Some identities on the weighted q-Euler numbers and q-Bernstein polynomials

Taekyun Kim ${ }^{1 *}$, Young-Hee Kim ${ }^{1}$ and Cheon S Ryoo ${ }^{2}$

* Correspondence: tkkim@kw.ac.kr
${ }^{1}$ Division of General EducationMathematics, Kwangwoon University, Seoul 139-701, Korea Full list of author information is available at the end of the article

Abstract

Recently, Ryoo introduced the weighted q-Euler numbers and polynomials which are a slightly different Kim's weighted q-Euler numbers and polynomials(see C. S. Ryoo, A note on the weighted q-Euler numbers and polynomials, 2011]). In this paper, we give some interesting new identities on the weighted q-Euler numbers related to the q-Bernstein polynomials 2000 Mathematics Subject Classification - 11B68, 11S40, 11S80 Keywords: Euler numbers and polynomials, q-Euler numbers and polynomials, weighted, q-Euler numbers and polynomials, Bernstein polynomials, q-Bernstein polynomials

1. Introduction

Let p be a fixed odd prime number. Throughout this paper $\mathbb{Z}_{p}, \mathbb{Q}_{p}, \mathbb{C}$ and \mathbb{C}_{p} will denote the ring of p-adic integers, the field of p-adic rational numbers, the complex number fields and the completion of algebraic closure of \mathbb{Q}_{p}, respectively. Let \mathbb{N} be the set of natural numbers and $\mathbb{Z}_{+}=\mathbb{N} \cup\{0\}$. Let v_{p} be the normalized exponential valuation of \mathbb{C}_{p} with $|p|_{p}=p^{-\nu_{p}(p)}=\frac{1}{p}$. When one talks of q-extension, q is variously considered as an indeterminate, a complex number $q \in \mathbb{C}$, or a p-adic number $q \in \mathbb{C}_{p}$. If $q \in$ \mathbb{C}, then one normally assumes $|q|<1$, and if $q \in \mathbb{C}_{p}$, then one normally assumes $|q-1|$ $p<1$. In this paper, the q-number is defined by

$$
[x]_{q}=\frac{1-q^{x}}{1-q}
$$

(see [1-19])
Note that $\lim _{q \rightarrow 1}[x]_{q}=x$ (see [1-19]). Let f be a continuous function on \mathbb{Z}_{p}. For $\alpha \in$ \mathbb{N} and $k, n \in \mathbb{Z}_{+}$, the weighted p-adic q-Bernstein operator of order n for f is defined by Kim as follows:

$$
\begin{align*}
\mathbb{B}_{n, q}^{(\alpha)}(f \mid x) & =\sum_{k=0}^{n}\binom{n}{k} f\left(\frac{k}{n}\right)[x]_{q^{\alpha}}^{k}[1-x]_{q^{-\alpha}}^{n-k} \tag{1}\\
& =\sum_{k=0}^{n} f\left(\frac{k}{n}\right) B_{k, n}^{(\alpha)}(x, q), .
\end{align*}
$$

see $[4,9,19]$.

Here $B_{k, n}^{(\alpha)}(x, q)=\binom{n}{k}[x]_{q^{\alpha}}^{k}[1-x]_{q^{-\alpha}}^{n-k}$ are called the q-Bernstein polynomials of degree n with weighted α.

Let $C\left(\mathbb{Z}_{p}\right)$ be the space of continuous functions on \mathbb{Z}_{p}. For $f \in C\left(\mathbb{Z}_{p}\right)$, the fermionic q integral on \mathbb{Z}_{p} is defined by

$$
\begin{equation*}
I_{q}(f)=\int_{\mathbb{Z}_{p}} f(x) d \mu_{-q}(x)=\lim _{N \rightarrow \infty} \frac{1+q}{1+q^{p^{N}}} \sum_{x=0}^{p^{N}-1} f(x)(-q)^{x} \tag{2}
\end{equation*}
$$

see [5-19].
For $n \in \mathbb{N}$, by (2), we get

$$
\begin{equation*}
q^{n} \int_{\mathbb{Z}_{p}} f(x+n) d \mu_{-q}(x)=(-1)^{n} \int_{\mathbb{Z}_{p}} f(x) d \mu_{-q}(x)+[2]_{q} \sum_{l=0}^{n-1}(-1)^{n-1-l} q^{l} f(l) \tag{3}
\end{equation*}
$$

see $[6,7]$.
Recently, by (2) and (3), Ryoo considered the weighted q-Euler polynomials which are a slightly different Kim's weighted q-Euler polynomials as follows:

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}}[x+\gamma]_{q^{\alpha}}^{n} d \mu_{-q}(\gamma)=E_{n, q}^{(\alpha)}(x), \text { for } n \in \mathbb{Z}_{+} \text {and } \alpha \in \mathbb{Z}_{1} \tag{4}
\end{equation*}
$$

see [17].
In the special case, $x=0, E_{n, q}^{(\alpha)}(0)=E_{n, q}^{(\alpha)}$ are called the n-th q-Euler numbers with weight α (see [14]).

