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Abstract

Lutwak proposed the notion of Lp-geominimal surface area according to the Lp-
mixed volume. In this article, associated with the Lp-dual mixed volume, we
introduce the Lp-dual geominimal surface area and prove some inequalities for this
notion.
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1 Introduction and main results
Let Kn denote the set of convex bodies (compact, convex subsets with nonempty inter-

iors) in Euclidean space ℝn. For the set of convex bodies containing the origin in their

interiors and the set of origin-symmetric convex bodies in ℝn, we write Kn
o and Kn

c ,

respectively. Let Sn
o denote the set of star bodies (about the origin) in Rn. Let Sn-1

denote the unit sphere in ℝn; denote by V (K) the n-dimensional volume of body K;

for the standard unit ball B in ℝn, denote ωn = V (B).

The notion of geominimal surface area was given by Petty [1]. For K ∈ Kn, the geo-

minimal surface area, G(K), of K is defined by

ω

1
n
n G(K) = inf{nV1(K, Q)V(Q∗)

1
n : Q ∈ Kn}.

Here Q* denotes the polar of body Q and V1(M, N) denotes the mixed volume of

M,N ∈ Kn[2].

According to the Lp-mixed volume, Lutwak [3] introduced the notion of Lp-geomini-

mal surface area. For K ∈ Kn
o, p ≥ 1, the Lp-geominimal surface area, Gp(K), of K is

defined by

ω

p
n
n Gp(K) = inf {nVp(K, Q)V(Q∗)

p
n : Q ∈ Kn

o }. (1:1)

Here Vp(M, N) denotes the Lp-mixed volume of M,N ∈ Kn
o[3,4]. Obviously, if p = 1,

Gp(K) is just the geominimal surface area G(K). Further, Lutwak [3] proved the follow-

ing result for the Lp-geominimal surface area.

Theorem 1.A. If K ∈ Kn
o, p ≥ 1, then

Gp(K) ≤ nω
p
n
n V(K)

n−p
n , (1:2)

with equality if and only if K is an ellipsoid.
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Lutwak [3] also defined the Lp-geominimal area ratio as follows: For K ∈ Kn
o , the Lp-

geominimal area ratio of K is defined by

(
Gp(K)

n

nnV(K)n−p

)1
p
. (1:3)

Lutwak [3] proved (1.3) is monotone nondecreasing in p, namely

Theorem 1.B. If K ∈ Kn
o, 1 ≤ p < q, then

(
Gp(K)

n

nnV(K)n−p

) 1
p

≤
(

Gq(K)
n

nnV(K)n−q

) 1
q

with equality if and only if K and TpK are dilates.

Here TpK denotes the Lp-Petty body of K ∈ Kn
o[3].

Above, the definition of Lp-geominimal surface area is based on the Lp-mixed

volume. In this paper, associated with the Lp-dual mixed volume, we give the notion of

Lp-dual geominimal surface area as follows: For K ∈ Sn
c , and p ≥ 1, the Lp-dual geomi-

nimal surface area, G̃−p(K), of K is defined by

ω
− p
n

n G̃−p(K) = inf{nṼ−p(K, Q)V(Q∗)−
p
n : Q ∈ Kn

c }. (1:4)

Here, Ṽ−p(M,N) denotes the Lp-dual mixed volume of M,N ∈ Sn
o [3].

For the Lp-dual geominimal surface area, we proved the following dual forms of The-

orems 1.A and 1.B, respectively.

Theorem 1.1. If K ∈ Sn
c , p ≥ 1, then

G̃−p(K) ≥ nω
− p
n

n V(K)
n+p
n (1:5)

with equality if and only if K is an ellipsoid centered at the origin.

Theorem 1.2. If K ∈ Sn
c , 1 ≤ p < q, then

(
G̃−p(K)

n

nnV(K)n+p

) 1
p

≤
(

G̃−q(K)
n

nnV(K)n+q

) 1
q

(1:6)

with equality if and only if K ∈ Kn
o.

Here

(
G̃−p(K)

n

nnV(K)n+p

) 1
p

may be called the Lp-dual geominimal surface area ratio of K ∈ Sn
c .

