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Abstract

Recently, Ryoo introduced the weighted q-Euler numbers and polynomials which are
a slightly different Kim’s weighted q-Euler numbers and polynomials(see C. S. Ryoo, A
note on the weighted q-Euler numbers and polynomials, 2011]). In this paper, we
give some interesting new identities on the weighted q-Euler numbers related to the
q-Bernstein polynomials
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1. Introduction
Let p be a fixed odd prime number. Throughout this paper ℤp, Qp, ℂ and ℂp will

denote the ring of p-adic integers, the field of p-adic rational numbers, the complex

number fields and the completion of algebraic closure of Qp, respectively. Let N be the

set of natural numbers and ℤ+ = N ∪ {0}. Let νp be the normalized exponential valua-

tion of ℂp with |p|p = p−νp(p) = 1
p. When one talks of q-extension, q is variously consid-

ered as an indeterminate, a complex number q Î ℂ, or a p-adic number q Î ℂp. If q Î
ℂ, then one normally assumes |q| <1, and if q Î ℂp, then one normally assumes |q - 1|

p <1. In this paper, the q-number is defined by

[x]q =
1 − qx

1 − q
, .

(see [1-19])

Note that limq®1[x]q = x (see [1-19]). Let f be a continuous function on ℤp. For a Î
N and k, n Î ℤ+, the weighted p-adic q-Bernstein operator of order n for f is defined

by Kim as follows:

B(α)
n,q (f |x) =

n∑
k=0

(
n
k

)
f
(
k

n

)
[x]kqα [1 − x]n−k

q−α

=
n∑

k=0

f
(
k
n

)
B(α)
k,n (x, q), .

(1)

see [4,9,19].
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Here B(α)
k,n (x, q) =

(
n
k

)
[x]kqα [1 − x]n−k

q−α are called the q-Bernstein polynomials of

degree n with weighted a.
Let C(ℤp) be the space of continuous functions on ℤp. For f Î C(ℤp), the fermionic q-

integral on ℤp is defined by

Iq(f ) =
∫
Zp

f (x)dμ−q(x) = lim
N→∞

1 + q

1 + qpN

pN−1∑
x=0

f (x)(−q)x, (2)

see [5-19].

For n Î N, by (2), we get

qn
∫
Zp

f (x + n)dμ−q(x) = (−1)n
∫
Zp

f (x)dμ−q(x) + [2]q
n−1∑
l=0

(−1)n−1−lqlf (l), (3)

see [6,7].

Recently, by (2) and (3), Ryoo considered the weighted q-Euler polynomials which

are a slightly different Kim’s weighted q-Euler polynomials as follows:∫
Zp

[x + y]nqαdμ−q(y) = E(α)n,q (x), for n ∈ Z+ and α ∈ Z, (4)

see [17].

In the special case, x = 0, E(α)n,q (0) = E(α)n,q are called the n-th q-Euler numbers with

weight a (see [14]).

From (4), we note that

E(α)n,q (x) =
[2]q

(1 − qα)n

n∑
l=0

(
n
l

)
(−1)l

qαlx

1 + qαl+1
, (5)

see [17].

and

E(α)n,q (x) =
n∑
l=0

(
n
l

)
[x]n−l

qα qαlxE(α)l,q , (6)

see [17].

That is, (6) can be written as

E(α)n,q (x) = (qαxE(α)q + [x]qα )n,n ∈ Z+. (7)

with usual convention about replacing (E(α)q )n by E(α)n,q.

In this paper we study the weighted q-Bernstein polynomials to express the fermionic

q-integral on ℤp and investigate some new identities on the weighted q-Euler numbers

related to the weighted q-Bernstein polynomials.

2. q-Euler numbers with weight a
In this section we assume that a Î N and q Î ℂ with |q| <1.

Let Fq(t, x) be the generating function of q-Euler polynomials with weight a as fol-

lowings:
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Fq(t, x) =
∞∑
n=0

E(α)n,q (x)
tn

n!
. (8)

By (5) and (8), we get

Fq(t, x) =
∞∑
n=0

(
[2]q

(1 − qα)n

n∑
l=0

(
n
l

)
(−1)l

qαlx

1 + qαl+1

)
tn

n!

= [2]q
∞∑
m=0

(−1)mqme[x+m]qα t.

(9)

In the special case, x = 0, let Fq(t, 0) = Fq(t). Then we obtain the following difference

equation.

qFq(t, 1) + Fq(t) = [2]q. (10)

Therefore, by (8) and (10), we obtain the following proposition.