From (4), we note that

$$
\begin{equation*}
E_{n, q}^{(\alpha)}(x)=\frac{[2]_{q}}{\left(1-q^{\alpha}\right)^{n}} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} \frac{q^{\alpha l x}}{1+q^{\alpha l+1}} \tag{5}
\end{equation*}
$$

see [17].
and

$$
\begin{equation*}
E_{n, q}^{(\alpha)}(x)=\sum_{l=0}^{n}\binom{n}{l}[x]_{q^{\alpha}}^{n-l} q^{\alpha l x} E_{l, q}^{(\alpha)} \tag{6}
\end{equation*}
$$

see [17].
That is, (6) can be written as

$$
\begin{equation*}
E_{n, q}^{(\alpha)}(x)=\left(q^{\alpha x} E_{q}^{(\alpha)}+[x]_{q^{\alpha}}\right)^{n}, n \in \mathbb{Z}_{+} . \tag{7}
\end{equation*}
$$

with usual convention about replacing $\left(E_{q}^{(\alpha)}\right)^{n}$ by $E_{n, q^{*}}^{(\alpha)}$.
In this paper we study the weighted q-Bernstein polynomials to express the fermionic q-integral on \mathbb{Z}_{p} and investigate some new identities on the weighted q-Euler numbers related to the weighted q-Bernstein polynomials.

2. q-Euler numbers with weight α

In this section we assume that $\alpha \in \mathbb{N}$ and $q \in \mathbb{C}$ with $|q|<1$.
Let $F_{q}(t, x)$ be the generating function of q-Euler polynomials with weight α as followings:

$$
\begin{equation*}
F_{q}(t, x)=\sum_{n=0}^{\infty} E_{n, q}^{(\alpha)}(x) \frac{t^{n}}{n!} . \tag{8}
\end{equation*}
$$

By (5) and (8), we get

$$
\begin{align*}
F_{q}(t, x) & =\sum_{n=0}^{\infty}\left(\frac{[2]_{q}}{\left(1-q^{\alpha}\right)^{n}} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} \frac{q^{\alpha l x}}{1+q^{\alpha l+1}}\right) \frac{t^{n}}{n!} \\
& =[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m} e^{[x+m]_{q} \alpha t} \tag{9}
\end{align*}
$$

In the special case, $x=0$, let $F_{q}(t, 0)=F_{q}(t)$. Then we obtain the following difference equation.

$$
\begin{equation*}
q F_{q}(t, 1)+F_{q}(t)=[2]_{q} . \tag{10}
\end{equation*}
$$

Therefore, by (8) and (10), we obtain the following proposition.
Proposition 1. For $n \in \mathbb{Z}_{+}$, we have

$$
E_{0, q}^{(\alpha)}=1, \text { and } q E_{n, q}^{(\alpha)}(1)+E_{n, q}^{(\alpha)}=0 \text { if } n>0
$$

By (6), we easily get the following corollary.
Corollary 2. For $n \in \mathbb{Z}_{+}$, we have

$$
E_{0, q}^{(\alpha)}=1, \quad \text { and } q\left(q^{\alpha} E_{q}^{(\alpha)}+1\right)^{n}+E_{n, q}^{(\alpha)}=0 \text { if } n>0
$$

with usual convention about replacing $\left(E_{q}^{(\alpha)}\right)^{n}$ by $E_{n, q^{-}}^{(\alpha)}$.
From (9), we note that

$$
\begin{equation*}
F_{q^{-1}}(t, 1-x)=F_{q}\left(-q^{\alpha} t, x\right) \tag{11}
\end{equation*}
$$