Further, we establish Blaschke-Santaló type inequality for the Lp-dual geominimal

surface area as follows:

Theorem 1.3. If K ∈ Kn
c , n ≥ p ≥ 1, then

G̃−p(K)G̃−p(K∗) ≤ n2ω2
n (1:7)

with equality if and only if K is an ellipsoid.
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Finally, we give the following Brunn-Minkowski type inequality for the Lp-dual geo-

minimal surface area.

Theorem 1.4. If K, L ∈ Sn
o , p ≥ 1 and l, μ ≥ 0 (not both zero), then

G̃−p(λ � K+−pμ � L)
− p
n+p ≥ λG̃−p(K)

− p
n+p + μG̃−p(L)

− p
n+p (1:8)

with equality if and only if K and L are dilates.

Here l ⋆ K + -p μ ⋆ L denotes the Lp-harmonic radial combination of K and L.

The proofs of Theorems 1.1-1.3 are completed in Section 3 of this paper. In Section

4, we will give proof of Theorem 1.4.

2 Preliminaries
2.1 Support function, radial function and polar of convex bodies

If K ∈ Kn, then its support function, hK = h(K,·): ℝn ® (-∞, ∞), is defined by [5,6]

h(K, x) = max{x · y : y ∈ K}, x ∈ Rn,

where x·y denotes the standard inner product of x and y.

If K is a compact star-shaped (about the origin) in Rn, then its radial function, rK = r
(K,·): Rn\{0} ® [0, ∞), is defined by [5,6]

ρ(K, u) = max {λ ≥ 0 : λ · u ∈ K}, u ∈ Sn−1.

If rK is continuous and positive, then K will be called a star body. Two star bodies K,

L are said to be dilates (of one another) if rK (u)/rL (u) is independent of u Î Sn-1.

If K ∈ Kn
o, the polar body, K*, of K is defined by [5,6]

K∗ = {x ∈ Rn : x · y ≤ 1, y ∈ K}. (2:1)

For K ∈ Kn
o, if j Î GL(n), then by (2.1) we know that

(φK)∗ = φ−τK∗. (2:2)

Here GL(n) denotes the group of general (nonsingular) linear transformations and j-τ

denotes the reverse of transpose (transpose of reverse) of j.
For K ∈ Kn

o and its polar body, the well-known Blaschke-Santaló inequality can be

stated that [5]:

Theorem 2.A. If K ∈ Kn
c , then

V(K)V(K∗) ≤ ω2
n (2:3)

with equality if and only if K is an ellipsoid.

2.2 Lp-Mixed volume

For K, L ∈ Kn
o and ε >0, the Firey Lp-combination K+pε · L ∈ Kn

o is defined by [7]

h(K+p ∈ ·L, ·)p = h(K, ·)p + εh(L, ·)p,

where “·” in ε·L denotes the Firey scalar multiplication.

If K, L ∈ Kn
o, then for p ≥ 1, the Lp-mixed volume, Vp(K, L), of K and L is defined by [4]

n
p
Vp(K, L) = lim

ε→0+

V(K+pε · L) − V(K)

ε
.
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The Lp-Minkowski inequality can be stated that [4]:

Theorem 2.B. If K, L ∈ Kn
oand p ≥ 1 then

Vp(K, L) ≥ V(K)
n−p
n V(L)

p
n (2:4)

with equality for p >1 if and only if K and L are dilates, for p = 1 if and only if K

and L are homothetic.

2.3 Lp-Dual mixed volume

For K, L ∈ Sn
o , p ≥ 1 and l, μ ≥ 0 (not both zero), the Lp harmonic-radial combination,

λ � K+̃−pμ � L ∈ So of K and L is defined by [3]

ρ(λ � K+−pμ � L, ·)−p = λρ(K, ·)−p + μρ(L, ·)−p. (2:5)

From (2.5), for j Î GL(n), we have that

φ(λ � K+−pμ � L) = λ � φK+−pμ � φL. (2:6)

Associated with the Lp-harmonic radial combination of star bodies, Lutwak [3] intro-

duced the notion of Lp-dual mixed volume as follows: For K, L ∈ Sn
o , p ≥ 1 and ε >0,

the Lp-dual mixed volume, Ṽ−p(K, L) of the K and L is defined by [3]

n
−p

Ṽ−p(K, L) = lim
ε→0+

V(K+−pε � L) − V(K)

ε
. (2:7)

The definition above and Hospital’s role give the following integral representation of

the Lp-dual mixed volume [3]:

Ṽ−p(K, L) =
1
n

∫
Sn−1ρ

n+p
K (u)ρ−p

L (u)dS(u), (2:8)

where the integration is with respect to spherical Lebesgue measure S on Sn-1.