Proposition 1. For n Î ℤ+, we have

E(α)0,q = 1, and qE(α)n,q (1) + E(α)n,q = 0 if n > 0.

By (6), we easily get the following corollary.

Corollary 2. For n Î ℤ+, we have

E(α)0,q = 1, and q(qαE(α)q + 1)n + E(α)n,q = 0 if n > 0,

with usual convention about replacing (E(α)q )n by E(α)n,q.

From (9), we note that

Fq−1(t, 1 − x) = Fq(−qαt, x). (11)

Therefore, by (11), we obtain the following lemma.

Lemma 3. Let n Î ℤ+. Then we have

E(α)n,q−1 (1 − x) = (−1)nqαnE(α)n,q (x).

By Corollary 2, we get

q2E(α)n,q (2) − q2 − q = q2
n∑
l=0

(
n
l

)
qαl(qαE(α)q + 1)l − q2 − q

= −q
n∑
l=1

(
n
l

)
qαlE(α)l,q − q

= −q
n∑
l=0

(
n
l

)
qαlE(α)l,q

= −qE(α)n,q (1) = E(α)n,q if n > 0.

(12)

Therefore, by (12), we obtain the following theorem.

Theorem 4. For n Î N, we have

E(α)n,q (2) =
1
q2

E(α)n,q +
1
q
+ 1.
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Theorem 4 is important to study the relations between q-Bernstein polynomials and

the weighted q-Euler number in the next section.

3. Weighted q-Euler numbers concerning q-Bernstein polynomials
In this section we assume that a Î ℤp and q Î ℂp with |1 - q|p <1.

From (2), (3) and (4), we note that

q
∫
Zp

[1 − x]nq−αdμ−q(x) = (−1)nqαn+1
∫
Zp

[x − 1]nqαdμ−q(x)

= q
n∑
l=0

(
n
l

)
(−1)l

∫
Zp

[x]lqαdμ−q(x).
(13)

Therefore, by (13) and Lemma 3, we obtain the following theorem.

Theorem 5. For n Î ℤ+, we get

q
∫
Zp

[1 − x]nq−αdμ−q(x) = (−1)nqαn+1E(α)n,q (−1) = qE(α)n,q−1 (2)

= q
n∑
l=0

(
n
l

)
(−1)lE(α)l,q .

Let n Î N. Then, by Theorem 4, we obtain the following corollary.

Corollary 6. For n Î N, we have∫
Zp

[1 − x]nq−αdμ−q(x) = E(α)n,q−1 (2)

= q2E(α)n,q−1 + [2]q.

For x Î ℤp, the p-adic q-Bernstein polynomials with weight a of degree n are given

by

B(α)
k,n (x, q) =

(
n
k

)
[x]kqα [1 − x]n−k

q−α , where n, k ∈ Z+, (14)

see [9].

From (14), we can easily derive the following symmetric property for q-Bernstein

polynomials:

B(α)
k,n (x, q) = B(α)

n−k,n(1 − x, q−1), (15)

see [11]

By (15), we get∫
Zp

B(α)
k,n (x, q)dμ−q(x) =

∫
Zp

B(α)
n−k,n(1 − x, q−1)dμ−q(x)

=
(
n
k

) k∑
l=0

(
k
l

)
(−1)k+l

∫
Zp

[1 − x]n−l
q−α dμ−q(x).

(16)
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Let n, k Î ℤ+ with n > k. Then, by (16) and Corollary 6, we have∫
Zp

B(α)
k,n (x, q)dμ−q(x)

=
(
n
k

) k∑
l=0

(
k
l

)
(−1)k+l

(
q2E(α)n−l,q−1 + [2]q

)

=

⎧⎪⎨
⎪⎩
q2E(α)n,q−1 + [2]q, if k = 0,

q2
(
n
k

) ∑k
l=0

(
k
l

)
(−1)k+lE(α)n−l,q−1 , if k > 0.

(17)

Taking the fermionic q-integral on ℤp for one weighted q-Bernstein polynomials in

(14), we have∫
Zp

B(α)
k,n (x, q)dμ−q(x) =

(
n
k

)∫
Zp

[x]kqα [1 − x]n−k
q−α dμ−q(x)

=
(
n
k

) n−k∑
l=0

(
n − k
l

)
(−1)l

∫
Zp

[x]k+lqα dμ−q(x)

=
(
n
k

) n−k∑
l=0

(
n − k
l

)
(−1)lE(α)l+k,q.

