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Abstract

In this article, a new symmetric strong vector quasiequilibrium problem in real locally
convex Hausdorff topological vector spaces is introduced and studied. An existence
theorem of solutions for the symmetric strong vector quasiequilibrium problem by
using Kakutani-Fan-Glicksberg fixed point theorem is obtained. Moreover, the
closedness of the solution set for this problem is derived. The results presented in
this article improve and extend some known results according to Long et al. [Math.
Comput. Model. 47, 445-451 (2008)], Somyot and Kanokwan [Fixed Point Theory
Appl. doi:10.1155/2011/475121], and Wang et al. [Bull. Malays. Math. Sci. Soc. http://
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1 Introduction
Equilibrium problem was introduced by Blum and Oettli [1] (see, also Noor and Oettli

[2]). It provides a unified model of several classes of problems, for example, optimiza-

tion problems, problems of Nash equilibrium, fixed point problems, variational

inequalities, and complementarity problems. In recent years, there has been an increas-

ing interest in the study of vector equilibrium problems. A lot of results for existence

of solutions for vector equilibrium problems and vector variational inequalities have

been established by many authors in different ways. For details, we refer the reader to

various studies (see, e.g., [3-15] and the references therein).

Let X and Z be real locally convex Hausdorff spaces, K ⊂ X be a nonempty subset,

and C ⊂ Z be a closed convex pointed cone. Let F : K × K ® 2Z be a given set-valued

mapping. Ansari et al. [16] introduced two types of set-valued vector equilibrium pro-

blems as follows. The first type is the weak vector equilibrium problem: finding x Î K

such that

F(x, y) �⊂ −intC, ∀y ∈ K. (1:1)

The second type is the strong vector equilibrium problem (SVEP): finding x Î K

such that

F(x, y) ⊂ C, ∀y ∈ K. (1:2)
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If int C ≠ ∅ and x satisfies (1.1), then we call x a weak efficient solution for the vec-

tor equilibrium problem. If x satisfies (1.2), then we call x a strong efficient solution

for the vector equilibrium problem.

It is worth mentioning that many existing results of the vector equilibrium problem

are obtained under the assumption that the dual C* of the ordering cone C has a

weak* compact base. As we know, for a normed space, the dual cone C* has a weak*

compact base if and only if int C ≠ ∅ (see [17]). However, in many cases, the ordering

cone has an empty interior. For example, in the classical Banach spaces lp and Lp(Ω),

where 1 <p < ∞, the standard ordering cone has an empty interior. Thus, it is interest-

ing for the study of the existence of solutions and the properties of the solution sets

for this case.

On the other hand, it is well known that a strong efficient solution of vector equili-

brium problem is an ideal solution. It is better than other solutions, such as efficient

solution, weak efficient solution, proper efficient solution, and supper efficient solution

(see [18]). Hence, it is important to study the existence of strong efficient solution and

the properties of the strong efficient solution set. Very recently, Long et al. [19] gave

an existence theorem for generalized strong vector quasiequilibrium problem

(GSVQEP) and discussed the stability of strong efficient solutions. Somyot and Kanok-

wan [20] derived an existence theorem for system of generalized strong vector quasie-

quilibrium problem (SGSVQEP) which extends the main results of Long et al. [19].

Motivated and inspired by the research studies mentioned above, in this article, we

consider a type of symmetric strong vector quasiequilibrium problem (SSVQEP) with-

out assuming that the dual of the ordering cone has a weak* compact base. Let X, Y,

and Z be real locally convex Hausdorff topological vector spaces, K ⊂ X and D ⊂ Y be

nonempty subsets, and C ⊂ Z be a nonempty closed convex cone. Suppose that S1, S2 :

K × K ® 2K, T1, T2 : K × K ® 2D and F1, F2 : K × D × K ® 2Z are set-valued map-

pings. We consider the following SSVQEP: finding (x̄, ū) ∈ K × K and ȳ ∈ T1(x̄, ū),
v̄ ∈ T2(x̄, ū) such that x̄ ∈ S1(x̄, ū), ū ∈ S2(x̄, ū),

F1(x̄, ȳ, z) ⊂ C, ∀z ∈ S1(x̄, ū)

and

F2(ū, v̄, z) ⊂ C, ∀z ∈ S2(x̄, ū).

