

≥ min
{
N′

(
(F − f )(2nx)

2 · 4n ,
t

8

)
,

(
(f − F′)(2nx)

2 · 4n ,
t

8

)
,

N′
(
(F − f )(−2nx)

2 · 4n ,
t
8

)
, N′

(
(f − F′)(−2nx)

2 · 4n ,
t
8

)
,

N′
(
2n−1

(
(F − f )

( x
2n

))
,
t
8

)
, N′

(
2n−1

(
(f − F′)

( x
2n

))
,
t
8

)
,

N′
(
2n−1

(
(F − f )

(−x
2n

))
,
t
8

)
, N′

(
2n−1

(
(f − F′)

(−x
2n

))
,
t
8

)}

≥ min
{
sup
t′<t

N

(
x, 2(2q−1)n−2q

(
(4 − 2p)(2p − 2)

6

)q

t′q
)
,

sup
t′<t

N

(
x, 2(1−q)n−2q

(
(4 − 2p)(2p − 2)

6

)q

t′q
)}

for all x Î X and n Î N. Since limn®∞ 2(2q - 1)n - 2q = limn®∞ 2(1 - q)n - 2q = ∞ in this

case, both terms on the right-hand side of the above inequality tend to 1 as n ® ∞ by

(N5). This implies that N’(F(x) - F’(x), t) = 1 and so F(x) = F’(x) for all x Î X by (N2).
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Case 3. Finally, we take 0 < q < 1
2 and define Jn f : X ® Y by

Jnf (x) =
1
2

(
4n(f (2−nx) + f (−2−nx)) + 2n

(
f
( x

2n

)
− f

(
− x

2n

)))

for all x Î X. Then we have J0 f (x) = f (x) and

Jjf (x) − Jj+1f (x) = −4j

2

(
Df

( −x
2j+1

,
−x
2j+1

,
x

2j+1

)
+Df

(
x

2j+1
,

x
2j+1

,
−x
2j+1

))

− 2j−1
(
Df

(
x

2j+1
,

x
2j+1

,
−x
2j+1

)
− Df

( −x
2j+1

,
−x
2j+1

,
x

2j+1

))

which implies that if n + m > m ≥ 0, then

N′

⎛
⎝Jmf (x) − Jn+mf (x),

n+m−1∑
j=m

3
2p

(
4
2p

)j

tp

⎞
⎠

≥ min
j=m,...,n+m−1

{
min

{
N′

(
−(4j + 2j)Df ( x

2j+1 ,
x

2j+1 ,
−x
2j+1 )

2
,
3(4j + 2j) tp

2 · 2(j+1)p
)

,

N′
(

−(4j − 2j)Df ( −x
2j+1 ,

−x
2j+1 ,

x
2j+1 )

2
,
3(4j − 2j)tp

2 · 2(j+1)p
)}}

≥ min
j=m,...,n+m−1

{
N

(
x

2j+1
,

t
2j+1

)}
= N(x, t)

for all x Î X and t >0. Similar to the previous cases, it leads us to define the map-

ping F : X ® Y by F(x) := N’ - limn®∞ Jn f (x). Putting m = 0 in the above inequality,

we have

N′(f (x) − Jnf (x), t) ≥ N

⎛
⎜⎝x,

tq(∑n−1
j=0

3
2p (

4
2p )

j
)q

⎞
⎟⎠ (2:9)

for all x Î X and t >0. Notice that

N′
(
DJnf (x, y, z),

3t
4

)

≥ min
{
N′

(
4n

2
Df

( x
2n

,
y
2n

,
z
2n

)
,
3t
16

)
, N′

(
4n

2
Df

(−x
2n

,
−y
2n

,
−z
2n

)
,
3t
16

)
,

N′
(
2n−1Df

( x
2n

,
y
2n

,
z
2n

)
,
3t
16

)
, N′

(
2n−1Df

(−x
2n

,
−y
2n

,
−z
2n

)
,
3t
16

)}

≥ min
{
N

(
x, 2(1−2q)n−3qtq

)
, N

(
y, 2(1−2q)n−3qtq

)
, N

(
z, 2(1−2q)n−3qtq

)
,

N
(
x, 2(1−q)n−3qtq

)
, N

(
y, 2(1−q)n−3qtq

)
, N

(
z, 2(1−q)n−3qtq

)}

for each x, y, z Î X and t >0. Since 0 < q < 1
2, all terms on the right-hand side tend

to 1 as n ® ∞, which implies that the last term of (2.6) tends to 1 as n ® ∞. There-

fore, we can say that DF ≡ 0. Moreover, using the similar argument after (2.6) in Case