Therefore, by (11), we obtain the following lemma.
Lemma 3. Let $n \in \mathbb{Z}_{+}$. Then we have

$$
E_{n, q^{-1}}^{(\alpha)}(1-x)=(-1)^{n} q^{\alpha n} E_{n, q}^{(\alpha)}(x)
$$

By Corollary 2, we get

$$
\begin{align*}
q^{2} E_{n, q}^{(\alpha)}(2)-q^{2}-q & =q^{2} \sum_{l=0}^{n}\binom{n}{l} q^{\alpha l}\left(q^{\alpha} E_{q}^{(\alpha)}+1\right)^{l}-q^{2}-q \\
& =-q \sum_{l=1}^{n}\binom{n}{l} q^{\alpha l} E_{l, q}^{(\alpha)}-q \tag{12}\\
& =-q \sum_{l=0}^{n}\binom{n}{l} q^{\alpha l} E_{l, q}^{(\alpha)} \\
& =-q E_{n, q}^{(\alpha)}(1)=E_{n, q}^{(\alpha)} \text { if } n>0
\end{align*}
$$

Therefore, by (12), we obtain the following theorem.
Theorem 4. For $n \in \mathbb{N}$, we have

$$
E_{n, q}^{(\alpha)}(2)=\frac{1}{q^{2}} E_{n, q}^{(\alpha)}+\frac{1}{q}+1 .
$$

Theorem 4 is important to study the relations between q-Bernstein polynomials and the weighted q-Euler number in the next section.

3. Weighted \mathbf{q}-Euler numbers concerning \boldsymbol{q}-Bernstein polynomials

In this section we assume that $\alpha \in \mathbb{Z}_{p}$ and $q \in \mathbb{C}_{p}$ with $|1-q|_{p}<1$.
From (2), (3) and (4), we note that

$$
\begin{align*}
q \int_{\mathbb{Z}_{p}}[1-x]_{q^{-\alpha}}^{n} d \mu_{-q}(x) & =(-1)^{n} q^{\alpha n+1} \int_{\mathbb{Z}_{p}}[x-1]_{q^{\alpha}}^{n} d \mu_{-q}(x) \\
& =q \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} \int_{\mathbb{Z}_{p}}[x]_{q^{\alpha}}^{l} d \mu_{-q}(x) . \tag{13}
\end{align*}
$$

Therefore, by (13) and Lemma 3, we obtain the following theorem.
Theorem 5. For $n \in \mathbb{Z}_{+}$, we get

$$
\begin{align*}
q \int_{\mathbb{Z}_{p}}[1-x]_{q^{-\alpha}}^{n} d \mu_{-q}(x) & =(-1)^{n} q^{\alpha n+1} E_{n, q}^{(\alpha)}(-1)=q E_{n, q^{-1}}^{(\alpha)}(2) \tag{2}\\
& =q \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} E_{l, q}^{(\alpha)} .
\end{align*}
$$

Let $n \in \mathbb{N}$. Then, by Theorem 4, we obtain the following corollary.
Corollary 6. For $n \in \mathbb{N}$, we have

$$
\begin{aligned}
\int_{\mathbb{Z}_{p}}[1-x]_{q^{-\alpha}}^{n} d \mu_{-q}(x) & =E_{n, q^{-1}}^{(\alpha)}(2) \\
& =q^{2} E_{n, q^{-1}}^{(\alpha)}+[2]_{q} .
\end{aligned}
$$

For $x \in \mathbb{Z}_{p}$, the p-adic q-Bernstein polynomials with weight α of degree n are given by

$$
\begin{equation*}
B_{k, n}^{(\alpha)}(x, q)=\binom{n}{k}[x]_{q^{\alpha}}^{k}[1-x]_{q^{-\alpha}}^{n-k}, \text { where } n, k \in \mathbb{Z}_{+} \tag{14}
\end{equation*}
$$

see [9].
From (14), we can easily derive the following symmetric property for q-Bernstein polynomials:

$$
\begin{equation*}
B_{k, n}^{(\alpha)}(x, q)=B_{n-k, n}^{(\alpha)}\left(1-x, q^{-1}\right) \tag{15}
\end{equation*}
$$

see [11]
By (15), we get

$$
\begin{align*}
\int_{\mathbb{Z}_{p}} B_{k, n}^{(\alpha)}(x, q) d \mu_{-q}(x) & =\int_{\mathbb{Z}_{p}} B_{n-k, n}^{(\alpha)}\left(1-x, q^{-1}\right) d \mu_{-q}(x) \\
& =\binom{n}{k} \sum_{l=0}^{k}\binom{k}{l}(-1)^{k+l} \int_{\mathbb{Z}_{p}}[1-x]_{q^{-\alpha}}^{n-l} d \mu_{-q}(x) . \tag{16}
\end{align*}
$$

