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Abstract

In this article, we introduce two new different classes of noncommuting selfmaps.
The first class is more general than JH-operator class of Hussain et al. (Common
fixed points for JH-operators and occasionally weakly biased pairs under relaxed
conditions. Nonlinear Anal. 74(6), 2133-2140, 2011) and occasionally weakly
compatible class. We establish the existence of common fixed point theorems for
these classes. Several invariant approximation results are obtained as applications.
Our results unify, extend, and complement several well-known results.
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1. Introduction
The fixed point theorem, generally known as the Banach contraction principle,

appeared in explicit form in Banach’s thesis in 1922 [1], where it was used to establish

the existence of a solution for an integral equation. Since its simplicity and usefulness,

it has become a very popular tool in solving existence problems in many branches of

mathematical analysis. Banach contraction principle has been extended in many differ-

ent directions. Many authors established fixed point theorems involving more general

contractive conditions.

In 1976, Jungck [2] extend the Banach contraction principle to a common fixed

point theorem for commuting maps. Sessa [3] defined the notion of weakly commuting

maps and established a common fixed point for this maps. Jungck [4] coined the term

compatible mappings to generalize the concept of weak commutativity and showed

that weakly commuting maps are compatible but the converse is not true. Afterward,

many authors studied about common fixed point theorems for noncommuting maps

(see [5-14]).

In 1996, Al-Thagafi [15] established some theorems on invariant approximations for

commuting maps. Shahzad [16], Al-Thagafi and Shahzad [17,18], Hussain and Jungck

[19], Hussain [20], Hussain and Rhoades [21], Jungck and Hussain [22], O’Regan and

Hussain [23], and Pathak and Hussain [24] extended the result of Al-Thagafi [15] and

Ciric [25] for pointwise R-subweakly commuting maps, compatible maps, Cq-commuting

maps, and Banach operator pairs. Pathak and Hussain [26] introduced two new classes of

noncommuting selfmaps, so-called P-operator and P-suboperator pair class. Recently,
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Hussain et al. [27] introduced JH-operator and occasionally weakly g-biased class which

are more general than above classes and established common fixed point theorems for

these class.

In this article shall introduce two new classes of noncommuting selfmaps. First class,

generalized JH-operator class, contains JH-operator classes of Hussain et al. [27]

and occasionally weakly compatible classes. Second class is the so-called generalized

JH-suboperator class. We will be present some common fixed point theorems for

these classes and the existence of the common fixed points for best approximation.

Our results improve, extend, and complement all the results in literature.

2. Preliminaries
Let M be a subset of a norm space X. We shall use cl(A) and wcl(A) to denote the clo-

sure and the weak closure of a set A, respectively, and d(x, A) to denote inf{||x-y|| : y

Î A} where x Î X and A ⊆ X. Let f and T be selfmaps of M. A point x Î M is called a

fixed point of f if fx = x. The set of all fixed points of f is denoted by F(f). A point x Î
M is called a coincidence point of f and T if fx = Tx. We shall call w = fx = Tx a point

of coincidence of f and T. A point x Î M is called a common fixed point of f and T if x

= fx = Tx. Let C(f, T), PC(f, T), and F(f, T) denote the sets of all coincidence points,

points of coincidence, and common fixed points, respectively, of the pair (f, T).

The map T is called contraction [resp. f-contraction] on M if ||Tx-Ty|| ≤ k||x-y||

[resp. ||Tx - Ty|| ≤ k||fx - fy||] for all x, y Î M and for some k Î [0, 1). The map T is

called nonexpansive [resp. f-nonexpansive] on M if ||Tx - Ty|| ≤ ||x - y|| [resp. ||Tx -

Ty|| ≤ ||fx - fy||] for all x, y Î M. The pair (f, T) is called:

(i): commuting if Tfx = fTx for all x Î M;

(ii): R-weakly commuting [8] if for all x Î M, there exists R >0 such that

||fTx − Tfx|| ≤ R||fx − Tx||.