From the formula (2.8), we get

Ṽ−p(K, K) = V(K) =
1
n

∫
Sn−1ρn

K(u)dS(u). (2:9)

The Minkowski’s inequality for the Lp-dual mixed volume is that [3]

Theorem 2.C. Let K, L ∈ Sn
o , p ≥ 1, then

Ṽ−p(K, L) ≥ V(K)
n+p
n V(L)−

p
n (2:10)

with equality if and only if K and L are dilates.

2.4 Lp-Curvature image

For K ∈ Kn
o, and real p ≥ 1, the Lp-surface area measure, Sp(K, ·), of K is defined by [4]

dSp(K, ·)
dS(K, ·) = h(K, ·)1−p. (2:11)

Equation (2.11) is also called Radon-Nikodym derivative, it turns out that the mea-

sure Sp(K, ·) is absolutely continuous with respect to surface area measure S(K, ·).

A convex body K ∈ Kn
o is said to have an Lp-curvature function [3]fp(K, ·): S

n-1 ® ℝ,

if its Lp-surface area measure Sp(K, ·) is absolutely continuous with respect to spherical
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Lebesgue measure S, and

fp(K, ·) = dSp(K, ·)
dS

.

Let Fn
o ,Fn

c , denote set of all bodies in Kn
o, Kn

c , respectively, that have a positive con-

tinuous curvature function.

Lutwak [3] showed the notion of Lp-curvature image as follows: For each K ∈ Fn
o and

real p ≥ 1, define 	pK ∈ Sn
o , the Lp-curvature image of K, by

ρ(	pK, ·)n+p = V(	pK)

ωn
fp(K, ·).

Note that for p = 1, this definition differs from the definition of classical curvature

image [3]. For the studies of classical curvature image and Lp-curvature image, one

may see [6,8-12].

3 Lp-Dual geominimal surface area
In this section, we research the Lp-dual geominimal surface area. First, we give a prop-

erty of the Lp-dual geominimal surface area under the general linear transformation.

Next, we will complete proofs of Theorems 1.1-1.3.

For the Lp-geominimal surface area, Lutwak [3] proved the following a property

under the special linear transformation.

Theorem 3.A. For K ∈ Kn
o, p ≥ 1, if j Î SL(n), then

Gp(φK) = Gp(K). (3:1)

Here SL(n) denotes the group of special linear transformations.

Similar to Theorem 3.A, we get the following result of general linear transformation

for the Lp-dual geominimal surface area:

Theorem 3.1. For K ∈ Sn
c , p ≥ 1, if j Î GL(n), then

G̃−p(φK) = | detφ |
n+p
n G̃−p(K). (3:2)

Lemma 3.1. If K, L ∈ Sn
oand p ≥ 1, then for j Î GL(n),

Ṽ−p(φK, φL) = | detφ |Ṽ−p(K, L). (3:3)

Note that for j Î SL(n), proof of (3.3) may be fund in [3].

Proof. From (2.6), (2.7) and notice the fact V (j K) = |detj|V (K), we have

n
−p

Ṽ−p(φK, φL) = lim
ε→0+

V(φK+−pε � φL) − V(φK)

ε

= lim
ε→0+

V[φ(K+−pε � L)] − V(φK)

ε

= | detφ | lim
ε→0+

V(K+−pε � L) − V(K)

ε

= | detφ |Ṽ−p(K, L).