Let $n, k \in \mathbb{Z}_{+}$with $n>k$. Then, by (16) and Corollary 6 , we have

$$
\begin{align*}
& \int_{\mathbb{Z}_{p}} B_{k, n}^{(\alpha)}(x, q) d \mu_{-q}(x) \\
& =\binom{n}{k} \sum_{l=0}^{k}\binom{k}{l}(-1)^{k+l}\left(q^{2} E_{n-l, q^{-1}}^{(\alpha)}+[2]_{q}\right) \tag{17}\\
& = \begin{cases}q^{2} E_{n, q^{-1}}^{(\alpha)}+[2]_{q^{\prime}} \\
q^{2}\binom{n}{k} \sum_{l=0}^{k}\binom{k}{l}(-1)^{k+l} E_{n-l, q^{-1}}^{(\alpha)}, & \text { if } k>0 .\end{cases}
\end{align*}
$$

Taking the fermionic q-integral on \mathbb{Z}_{p} for one weighted q-Bernstein polynomials in (14), we have

$$
\begin{align*}
\int_{\mathbb{Z}_{p}} B_{k, n}^{(\alpha)}(x, q) d \mu_{-q}(x) & =\binom{n}{k} \int_{\mathbb{Z}_{p}}[x]_{q^{\alpha}}^{k}[1-x]_{q^{-\alpha}}^{n-k} d \mu_{-q}(x) \\
& =\binom{n}{k} \sum_{l=0}^{n-k}\binom{n-k}{l}(-1)^{l} \int_{\mathbb{Z}_{p}}[x]_{q^{\alpha}}^{k+l} d \mu_{-q}(x) \tag{18}\\
& =\binom{n}{k} \sum_{l=0}^{n-k}\binom{n-k}{l}(-1)^{l} E_{l+k, q^{\prime}}^{(\alpha)}
\end{align*}
$$

Therefore, by comparing the coefficients on the both sides of (17) and (18), we obtain the following theorem.
Theorem 7. For $n, k \in \mathbb{Z}_{+}$with $n>k$, we have

$$
\sum_{l=0}^{n-k}(-1)^{l}\binom{n-k}{l} E_{l+k, q}^{(\alpha)}= \begin{cases}q^{2} E_{n, q^{-1}}^{(\alpha)}+[2]_{q^{\prime}} & \text { if } k=0 \\ q^{2} \sum_{l=0}^{k}\binom{k}{l}(-1)^{k+l} E_{n-l, q^{-1}}^{(\alpha)}, & \text { if } k>0\end{cases}
$$

Let $n_{1}, n_{2}, k \in \mathbb{Z}_{+}$with $n_{1}+n_{2}>2 k$. Then we see that

$$
\begin{align*}
& \int_{\mathbb{Z}_{p}} B_{k, n_{1}}^{(\alpha)}(x, q) B_{k, n_{2}}^{(\alpha)}(x, q) d \mu_{-q}(x) \\
& =\binom{n_{1}}{k}\binom{n_{2}}{k} \sum_{l=0}^{2 k}\binom{2 k}{l}(-1)^{l+2 k} \int_{\mathbb{Z}_{p}}[1-x]_{q^{-\alpha}}^{n_{1}+n_{2}-l} d \mu_{-q}(x) \tag{19}\\
& =\binom{n_{1}}{k}\binom{n_{2}}{k} \sum_{l=0}^{2 k}\binom{2 k}{l}(-1)^{l+2 k}\left(q^{2} E_{n_{1}+n_{2}-l, q^{-1}}^{(\alpha)}+[2]_{q}\right) .
\end{align*}
$$

By the binomial theorem and definition of q-Bernstein polynomials, we get

$$
\begin{align*}
& \int_{\mathbb{Z}_{p}} B_{k, n_{1}}^{(\alpha)}(x, q) B_{k, n_{2}}^{(\alpha)}(x, q) d \mu_{-q}(x) \\
& =\binom{n_{1}}{k}\binom{n_{2}}{k} \sum_{l=0}^{n_{1}+n_{2}-2 k}(-1)^{l}\binom{n_{1}+n_{2}-2 k}{l} \int_{\mathbb{Z}_{p}}[x]_{q^{\alpha}}^{2 k+l} d \mu_{-q}(x) \tag{20}\\
& =\binom{n_{1}}{k}\binom{n_{2}}{k} \sum_{l=0}^{n_{1}+n_{2}-2 k}(-1)^{l}\binom{n_{1}+n_{2}-2 k}{l} E_{2 k+l, q}^{(\alpha)} .
\end{align*}
$$

By comparing the coefficients on the both sides of (19) and (20), we obtain the following theorem.