If R = 1, then the maps are called weakly commuting;

(iii): compatible [28] if lim
n→∞ ||Tf xn − fTxn|| = 0 when {xn} is a sequence such that

lim
n→∞ Txn = lim

n→∞ f xn = t

for some t Î M;

(iv): weakly compatible [29] if Tfx = fTx for all x Î C(f, T);

(v): occasionally weakly compatible [18,30] if fTx = Tfx for some x Î C(f, T);

(vi): Banach operator pair [31] if f(F(T)) ⊆ F(T);

(vii): P-operator [26] if ||u - Tu|| ≤ diam (C(f, T)) for some u Î C(f, T);

(viii): JH-operator [27] if there exist a point w = fx = Tx in PC(f, T) such that

||w − x|| ≤ diam (PC(f ,T)).

The set M is called convex if kx + (1 - k)y Î M for all x, y Î M and all k Î [0, 1];

and q-starshaped with q Î M if the segment [q, x] = {kx + (1 - k)q : k Î [0, 1]} joining

q to x is contained to M. The map f : M ® M is called affine if M is convex and f(kx

+ (1 - k)y) = kfx + (1 - k)fy for all x, y Î M and all k Î [0, 1]; and q-affine if M is q-

starshaped and f(kx + (1 - k)q) = kfx + (1 - k)fq for all x, y Î M and all k Î [0, 1].
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A map T : M ® X is said to be semicompact if a sequence {xn} in M such that

(xn - Txn) ® 0 has a subsequence {xj} in M such that xj ® z for some z Î M.

Clearly if cl(T(M)) is compact, then T(M) is complete, T(M) is bounded, and T is

semicompact. The map T : M ® X is said to be weakly semicompact if a sequence

{xn} in M such that (xn - Txn) ® 0 has a subsequence {xj} in M such that xj ® z

weakly for some z Î M. The map T : M ® X is said to be demiclosed at 0 if, for

every sequence {xn} in M converging weakly to x and {Txn} converges to 0 Î X, then

Tx = 0.

3. Generalized JH-operator classes
We begin this section by introduce a new noncommuting class.

Definition 3.1. Let f and T be selfmaps of a normed space X. The order pair (f, T) is

called a generalized JH-operator with order n if there exists a point w = fx = Tx in PC

(f, T) such that

||w − x|| ≤ (diam (PC(f ,T)))n (3:1)

for some n Î N.

It is obvious that a JH-operator pair (f, T) is generalized JH-operator with order n.

But the converse is not true in general, see Example 3.2.

Example 3.2. Let X = ℝ with usual norm and M = [0, ∞). Define f, T : M ® M by

fx =

⎧⎨
⎩
3, x = 0;
5, x = 2;
2x, another point,

Tx =

⎧⎨
⎩
3, x = 0;
5, x = 2;
x2, another point.

Then C(f, T) = {0, 2} and PC(f, T) = {3, 5}. Obvious (f, T) is a generalized JH-opera-

tor with order n ≥ 2 but not a JH-operator and so not a occasionally weakly compati-

ble and not weakly compatible. Moreover, note that F(T) = {1} and f1 = 2 ∉ F(T)

which implies that (f, T) is not a Banach operator pair.

Theorem 3.3. Let f and T be selfmaps of a nonempty subset M of a normed space X

and (f, T) be a generalized JH-operator with order n on M. If f and T satisfying the

following condition:

||Tx − Ty|| ≤ kmax{||fx − fy||, ||fx − Tx||, ||fy − Ty||, ||fx − Ty||, ||fy − Tx||}, (3:2)

for all x, y Î M and 0 ≤ k <1, then f and T have a unique common fixed point.

Proof. By the notation of generalized JH-operator, we get that there exists a point w

Î M such that w = fx = Tx and

||w − x|| ≤ (diam (PC(f ,T)))n (3:3)

for some n Î N. Suppose there exists another point y Î M for which z = fy = Ty.

Then from (3.2), we get

||Tx − Ty|| ≤ kmax{||fx − fy||, ||fx − Tx||, ||fy − Ty||, ||fx − Ty||, ||fy − Tx||}
= kmax{||Tx − Ty||, 0, 0, ||Tx − Ty||, ||Ty − Tx||}
≤ k||Tx − Ty||.