□
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Proof of Theorem 3.1. From (1.4), (3.3) and (2.2), we have

ω
− p
n

n G̃−p(φK) = inf {nṼ−p(φK, Q)V(Q∗)−
p
n : Q ∈ Kn

c }
= inf {n|detφ|Ṽ−p(K, φ−1Q)V(Q∗)−

p
n : Q ∈ Kn

c }
= inf {n|detφ|Ṽ−p(K, φ−1Q)V(φ−τ φτQ∗)−

p
n : Q ∈ Kn

c }
= inf {n|detφ||det(φ−τ )|−

p
n Ṽ−p(K, φ−1Q)V((φ−1Q)∗)−

p
n : Q ∈ Kn

c }

= |detφ|
n+p
n ω

− p
n

n G̃−p(K).

This immediately yields (3.2). □
Actually, using definition (1.1) and fact [13]: If K, L ∈ Kn

oand p ≥ 1, then for j Î GL

(n),

Vp(φK,φL) = | detφ |Vp(K, L),

we may extend Theorem 3.A as follows:

Theorem 3.2. For K ∈ Kn
o, p ≥ 1, if j Î GL(n), then

Gp(φK) = | detφ |
n−p
n Gp(K). (3:4)

Obviously, (3.2) is dual form of (3.4). In particular, if j Î SL(n), then (3.4) is just

(3.1).

Now we prove Theorems 1.1-1.3.

Proof of Theorem 1.1. From (2.10) and Blaschke-Santaló inequality (2.3), we have that

Ṽ−p(K, Q)V(Q∗)−
p
n ≥ V(K)

n+p
n [V(Q)V(Q∗)]−

p
n ≥ ω

−2p
n

n V(K)
n+p
n .

Hence, using definition (1.4), we know

ω
− p
n

n G̃−p(K) ≥ nω
−2p

n
n V(K)

n+p
n ,

this yield inequality (1.5). According to the equality conditions of (2.3) and (2.10), we

see that equality holds in (1.5) if and only if K and Q ∈ Kn
c are dilates and Q is an ellip-

soid, i.e. K is an ellipsoid centered at the origin. □
Compare to inequalities (1.2) and (1.5), we easily get that

Corollary 3.1. For K ∈ Kn
o, p ≥ 1, then for n > p,

G̃−p(K) ≥ (nωn)
− 2p
n−p Gp(K)

n+p
n−p ,

with equality if and only if K is an ellipsoid centered at the origin.

Proof of Theorem 1.2. Using the Hölder inequality, (2.8) and (2.9), we obtain

Ṽ−p(K, Q) =
1
n

∫
Sn−1ρ

n+p
K (u)ρ−p

Q (u)dS(u)

=
1
n

∫
Sn−1 [ρn+q

K (u)ρ−q
Q (u)]

p
q [ρn

K(u)]
q−p
q dS(u)

≤ Ṽ−q(K, Q)
p
q V(K)

q−p
q ,
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that is

(
Ṽ−p(K,Q)

V(K)

) 1
p

≤
(
Ṽ−q(K,Q)

V(K)

) 1
q

. (3:5)

According to equality condition in the Hölder inequality, we know that equality

holds in (3.5) if and only if K and Q are dilates.

From definition (1.4) of G̃−p(K), we obtain

(
G̃−p(K)

n

nnV(K)n+p

) 1
p

= inf

⎧⎨
⎩

(
Ṽ−p(K,Q)

V(K)

) n
p V(Q∗)−1

V(K)
: Q ∈ Kn

c

⎫⎬
⎭

≤ inf

⎧⎨
⎩

(
Ṽ−q(K,Q)

V(K)

) n
q V(Q∗)−1

V(K)
: Q ∈ Kn

c

⎫⎬
⎭

=

(
G̃−q(K)

n

nnV(K)n+q

) 1
q

.

(3:6)

This gives inequality (1.6).

Because of Q ∈ Kn
c in inequality (3.6), this together with equality condition of (3.5),

we see that equality holds in (1.6) if and only if K ∈ Kn
c . □

Proof of Theorem 1.3. From definition (1.4), it follows that for Q ∈ Kn
c ,

ω
− p
n

n G̃−p(K) ≤ nṼ−p(K,Q)V(Q∗)−
p
n .

Since K ∈ Kn
c , taking K for Q, and using (2.9), we can get

G̃−p(K) ≤ nω
p
n
n Ṽ−p(K,K)V(K∗)−

p
n

= nω
p
n
n V(K)V(K∗)−

p
n .