1, we get the inequality (2.2) from (2.9) in this case. To prove the uniqueness of F, let

F’ : X ® Y be another quadratic-additive function satisfying (2.2). Then by (2.7), we get
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N′(F(x) − F′(x), t)

≥ min
{
N′

(
JnF(x) − Jnf (x),

t
2

)
, N′

(
Jnf (x) − JnF

′(x),
t
2

)}

≥ min
{
N′

(
4n

2

(
(F − f )

( x
2n

))
,
t
8

)
,
4n

2

((
f − F′)

( x
2n

))
,
t
8

)
,

N′
(
4n

2

(
(F − f )

(
− x
2n

))
,
t
8

)
, N′

(
4n

2

(
(f − F′)

(
− x
2n

))
,
t
8

)
,

N′
(
2n−1

(
(F − f )

( x
2n

))
,
t
8

)
, N′

(
2n−1

(
(f − F′)

( x
2n

))
,
t
8

)
,

N′
(
2n−1

(
(F − f )

(−x
2n

))
,
t
8

)
, N′

(
2n−1

(
(f − F′)

(−x
2n

))
,
t
8

)}

≥ sup
t′<t

N
(
x, 2(1−2q)n−2q

(
2p − 4

3

)q

tq
)

for all x Î X and n Î N. Observe that, for 0 < q < 1
2, the last term tends to 1 as n ®

∞ by (N5). This implies that N’(F(x) - F’(x), t) = 1 and F(x) = F’(x) for all x Î X by

(N2).

Remark 2.3. Consider a mapping f : X ® Y satisfying (2.1) for all x, y, z Î X and a

real number q <0. Take any t >0. If we choose a real number s with 0 < 3s < t, then

we have

N′(Df (x, y, z), t) ≥ N′(Df (x, y, z), 3s) ≥ min{N(x, sq),N(y, sq),N(z, sq)}

for all x, y, z Î X. Since q <0, we have lims→0 + sq = ∞. This implies that

lim
s→0+

N(x, sq) = lim
s→0+

N(y, sq) = lim
z→0+

N(x, sq) = 1

and so

N′(Df (x, y, z), t) = 1

for all x, y, z Î X and t >0. By (N2), it allows us to get Df(x, y, z) = 0 for all x, y, z Î
X. In other words, f is itself a quadratic-additive mapping if f is a fuzzy q-almost quad-

ratic-additive mapping for the case q <0.

Corollary 2.4. Let f be an even mapping satisfying all of the conditions of Theorem

2.2. Then there is a unique quadratic mapping F : X ®Y such that

N′(F(x) − f (x), t) ≥ sup
t′<t

N
(
x,

( |4 − 2p|t′
3

)q)
(2:10)

for all x Î X and t >0, where p = 1/q.

Proof. Let Jn f be defined as in Theorem 2.2. Since f is an even mapping, we obtain

Jnf (x) =

{
f (2nx)+f (−2nx)

2·4n if q > 1
2 ,

1
2 (4

n(f (2−nx) + f (−2−nx))) if 0 < q < 1
2

for all x Î X. Notice that J0 f (x) = f (x) and

Jjf (x) − Jj+1f (x) =

⎧⎪⎨
⎪⎩

Df (2jx,2jx,−2jx)
2·4j+1 + Df (−2jx,−2jx,2jx)

2.4j+1
if q > 1

2 ,

− 4j
2

(
Df

( −x
2j+1 ,

−x
2j+1 ,

x
2j+1

)
+Df

( x
2j+1 ,

x
2j+1 ,

−x
2j+1

))
if 0 < q < 1

2
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for all x Î X and j Î N ∪ {0}. From these, using the similar method in Theorem 2.2,

we obtain the quadratic-additive function F satisfying (2.10). Notice that F(x) := N’ -

limn®∞ Jnf (x) for all x Î X, F is even, and DF (x, y, z) = 0 for all x, y, z Î X. Hence,

we get

F(x + y) + F(x − y) − 2F(x) − 2F(y) = −DF(x, y,−x) = 0

for all x, y Î X. This means that F is a quadratic mapping.