(3:4)

Since 0 ≤ k <1, the inequality (3.4) implies that ||Tx - Ty|| = 0, which, in turn

implies that w = fx = Tx = z. Therefore, there exists a unique element w in M such

that w = fx = Tx. So diam(PC(f, T)) = 0. Using (3.3), we have
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d(w, x) ≤ (diam (PC(f ,T)))n = 0.

Thus w = x, that is x is a unique common fixed point of f and T. □
Definition 3.4. Let M be a q-starshaped subset of a normed space X and f, T self-

maps of a normed space M. The order pair (f, T) is called a generalized JH-subopera-

tor with order n if for each k Î [0, 1], (f, Tk) is a generalized JH-operator with order

n that is, for k Î [0, 1] there exists a point w = fx = Tkx in PC(f, Tk) such that

d(w, x) ≤ (diam (PC(f ,Tk)))n (3:5)

for some n Î N, where Tk is selfmap of M such that Tkx = kTx + (1 - k)q for all

x Î M.

Clearly, a generalized JH-suboperator with order n is generalized JH-operator with

order n but the converse is not true in general, see Example 3.5.

Example 3.5. Let X = ℝ with usual norm and M = [0, ∞). Define f, T : M ® M (see

Example 3.2). Then M is q-starshaped for q = 0 and C(f, T) = {0, 2}, C(f ,Tk) = { 2k }, and
PC(f ,Tk) = { 4k } for k Î (0, 1). Obvious (f, T) is a generalized JH-operator with n = 2

but not a generalized JH-suboperator for every n Î N as

∥∥∥∥
2
k

− Tk

(
2
k

)∥∥∥∥ =

∥∥∥∥
2
k

− 4
k

∥∥∥∥ =
2
k
> 0 = (diam (PC(f ,Tk)))n (3:6)

for each k Î (0, 1).

Theorem 3.6. Let f and T be selfmaps on a q-starshaped subset M of a normed space

X. Assume that f is q-affine, (f, T) is a generalized JH-suboperator with order n0, and

for all x, y Î M,

||Tx − Ty|| ≤ max{||fx − fy||, d(fx, [q,Tx]), d(fy, [q,Ty]), d(fx, [q, Ty]), d(fy, [q,Tx])}. (3:7)

Then F(f, T) ≠ ∅ if one of the following conditions holds:

(a): cl(T(M)) is compact and f and T are continuous;

(b): wcl(T(M)) is weakly compact, f is weakly continuous and (f - T) is demiclosed

at 0;

(c): T(M) is bounded, T is semicompact and f and T are continuous;

(d): T(M) is bounded, T is weakly semicompact, f is weakly continuous and (f - T) is

demiclosed at 0.

Proof. Let {kn} ⊆ (0, 1) such that kn ® 1 as n ® ∞. For n Î N, we define Tn : M ®
M by Tnx = knTx + (1 - kn)q for all x Î M. Since (f, T ) is a generalized JH-subopera-

tor with order n0, (f, Tn) is a generalized JH-operator order n0 for all n Î N. Using

inequality (3.7) it follows that

||Tnx − Tny|| = kn||Tx − Ty||
≤ kn max{||fx − fy||, d(fx, [q,Tx]), d(fy, [q,Ty]), d(fx, [q,Ty]), d(fy, [q,Tx])}
≤ kn max{||fx − fy||, ||fx − Tnx||, ||fy − Tny||, ||fx − Tny||, ||fy − Tnx||},
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for all x, y Î M. By Theorem 3.3, there exists xn Î M such that xn = fxn = Tnxn for

every n Î N.

(a): As cl(T(M)) is compact, there exists a subsequence {Txm} of {Txn} such that

lim
m→∞ Txm = y for some y Î M. By the definition of Tm, we get

lim
m→∞ xm = lim

m→∞ Tmxm = lim
m→∞(kmTxm + (1 − km)q) = lim

m→∞ Txm = y.

Since f and T are continuous, y = fy = Ty that is y Î F(f, T) and then F(f, T) ≠ ∅.