(3:7)

Similarly,

G̃−p(K∗) ≤ nω
p
n
n V(K∗)V(K)−

p
n . (3:8)

From (3.7) and (3.8), we get

G̃−p(K)G̃−p(K∗) ≤ n2ω
2p
n
n [V(K)V(K∗)]

n−p
n .

Hence, for n ≥ p using (2.3), we obtain

G̃−p(K)G̃−p(K∗) ≤ n2ω
2p
n
n [ω2

n]
n−p
n = n2ω2

n .

According to the equality condition of (2.3), we see that equality holds in (1.7) if and

only if K is an ellipsoid. □
Associated with the Lp-curvature image of convex bodies, we may give a result more

better than inequality (1.5) of Theorem 1.1.
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Theorem 3.3. If K ∈ Fn
o , p ≥ 1, then

G̃−p(	pK) ≥ nω
p−n
n

n V(	pK)V(K)
n−p
n , (3:9)

with equality if and only if K ∈ Fn
c .

Lemma 3.2 [3]. If K ∈ Fn
o , p ≥ 1, then for any Q ∈ Sn

o ,

Vp(K,Q∗) =
ωnṼ−p(	pK,Q)

V(	pK)
. (3:10)

Proof of Theorem 3.3. From (1.4), (3.10) and (2.4), we have that

ω
− p
n

n G̃−p(	pK) = inf {nṼ−p(	pK,Q)V(Q∗)−
p
n : Q ∈ Kn

c }
= inf {nω−1

n V(	pK)Vp(K,Q∗)V(Q∗)−
p
n : Q ∈ Kn

c }
≥ inf {nω−1

n V(	pK)V(K)
n−p
n V(Q∗)

p
n V(Q∗)−

p
n : Q ∈ Kn

c }
= inf {nω−1

n V(	pK)V(K)
n−p
n }

= nω−1
n V(	pK)V(K)

n−p
n .

This yields (3.9). According to the equality condition in inequality (2.4), we see that

equality holds in inequality (3.9) if and only if K and Q* are dilates. Since Q ∈ Kn
c ,

equality holds in inequality (3.9) if and only if K ∈ Kn
c . □

Recall that Lutwak [3] proved that if K ∈ Fn
c and p ≥ 1, then

V(	pK) ≤ ω

2p−n
p

n V(K)
n−p
n , (3:11)

with equality if and only if K is an ellipsoid.

From (3.9) and (3.11), we easily get that if K ∈ Fn
c and p ≥ 1, then

G̃−p(	pK) ≥ nω
− p
n

n V(	pK)
n+p
n , (3:12)

with equality if and only if K is an ellipsoid.

Inequality (3.12) just is inequality (1.5) for the Lp-curvature image.

In addition, by (1.2) and (3.9), we also have that

Corollary 3.2. If K ∈ Kn
c , p ≥ 1, then

G̃−p(	pK) ≥ V(	pK)

ωn
Gp(K),

with equality if and only if K is an ellipsoid.

4 Brunn-Minkowski type inequalities
In this section, we first prove Theorem 1.4. Next, associated with the Lp-harmonic

radial combination of star bodies, we give another Brunn-Minkowski type inequality

for the Lp-dual geominimal surface area.

Lemma 4.1. If K, L ∈ Sn
o , p ≥ 1 and l, μ ≥ 0 (not both zero) then for any Q ∈ Sn

o ,

Ṽ−p(λ � K+−pμ � L,Q)
− p
n+p ≥ λṼ−p(K,Q)

− p
n+p + μṼ−p(L,Q)

− p
n+p (4:1)
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with equality if and only if K and L are dilates.