Corollary 2.5. Let f be an odd mapping satisfying all of the conditions of Theorem

2.2. Then there is a unique additive mapping F : X ® Y such that

N′(F(x) − f (x), t) ≥ sup
t′<t

N
(
x,

( |2 − 2p|t′
3

)q)
(2:11)

for all x Î X and t >0, where p = 1/q.

Proof. Let Jnf be defined as in Theorem 2.2. Since f is an odd mapping, we obtain

Jnf (x) =
{ f (2nx)+f (−2nx)

2n+1 if q > 1,
2n−1(f (2−nx) + f (−2−nx)) if 0 < q < 1

for all x Î X. Notice that J0 f (x) = f (x) and

Jjf (x) − Jj+1f (x) =

⎧⎨
⎩

Df (2jx,2jx,−2jx)
2j+2 − Df (−2jx,−2jx,2jx)

2j+2 if q ¿ 1,
−2j−1

(
Df

( x
2j+1 ,

x
2j+1 ,

−x
2j+1

)
−Df

( −x
2j+1 ,

−x
2j+1 ,

x
2j+1

))
if 0 ¡ q < 1

for all x Î X and j Î N ∪ {0}. From these, using the similar method in Theorem 2.2,

we obtain the quadratic-additive function F satisfying (2.11). Notice that F(x) := N’ -

limn®∞ Jn f (x) for all x Î X, F is odd, F (2x) = 2F (x), and DF (x, y, z) = 0 for all x, y,

z Î X. Hence, we get

F(x + y) − F(x) − F(y) = DF
(
x − y
2

,
x + y
2

,
−x + y

2

)
= 0

for all x, y Î X. This means that F is an additive mapping.

We can use Theorem 2.2 to get a classical result in the framework of normed spaces.

Let (X, || · ||) be a normed linear space. Then we can define a fuzzy norm NX on X by

following

NX(x, t) =
{
0, t ≤ ‖ x ‖
1, t > ‖ x ‖

where x Î X and t Î ℝ, see [14]. Suppose that f : X ® Y is a mapping into a Banach

space (Y, ||| · |||) such that

|||Df (x, y, z)||| ≤ ‖ x‖p+ ‖ y‖p+ ‖ z‖p

for all x, y, z Î X, where p >0 and p ≠ 1, 2. Let NY be a fuzzy norm on Y. Then we

get

NY(Df (x, y, z), s + t + u) =
{
0, s + t + u ≤ |||Df (x, y, z)|||
1, s + t + u > |||Df (x, y, z)|||

for all x, y, z Î X and s, t, u Î ℝ. Consider the case NY (Df (x, y, z), s + t + u) = 0.

This implies that
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‖ x‖p+ ‖ y‖p+ ‖ z‖p ≥ | ‖ Df (x, y, z)| ‖ ≥ s + t + u

and so either ||x||p ≥ s or ||y||p ≥ t or ||z ||p ≥ u in this case. Hence, for q = 1
p, we

have

min{NX(x, sq),NX(y, tq),NX(z, uq)} = 0

for all x, y, z Î X and s, t, u >0. Therefore, in every case, the inequality

NY(Df (x, y, z), s + t + u) ≥ min{NX(x, sq),NX(y, tq),NX(z, uq)}

holds. It means that f is a fuzzy q-almost quadratic-additive mapping, and by Theo-

rem 2.2, we get the following stability result.

Corollary 2.6. Let (X, || · ||) be a normed linear space and let (Y, |||·|||) be a Banach

space. If f : X ® Y satisfies

|||Df (x, y, z)||| ≤ ‖ x‖p+ ‖ y‖p+ ‖ z‖p

for all x, y, z Î X, where p >0 and p ≠ 1, 2, then there is a unique quadratic-additive

mapping F : X ® Y such that

|||F(x) − f (x)||| ≤
⎧⎨
⎩

3
2−2p ||x||p if p < 1,

6
(2−2p)(4−2p) ||x||p if 1 < p < 2,
3

2p−4 ||x||p if 2 < p

for all x Î X.
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