(b): From weakly compact of wcl(T(M)) there exist a subsequence {xm} of {xn} in M

converging weakly to y Î M as m ® ∞. Since f is weakly continuous, fy = y that is

lim
m→∞(f xm − Txm) = 0. It follows from (f - T) is demiclosed at 0 and

lim
m→∞(f xm − Txm) = 0 that fy - Ty = 0. Therefore, y = fy = Ty that is F(f, T) ≠ ∅.

(c): Since T(M) is bounded, kn ® 1, and

||xn − Txn|| = ||Tnxn − Txn||
= ||knTxn + (1 − kn)q − Txn||
= ||(1 − kn)(q − Txn)||
≤ (1 − kn)(||q|| + ||Txn||)

for all n Î N, we get lim
m→∞(xn − Txn) = 0. As T is semicompact, there exist a subse-

quence {xm} of {xn} in M such that lim
m→∞ xm = y for some y Î M. By definition of

Tm, we get

y = lim
m→∞ xm = lim

m→∞ Tmxm = lim
m→∞(kmTxm + (1 − km)q) = lim

m→∞ Txm.

By the continuous of both f and T, we have y = fy = Ty. Therefore F(f, T) ≠ ∅.

(d): Similarly case (c), we have lim
m→∞(xn − Txn) = 0. Since T is weakly semicompact,

there exist a subsequence {xm} of {xn} in M such that converging weakly to y Î M

as m ® ∞. By weak continuity of f, we get fy = y. It follows from

lim
m→∞(f xm − Txm) = lim

m→∞(xm − Txm) = 0, xm converging weakly to y, and f - T is

demiclosed at 0 that (f - T)(y) = 0 which implies that fy = Ty. Therefore y = fy =

Ty and hence y Î F(f, T).

□
Remark 3.7. We can replace assumption of f being q-affine by q Î F(f) and f(M) =

M in Theorem 3.6.

If f is identity mapping in Theorem 3.6, then we get the following corollary.

Corollary 3.8. Let T be selfmaps on a q-starshaped subset M of a normed space X.

Assume that for all x, y Î M,

||Tx − Ty|| ≤ max{||x − y||, d(x, [q,Tx]), d(y, [q,Ty]), d(x, [q, Ty]), d(y, [q,Tx])}. (3:8)

Then F(T) ≠ ∅ if one of the following conditions holds:

(a): cl(T(M)) is compact and T is continuous;
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(b): wcl(T(M)) is weakly compact and (I - T) is demiclosed at 0, where I is identity

on M;

(c): T(M) is bounded, T is semicompact and T is continuous;

(d): T(M) is bounded, T is weakly semicompact and (I - T) is demiclosed at 0, where

I is identity on M.

4. Invariant approximations
In 1999, invariant approximations for noncommuting maps were considered by Shahzad

[32]. As M is a subset of a normed space X and p Î X, let

BM(p) := {x ∈ M : ||x − p|| = d(p,M)},
Cf
M(p) := {x ∈ M : fx ∈ BM(p)},
Df

M(p) := BM(p) ∩ Cf
M(p),

and

Mp := {x ∈ M : ||x|| ≤ 2||p||}.

The set BM(p) is called the set of best approximants to p Î X out of M. Let C0
denote the class of closed convex subsets M of X containing 0. It is known that BM(p)

is closed, convex, and contained in Mp ∈ C0.
Theorem 4.1. Let M be a subset of a normed space X, f and T be selfmaps of X with

T(∂M ∩ M) ⊆ M, p Î F(f, T), BM (p) be a closed q-starshaped. Assume that f(BM (p)) =

BM (p), q Î F (f ), (f, T ) is a generalized JH-suboperator with order n0 on BM (p),

and for all x, y Î BM (p) ∪ {p},

||Tx − Ty|| ≤
⎧⎨
⎩

||fx − fp|| if y = p;
max{||fx − fy||, d(fx, [q,Tx]), d(fy, [q,Ty]),
d(fx, [q,Ty]), d(fy, [q,Tx])} if y ∈ BM(p).

(4:1)

If cl(T(BM (p))) is compact, f and T are continuous on BM (p), then F (f, T )∩BM (p) ≠ ∅.