Proof. Since -(n + p)/p <0, thus by (2.5), (2.8) and Minkowski’s integral inequality

(see [14]), we have for any Q ∈ Sn
o ,

Ṽ−p(λ � K+−pμ � L,Q)
− p
n+p

=
[
1
n

∫
Sn−1

ρ(λ � K+−pμ � L, u)n+pρ(Q, u)−pdu
]− p

n+p

=

[
1
n

∫
Sn−1

[ρ(λ � K+−pμ � L, u)−pρ(Q, u)
p2

n+p ]
− n+p

p du

]− p
n+p

=

⎡
⎢⎣1
n

∫
Sn−1

[(λρ(K, u)−p + μρ(L, u)−p)ρ(Q, u)
p2

n+p ]

− n+p
p

du

⎤
⎥⎦

− p
n+p

≥ λ

[
1
n

∫
Sn−1

ρ(K, u)n+pρ(Q, u)−pdu
]− p

n+p

+ μ

[
1
n

∫
Sn−1

ρ(L, u)n+pρ(Q, u)−pdu
]− p

n+p

= λṼ−p(K,Q)
− p
n+p + μṼ−p(L,Q)

− p
n+p .

According to the equality condition of Minkowski’s integral inequality, we see that

equality holds in (4.1) if and only if K and L are dilates. □
Proof of Theorem 1.4. From definition (1.4) and inequality (4.1), we obtain

[ω
− p
n

n G̃−p(λ � K+−pμ � L)]
− p
n+p

= inf {[nṼ−p(λ � K+−pμ � L,Q)V(Q∗)−
p
n ]

− p
n+p : Q ∈ Kn

c }

= inf {[nṼ−p(λ � K+−pμ � L, Q)]
− p
n+p V(Q∗)

p2

n(n+p) : Q ∈ Kn
c }

≥ inf {[λ(nṼ−p(K,Q))
− p
n+p + μ(nṼ−p(L,Q))

− p
n+p ]V(Q∗)

p2

n(n+p) : Q ∈ Kn
c }

≥ inf {λ[nṼ−p(K,Q)V(Q∗)−
p
n ]

− p
n+p : Q ∈ Kn

c }

+ inf {μ[nṼ−p(K,Q)V(Q∗)−
p
n ]

− p
n+p : Q ∈ Kn

c }

= λ[ω
− p
n

n G̃−p(K)]
− p
n+p + μ[ω

− p
n

n G̃−p(L)]
− p
n+p .

This yields inequality (1.8).

By the equality condition of (4.1) we know that equality holds in (1.8) if and only if K

and L are dilates. □
The notion of Lp-radial combination can be introduced as follows: For K, L ∈ Sn

o , p ≥

1 and l, μ ≥ 0 (not both zero), the Lp-radial combination, λ ◦ K+̃pμ ◦ L ∈ Sno, of K and

L is defined by [15]

ρ(λ ◦ K+̃ pμ ◦ L, ·)p = λρ(K, ·)p + μρ(L, ·)p. (4:2)

Under the definition (4.2) of Lp-radial combination, we also obtain the following

Brunn-Minkowski type inequality for the Lp-dual geominimal surface area.
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Theorem 4.1. If K, L ∈ Kn
c , p ≥ 1 and l, μ ≥ 0 (not both zero), then

G̃−p(λ ◦ K+̃n+pμ ◦ L) ≥ λG̃−p(K) + μG̃−p(L) (4:3)

with equality if and only if K and L are dilates.

Proof. From definitions (1.4), (4.2) and formula (2.8), we have

ω
− p
n

n G̃−p(λ ◦ K+̃n+pμ ◦ L)

= inf {nṼ−p(λ ◦ K+̃n+pμ ◦ L,Q)V(Q∗)−
p
n : Q ∈ Kn

c }
= inf {n[λṼ−p(K,Q) + μṼ−p(L,Q)]V(Q∗)−

p
n : Q ∈ Kn

c }
= inf {nλṼ−p(K,Q)V(Q∗)−

p
n + nμṼ−p(L,Q)V(Q∗)−

p
n : Q ∈ Kn

c }
≥ inf {nλṼ−p(K,Q)V(Q∗)−

p
n : Q ∈ Kn

c }
+ inf {nμṼ−p(L,Q)V(Q∗)−

p
n : Q ∈ Kn

c }

= ω
− p
n

n λG̃−p(K) + ω
− p
n

n μG̃−p(L).

Thus

G̃−p(λ ◦ K+̃n+pμ ◦ L) ≥ λG̃−p(K) + μG̃−p(L).

The equality holds if and only if λ ◦ K+̃n+pμ ◦ L are dilates with K and L, respectively.

This mean that equality holds in (4.3) if and only if K and L are dilates. □
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