We call this (x̄, ū) a strong efficient solution for the SSVQEP.

In this article, we establish an existence theorem of the solutions for the SSVQEP by

using Kakutani-Fan-Glicksberg fixed point theorem. We also discuss the closedness of

the solution set for this problem. The results presented in this article improve and

extend some known results according to Long et al. [19], Somyot and Kanokwan [20],

and Wang et al. [21].

2 Preliminary results
Throughout this article, we suppose that X, Y, and Z are real locally convex Hausdorff

topological vector spaces, K ⊂ X and D ⊂ Y are nonempty compact convex subsets,

and C ⊂ Z is a nonempty closed convex cone. Suppose that S1, S2 : K × K ® 2K, T1,

T2 : K × K ® 2D and F1, F2 : K × D × K ® 2Z are set-valued mappings.

For our main results, we need some definitions and lemmas as follows.
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Definition 2.1. Let X and Y be two topological vector spaces and T : X ® 2Y be a

set-valued mapping.

(i) T is said to be upper semicontinuous at x Î X if, for any neighborhood U of T

(x), there exists a neighborhood V of x such that T(t) ⊂ U, for all t Î V. T is said

to be upper semicontinuous on X if it is upper semicontinuous at each x Î X.

(ii) T is said to be lower semicontinuous at x Î X if, for any open set U with T(x) ∩
U ≠ ∅, there exists a neighborhood V of x such that T(x’) ∩ U ≠ ∅, for all x’ Î V.

T is said to be lower semicontinuous on X if it is lower semicontinuous at each x

Î X.

(iii) T is said to be continuous on X if it is both upper semicontinuous and lower

semicontinuous on X.

(iv) T is said to be closed if, Graph(T) = {(x, y): x Î X, y Î T(x)} is a closed subset

in X × Y.

Definition 2.2. Let W be a topological vector space and D ⊂ W be a nonempty set.

A set-valued mapping G : D ® 2Z is said to be type I C-lower semicontinuous at x0 if,

for any neighborhood U of 0 in Z, there exists a neighborhood U(x0) of x0 such that

G(x0) ⊂ G(x) +U − C, ∀x ∈ U(x0) ∩ D.

Definition 2.3. Let W be a topological vector space and D ⊂ W be a nonempty set.

A set-valued mapping G : D ® 2Z is said to be type II C-lower semicontinuous at x0
if, for each z Î G(x0) and any neighborhood U of 0 in Z, there exists a neighborhood

U(x0) of x0 such that

G(x) ∩ (z +U − C) �= ∅, ∀x ∈ U(x0) ∩ D.

Definition 2.4. Let W be a topological vector space and D ⊂ W be a nonempty con-

vex set. A set-valued mapping G : D ® 2Z is said to be C-properly quasiconvex if, for

any x, y Î D, t Î [0, 1], we have

either G(x) ⊂ G(tx + (1 − t)y) + C or G(y) ⊂ G(tx + (1 − t)y) + C.

Definition 2.5. Let W be a topological vector space and D ⊂ W be a nonempty set.

A set-valued mapping G : D ® 2Z is said to be C-convex if, for any x, y Î D and t Î
[0, 1], one has

G(tx + (1 − t)y) ⊂ tG(x) + (1 − t)G(y) − C.

G is said to be C-concave if -G is C-convex.

Definition 2.6. Let X be a Hausdorff topological vector space and K ⊂ X be a none-

mpty set. A set-valued mapping G : K ® 2X is said to be a KKM mapping if, for any

finite set {x1, ..., xn} ⊂ K, the relation

co{x1, . . . , xn} ⊂
n⋃
i=1

G(xi)

holds, where co{x1, ..., xn} denotes the convex hull of {x1, ..., xn}.