Proof. Let x Î BM (p). It follows from ||kx + (1 - k)p - p)|| = k||x - p|| < d(p, M) for

all k Î (0, 1) that {kx+(1 - k)p : k Î (0, 1)}∩M ≠ ∅ which implies that x Î ∂M ∩ M. So

BM (p) ⊆ ∂M ∩ M and hence T(BM (p)) ⊆ T (∂M ∩ M ). As T (∂M ∩ M ) ⊆ M that T

(BM (p)) ⊆ M. Now the result follows from Theorem 3.6 (a) with M = BM (p). There-

fore, F(f, T) ∩ BM (p) ≠ ∅. □
Theorem 4.2. Let M be a subset of a normed space X, f and T be selfmaps of X with

T(∂M ∩ M) ⊆ M, p Î F(f, T), Cf
M(p)be a closed q-starshaped. Assume that

f (Cf
M(p)) = Cf

M(p), q Î F (f ), (f, T ) is a generalized JH -suboperator with order n0 on

Cf
M(p), and for all x, y ∈ Cf

M(p) ∪ {p},

||Tx − Ty|| ≤
⎧⎨
⎩

||fx − fp|| if y = p;
max{||fx − fy||, d(fx, [q,Tx]), d(fy, [q,Ty]),
d(fx, [q,Ty]), d(fy, [q,Tx])} if y ∈ Cf

M(p).
(4:2)

If cl(T(Cf
M(p)))is compact, f and T are continuous on Cf

M(p), then F (f, T)∩BM (p) ≠ ∅.

Proof. Let x ∈ Cf
M(p). By definition of Cf

M(p) and f (Cf
M(p)) = Cf

M(p), we have

Cf
M(p) ⊆ BM(p). Using the same argument in the proof of Theorem 4.1 shows that

there exists x Î ∂M ∩ M. It follows from T(∂M ∩ M) ⊆ f(M) ∩ M that Tx Î f(M).
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Therefore, we can find a point z Î M such that Tx = fz. Thus z ∈ Cf
M(p) which implies

that T(Cf
M(p)) ⊆ f (Cf

M(p)) = Cf
M(p). Now the result follows from Theorem 3.6 (a) with

M = Bf
M(p). Therefore, we have F (f, T) ∩ BM (p) ≠ ∅. □

Theorem 4.3. Let M be a subset of a normed space X, f and T be selfmaps of X with

T(∂M ∩ M) ⊆ M, p Î F(f, T), BM (p) be a weakly closed and q-starshaped. Assume

that f(BM (p)) = BM (p), q Î F (f), (f, T) is a generalized JH-suboperator with order n0
on BM (p), and for all x, y Î BM (p) ∪ {p},

||Tx − Ty|| ≤
⎧⎨
⎩

||fx − fp|| if y = p;
max{||fx − fy||, d(fx, [q,Tx]), d(fy, [q,Ty]),
d(fx, [q,Ty]), d(fy, [q,Tx])} if y ∈ BM(p).

(4:3)

If wcl(T(BM (p))) is weakly compact, f is weakly continuous on BM (p) and (f - T) is

demiclosed at 0, then F(f, T) ∩ BM (p) ≠ ∅.

Proof. We use an argument similar to that in Theorem 4.1 and apply Theorem 3.6

(b) instead of Theorem 3.6 (a). □
Theorem 4.4. Let M be a subset of a normed space X, f and T be selfmaps of X with

T(∂M ∩ M) ⊆ M, p Î F(f, T), Cf
M(p)be a weakly closed and q-starshaped. Assume that

f (Cf
M(p)) = Cf

M(p), q Î F (f), (f, T) is a generalized JH-suboperator with order n0 on

Cf
M(p), and for all x, y ∈ Cf

M(p) ∪ {p},

||Tx − Ty|| ≤
⎧⎨
⎩

||fx − fp|| if y = p;
max{||fx − fy||, d(fx, [q,Tx]), d(fy, [q,Ty]),
d(fx, [q,Ty]), d(fy, [q,Tx])} if y ∈ Cf

M(p).
(4:4)

If wcl(T(Cf
M(p)))is weakly compact, f is weakly continuous on Cf

M(p)and (f - T) is

demiclosed at 0, then F(f, T) ∩ BM (p) ≠ ∅.