(18)

Therefore, by comparing the coefficients on the both sides of (17) and (18), we

obtain the following theorem.

Theorem 7. For n, k Î ℤ+ with n > k, we have

n−k∑
l=0

(−1)l
(
n − k
l

)
E(α)l+k,q =

⎧⎪⎨
⎪⎩
q2E(α)n,q−1 + [2]q, if k = 0,

q2
∑k

l=0

(
k
l

)
(−1)k+lE(α)n−l,q−1 , if k > 0.

Let n1, n2, k Î ℤ+ with n1 + n2 >2k. Then we see that∫
Zp

B(α)
k,n1

(x, q)B(α)
k,n2

(x, q)dμ−q(x)

=
(
n1
k

)(
n2
k

) 2k∑
l=0

(
2k
l

)
(−1)l+2k

∫
Zp

[1 − x]n1+n2−l
q−α dμ−q(x)

=
(
n1
k

)(
n2
k

) 2k∑
l=0

(
2k
l

)
(−1)l+2k

(
q2E(α)n1+n2−l,q−1 + [2]q

)
.

(19)

By the binomial theorem and definition of q-Bernstein polynomials, we get∫
Zp

B(α)
k,n1

(x, q)B(α)
k,n2

(x, q)dμ−q(x)

=
(
n1
k

) (
n2
k

) n1+n2−2k∑
l=0

(−1)l
(
n1 + n2 − 2k

l

)∫
Zp

[x]2k+lqα dμ−q(x)

=
(
n1
k

) (
n2
k

) n1+n2−2k∑
l=0

(−1)l
(
n1 + n2 − 2k

l

)
E(α)2k+l,q.

(20)
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By comparing the coefficients on the both sides of (19) and (20), we obtain the fol-

lowing theorem.

Theorem 8. Let n1, n2, k Î ℤ+ with n1 + n2 >2k. Then we have

n1+n2−2k∑
l=0

(−1)l
(
n1 + n2 − 2k

l

)
E(α)2k+l,q

=

⎧⎪⎨
⎪⎩
q2E(α)n1+n2,q−1 + [2]q, if k = 0,

q2
∑2k

l=0

(
2k
l

)
(−1)2k+lE(α)n1+n2−l,q−1 , if k > 0.

Let s Î N with s ≥ 2. For n1, n2, ..., ns, k Î ℤ+ with n1 + ... + ns > sk, we have∫
Zp

B(α)
k,n1

(x, q) · · ·B(α)
k,ns

(x, q)︸ ︷︷ ︸
s−times

dμ−q(x)

=
(
n1
k

)
· · ·

(
ns
k

)∫
Zp

[x]skqα [1 − x]n1+···+ns−sk
q−α dμ−q(x)

=
(
n1
k

)
· · ·

(
ns
k

) sk∑
l=0

(
sk
l

)
(−1)l+sk

∫
Zp

[1 − x]n1+···+ns−l
q−α dμ−q(x)

=
(
n1
k

)
· · ·

(
ns
k

) sk∑
l=0

(
sk
l

)
(−1)l+sk

(
q2E(α)n1+···+ns−l,q−1 + [2]q

)
.

(21)

From the binomial theorem and the definition of q-Bernstein polynomials, we note

that ∫
Zp

B(α)
k,n1

(x, q) · · · B(α)
k,ns

(x, q)︸ ︷︷ ︸
s−times

dμ−q(x)

=
(
n1
k

)
· · ·

(
ns
k

) n1+···+ns−sk∑
l=0

(−1)l
(
n1 + · · · + ns − sk

l

)∫
Zp

[x]sk+lqα dμ−q(x)

=
(
n1
k

)
· · ·

(
ns
k

) n1+···+ns−sk∑
l=0

(−1)l
(
n1 + · · · + ns − sk

l

)
E(α)sk+l,q.

(22)

Therefore, by (21) and (22), we obtain the following theorem.

Theorem 9. Let s Î N with s ≥ 2. For n1, n2, ..., ns, k Î ℤ+ with n1 + ... + ns > sk, we

have

n1+···+ns−sk∑
l=0

(−1)l
(
n1 + · · · + ns − sk

l

)
E(α)sk+l,q

=

⎧⎪⎨
⎪⎩
q2E(α)n1+···+ns ,q−1 + [2]q, if k = 0,

q2
∑sk

l=0

(
sk
l

)
(−1)l+skE(α)n1+···+ns−l,q−1 , if k > 0.
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