Theorem 8. Let $n_{1}, n_{2}, k \in \mathbb{Z}_{+}$with $n_{1}+n_{2}>2 k$. Then we have

$$
\begin{aligned}
& \sum_{l=0}^{n_{1}+n_{2}-2 k}(-1)^{l}\binom{n_{1}+n_{2}-2 k}{l} E_{2 k+l, q}^{(\alpha)} \\
= & \begin{cases}q^{2} E_{n_{1}+n_{2}, q^{-1}}^{(\alpha)}+[2]_{q^{\prime}} & \text { if } k=0 \\
q^{2} \sum_{l=0}^{2 k}\binom{2 k}{l}(-1)^{2 k+l} E_{n_{1}+n_{2}-l, q^{-1}}^{(\alpha)}, & \text { if } k>0 .\end{cases}
\end{aligned}
$$

Let $s \in \mathbb{N}$ with $s \geq 2$. For $n_{1}, n_{2}, \ldots, n_{s}, k \in \mathbb{Z}_{+}$with $n_{1}+\ldots+n_{s}>s k$, we have

$$
\begin{align*}
& \int_{\mathbb{Z}_{p}} \underbrace{B_{k, n_{1}}^{(\alpha)}(x, q) \cdots B_{k, n_{s}}^{(\alpha)}(x, q)}_{s-\text { times }} d \mu_{-q}(x) \\
& =\binom{n_{1}}{k} \cdots\binom{n_{s}}{k} \int_{\mathbb{Z}_{p}}[x]_{q^{\alpha}}^{s k}[1-x]_{q^{-\alpha}}^{n_{1}+\cdots+n_{s}-s k} d \mu_{-q}(x) \\
& =\binom{n_{1}}{k} \cdots\binom{n_{s}}{k} \sum_{l=0}^{s k}\binom{s k}{l}(-1)^{l+s k} \int_{\mathbb{Z}_{p}}[1-x]_{q^{-\alpha}}^{n_{1}+\cdots+n_{s}-l} d \mu_{-q}(x) \tag{21}\\
& =\binom{n_{1}}{k} \cdots\binom{n_{s}}{k} \sum_{l=0}^{s k}\binom{s k}{l}(-1)^{l+s k}\left(q^{2} E_{n_{1}+\cdots+n_{s}-l, q^{-1}}^{(\alpha)}+[2]_{q}\right) .
\end{align*}
$$

From the binomial theorem and the definition of q-Bernstein polynomials, we note that

$$
\begin{align*}
& \int_{\mathbb{Z}_{p}} \underbrace{B_{k, n_{1}}^{(\alpha)}(x, q) \cdots B_{k, n_{s}}^{(\alpha)}(x, q)}_{s-\text { times }} d \mu_{-q}(x) \\
& =\binom{n_{1}}{k} \cdots\binom{n_{s}}{k} \sum_{l=0}^{n_{1}+\cdots+n_{s}-s k}(-1)^{l}\binom{n_{1}+\cdots+n_{s}-s k}{l} \int_{\mathbb{Z}_{p}}[x]_{q^{\alpha}}^{s k+l} d \mu_{-q}(x) \tag{22}\\
& =\binom{n_{1}}{k} \cdots\binom{n_{s}}{k} \sum_{l=0}^{n_{1}+\cdots+n_{s}-s k}(-1)^{l}\binom{n_{1}+\cdots+n_{s}-s k}{l} E_{s k+l, q}^{(\alpha)}
\end{align*}
$$

Therefore, by (21) and (22), we obtain the following theorem.
Theorem 9. Let $s \in \mathbb{N}$ with $s \geq 2$. For $n_{1}, n_{2}, \ldots, n_{s}, k \in \mathbb{Z}_{+}$with $n_{1}+\ldots+n_{s}>s k$, we have

$$
\begin{aligned}
& \sum_{l=0}^{n_{1}+\cdots+n_{s}-s k}(-1)^{l}\binom{n_{1}+\cdots+n_{s}-s k}{l} E_{s k+l, q}^{(\alpha)} \\
& = \begin{cases}q^{2} E_{n_{1}+\cdots+n_{s}, q^{-1}}^{(\alpha)}+[2]_{q^{\prime}} & \text { if } k=0 \\
q^{2} \sum_{l=0}^{s k}\binom{s k}{l}(-1)^{l+s k} E_{n_{1}+\cdots+n_{s}-l, q^{-1}}^{(\alpha)}, & \text { if } k>0\end{cases}
\end{aligned}
$$

Acknowledgements

The authors would like to express their sincere gratitude to referee for his/her valuable comments.