Proof. We use an argument similar to that in Theorem 4.2 and apply Theorem 3.6

(b) instead of Theorem 3.6 (a). □
Theorem 4.5. Let M be a subset of a normed space X, f and T be selfmaps of X, p Î

F(f, T), M ∈ C0with T (Mp) ⊆ f(M ) ⊆ M. Assume that ||fx - p|| = ||x - p|| for all x Î
M and for all x, y Î Mp ∪ {p},

||Tx − Ty|| ≤
⎧⎨
⎩

||fx − fp|| if y = p;
max{||fx − fy||, d(fx, [q,Tx]), d(fy, [q,Ty]),
d(fx, [q,Ty]), d(fy, [q,Tx])} if y ∈ Mp.

(4:5)

If cl(f(Mp)) is compact, then BM (p) is nonempty, closed, and convex and T (BM (p)) ⊆
f(BM (p)) ⊆ BM (p). If in addition, for all x, y Î BM (p),

||fx − fy|| ≤ max{||x − y||, d(x, [q, fx]), d(y, [q, fy]), d(x, [q, fy]), d(y, [q, fx])}, (4:6)

then F(f) ∩ BM (p) ≠ ∅ and F(T) ∩ BM (p) ≠ ∅. Moreover, F(f, T) ∩ BM (p) ≠ ∅ if for

some q Î BM (p), f is q-affine and (f, T) is a generalized JHsuboperator with order n

on BM (p).

Proof. Assume that p ∉ M. If u Î M\Mp, then ||u|| >2||p||. Since 0 Î M, we get

||x − p|| ≥ ||x|| − ||p|| > ||p|| ≥ d(p,M).
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Thus a := d(p, Mp) = d(p, M). As cl(f (Mp)) is compact and the norm is continuous

that there exists z Î cl(f(Mp)) such that b := d(p, cl(f (Mp))) = ||z - p||. So we have

d(p, cl(f (Mp))) ≤ ||fy − p|| = ||y − p||.

for all y Î Mp. Therefore, a = b and BM (p) is nonempty closed and convex such

that f(BM (p)) ⊆ BM (p). Next step, we show that T (BM (p)) ⊆ f (BM (p)). Suppose that

w Î T(BM (p)). It follows from T (BM (p)) ⊆ T (Mp) ⊆ f (M) that there exists w1 Î Mp

and w2 Î M such that w = Tw1 = fw2. Using the condition (4.5), we have

||w2−p|| = ||fw2−Tp|| = ||Tw1−Tp|| ≤ ||fw1−fp|| = ||fw1−p|| = ||w1−p|| = d(p,M).

Thus, w2 Î BM (p) and w1 Î f (BM (p)) which implies that T (BM (p)) ⊆ f (BM (p)) ⊆
BM (p). Now, suppose that f satisfies inequality (4.6) on BM (p). Therefore, the condi-

tion (4.5) on Mp ∪ {p} implies that

||Tx − Ty|| ≤ max{||x − y||, d(x, [q,Tx]), d(y, [q,Ty]), d(x, [q, Ty]), d(y, [q,Tx])}, (4:7)

for all x, y Î BM (p). Since f (Mp) is compact, f (BM (p)) and T (BM (p)) are compact.

Moreover, f(BM (p)) ⊆ BM (p) and T (BM (p)) ⊆ BM (p). It follows from Corollary 3.8

that F(f) ∩ BM (p) ≠ ∅ and F(T) ∩ BM (p) ≠ ∅. Finally, we follow from Theorem 3.6

by replacing M with BM (p). □
Theorem 4.6. Let M be a subset of a normed space X, f and T be selfmaps of X, p Î

F(f, T), M ∈ C0with T (Mp) ⊆ f (M ) ⊆ M. Assume that ||fx - p|| = ||x - p|| for all x Î
M and for all x, y Î Mp ∪ {p},

||Tx − Ty|| ≤
⎧⎨
⎩

||fx − fp|| if y = p;
max{||fx − fy||, d(fx, [q,Tx]), d(fy, [q,Ty]),
d(fx, [q,Ty]), d(fy, [q,Tx])} if y ∈ Mp.