Author details

${ }^{1}$ Division of General Education-Mathematics, Kwangwoon University, Seoul 139-701, Korea ${ }^{2}$ Department of Mathematics, Hannam University, Daejeon 306-791, Korea

Authors' contributions

All authors contributed equally to the manuscript and read and approved the finial manuscript.

Competing interests

The authors declare that they have no competing interests. Acknowledgment The authors would like to express their sincere gratitude to referee for his/her valuable comments.

Received: 18 February 2011 Accepted: 20 September 2011 Published: 20 September 2011

References

1. Bayad, A: Modular properties of elliptic Bernoulli and Euler functions. Adv Stud Contemp Math. 20, 389-401 (2010)
2. Cangul, IN, Kurt, V, Ozden, H, Simsek, Y: On the higher-order w-q-Genocchi numbers. Adv Stud Contemp Math. 19, 39-57 (2009)
3. Govil, NK, Gupta, V: Convergence of q-Meyer-Konig-Zeller-Durrmeyer operators. Adv Stud Contemp Math. 19, 97-108 (2009)
4. Jang, LC, Kim, W-J, Simsek, Y: A study on the p-adic integral representation on Z_{p} associated with Bernstein and Bernoulli polynomials, Advances in Difference Equations. 2010, 6 (2010) Article ID 163217
5. Jang, LC: A note on Norlund-type twisted q-Euler polynomials and numbers of higher order associated with fermionic invariant q-integrals. J Inequal Appl 2010, 12 (2010). Art. ID 417452
6. Kim, T: The modified q-Euler numbers and polynomials. Adv Stud Contemp Math. 16, 161-170 (2008)
7. Kim, T : Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic integral on Z_{p}. Russ J Math phys. 16, 484-491 (2009). doi:10.1134/S1061920809040037
8. Kim, T: Barnes type multiple q-zeta function and q-Euler polynomials. J phys A: Math Theor 43, 11 (2010). 255201
9. Kim, T: A note on q-Bernstein polynomials. Russ J Math phys. 18, 41-50 (2011)
10. Kim, T: q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients. Russ J Math Phys. 15, 51-57 (2008)
11. Kim, T, Lee, B, Choi, J, Kim, YH, Rim, SH: On the q-Euler numbers and weighted q-Bernstein polynomials. Adv Stud Contemp Math. 21, 13-18 (2011)
12. Kim, T: New approach to q - Euler polynomials of higher order. Russ J Math phys. 17, 218-225 (2010). doi:10.1134/ S1061920810020068
13. Kim, T, Lee, B, Choi, J, Kim, YH: A new approach of q-Euler numbers and polynomials. Proc Jangjeon Math Soc. 14, 7-14 (2011)
14. Kim, T, Choi, J, Kim, YH: q-Bernstein polynomials associated with q-Stirling numbers and Carlitz's q-Bernoulli numbers, Abstract and Applied Analysis. 2010, 11 (2010) Article ID 150975
15. Ozden, H, Simsek, Y: A new extension of q-Euler numbers and polynomials related to their interpolation functions. Appl Math Lett. 21, 934-939 (2008). doi:10.1016/j.aml.2007.10.005
16. Ryoo, CS: On the generalized Barnes type multiple q-Euler polynomials twisted by ramified roots of unity. Proc Jangjeon Math Soc. 13, 255-263 (2010)
17. Ryoo, CS: A note on the weighted q-Euler numbers and polynomials. Adv Stud Contemp Math. 21, 47-54 (2011)
18. Rim, S-H, Jin, J-H, Moon, E-J, Lee, S-J: On multiple interpolation function of the q-Genocchi polynomials. J Inequal Appl 13 (2010). Art ID 351419
19. Simsek, Y, Acikgoz, M: A new generating function of $(q-)$ Bernstein-type polynomials and their interpolation function. Abstr Appl Anal 12 (2010). Art. ID 769095

doi:10.1186/1029-242X-2011-64

Cite this article as: Kim et al.: Some identities on the weighted q-Euler numbers and q-Bernstein polynomials. Journal of Inequalities and Applications 2011 2011:64.

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

$$
\text { Submit your next manuscript at }>\text { springeropen.com }
$$