(4:8)

If cl(T(Mp)) is compact, then BM(p) is nonempty, closed, convex, and T (BM (p)) ⊆ f

(BM (p)) ⊆ BM (p). If in addition, for all x, y Î BM (p),

||fx − fy|| ≤ max{||x − y||, d(x, [q, fx]), d(y, [q, fy]), d(x, [q, fy]), d(y, [q, fx])}, (4:9)

then F(T) ∩ BM (p) ≠ ∅. Moreover, F(f, T) ∩ BM (p) ≠ ∅ if for some q Î BM (p), f is

q-affine and (f, T) is a generalized JHsuboperator with order n on BM (p).

Proof. We can obtain the result by using an argument similar to that in Theorem 4.5.

□
Theorem 4.7. Let M be a subset of a Banach space X, f and T be selfmaps of X, p Î

F(f, T), M ∈ C0with T (Mp) ⊆ f (M ) ⊆ M. Assume that ||fx - p|| = ||x - p|| for all x Î
M and for all x, y Î Mp ∪ {p},

||Tx − Ty|| ≤
⎧⎨
⎩

||fx − fp|| if y = p;
max{||fx − fy||, d(fx, [q,Tx]), d(fy, [q,Ty]),
d(fx, [q,Ty]), d(fy, [q,Tx])} if y ∈ Mp.

(4:10)

If wcl(f(Mp)) is weakly compact and (f - T) is demiclosed at 0, then BM (p) is none-

mpty, (weakly) closed, and convex and T(BM (p)) ⊆ f(BM (p)) ⊆ BM (p). If, in addition,

for all x, y Î BM (p),

||fx − fy|| ≤ max{||x − y||, d(x, [q, fx]), d(y, [q, fy]), d(x, [q, fy]), d(y, [q, fx])}, (4:11)
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then F(f) ∩ BM (p) ≠ ∅ and F(T) ∩ BM (p) ≠ ∅. Moreover, F(f, T) ∩ BM (p) ≠ ∅ if for

some q Î BM (p), f is q-affine, weakly continuous on BM (p) and (f, T) is a generalized

JHsuboperator with order n on BM (p).

Proof. To obtain the result, we use an argument similar to that in Theorem 4.5 and

apply Theorem 3.6 (b) instead of Theorem 3.6(a), respectively. Finally, we use Lemma

5.5 of Singh et al. [33] with f(x) = ||x - p|| and C = wcl(T(Mp)) to show that there

exists z Î C such that d(p, C) = ||z - p||. □
Theorem 4.8. Let M be a subset of a Banach space X, f and T be selfmaps of X, p Î

F(f, T), M ∈ C0with T (Mp) ⊆ f (M ) ⊆ M. Assume that ||fx - p|| = ||x - p|| for all x Î
M and for all x, y Î Mp ∪ {p},

||Tx − Ty|| ≤
⎧⎨
⎩

||fx − fp|| if y = p;
max{||fx − fy||, d(fx, [q,Tx]), d(fy, [q,Ty]),
d(fx, [q,Ty]), d(fy, [q,Tx])} if y ∈ Mp.

(4:12)

If wcl(f(Mp)) is weakly compact and (f - T) is demiclosed at 0, then BM(p) is none-

mpty, (weakly) closed, and convex and T(BM (p)) ⊆ f (BM (p)) ⊆ BM (p). If in addition,

for all x, y Î BM (p),

||Tx − Ty|| ≤ max{||x − y||, d(x, [q,Tx]), d(y, [q,Ty]), d(x, [q, Ty]), d(y, [q,Tx])},(4:13)

then F(T) ∩ BM (p) ≠ ∅. Moreover, F(f, T) ∩ BM (p) ≠ ∅ if for some q Î BM (p), f is

q-affine, weakly continuous on BM (p) and (f, T) is a generalized JHsuboperator with

order n on BM (p).

Proof. We can obtain the result using an argument similar to that in Theorem 4.7. □
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