Chen et al. Journal of Inequalities and Applications 2011, 2011:56
http://www.journalofinequalitiesandapplications.com/content/2011/1/56

Page 3 of 13



Lemma 2.1. ([22]) Let X and Y be two Hausdorff topological spaces and T : X ® 2Y

be a set-valued mapping.

(i) If T is upper semicontinuous with closed values, then T is closed.

(ii) If T is closed and Y is compact, then T is upper semicontinuous.

Lemma 2.2. (Kakutani-Fan-Glicksberg [23]) Let X be a locally convex Hausdorff

topological vector space and K be a nonempty compact convex subset of X. Let T : K

® 2K be a upper semicontinuous set-valued mapping with nonempty closed convex

values. Then, there exists x̄ ∈ K such that x̄ ∈ T(x̄).

Lemma 2.3. ([24]) Let X and Y be two Hausdorff topological vector spaces and T : X

® 2Y be a set-valued mapping with compact values. Then, T is upper semicontinuous

on x Î X if and only if for any set {xa} with xa ® x, and ya Î T(xa), there exists y Î
T(x), and a subset {yb} of {ya}, such that yb ® y.

Lemma 2.4. ([25]) Let D be a nonempty convex compact subset of Hausdorff topo-

logical vector space X and E be a subset of D × D such that

(i) for each x Î D, (x, x) ∉ E;

(ii) for each x Î D, {y Î D : (x, y) Î E} is convex;

(iii) for each y Î D, {x Î D : (x, y) Î E} is open in D.

Then, there exists x̄ ∈ D such that (x̄, y) /∈ E for all y Î D.

Lemma 2.5. ([26]) Let K be a nonempty subset of a topological vector space X and F

: K ® 2X be a KKM mapping with closed values. Assume that there exists a nonempty

compact convex subset B of K such that D =
⋂

x∈B F(x) is compact. Then,⋂
x∈K F(x) �= ∅.

3 Main results
In this section, we apply Kakutani-Fan-Glicksberg fixed point theorem to prove an

existence theorem of solutions for the SSVQEP. Moreover, we prove the closedness of

the solution set for this problem.

Lemma 3.1. Let W be a topological vector space and D ⊂ W be a nonempty subset.

Let G : D ® 2Z be a set-valued mapping.

(i) If G is lower semicontinuous, then G is type II C-lower semicontinuous.

(ii) If G is type I (-C)-lower semicontinuous, then G is type II C-lower

semicontinuous.

(iii) If G is single-valued mapping, then G is type I (-C)-lower semicontinuous ⇔ G

is type II C-lower semicontinuous.

Proof. (i) It is easy to verify that the assertion (i) holds and so we omit the proof.

(ii) Suppose that G is type I (-C)-lower semicontinuous at x0 Î D. Then, for any z Î
G(x0), and for any neighborhood U of 0 in Z, there exists a balanced neighborhood V

of 0 in Z such that V ⊂ U. Since G is type I (-C)-lower semicontinuous at x0 Î D, it

follows that there exists a neighborhood U(x0) of x0 such that

Chen et al. Journal of Inequalities and Applications 2011, 2011:56
http://www.journalofinequalitiesandapplications.com/content/2011/1/56

Page 4 of 13



G(x0) ⊂ G(x′) + V + C, ∀x′ ∈ U(x0) ∩ D.

For z Î G(x0), there exist y Î G(x’), v Î V, c Î C such that z = y + v + c, and so

y = z − v − c ∈ z − V − C = z + V − C ⊂ z +U − C.

Thus,

G(x′) ∩ (z +U − C) �= ∅, ∀x′ ∈ U(x0) ∩ D.

It follows that G is type II C-lower semicontinuous.

(iii) Suppose that G is type II C-lower semicontinuous at x0 Î D. Then, for any

neighborhood U of 0 in Z, there exists a balanced neighborhood V of 0 in Z such that

V ⊂ U. Since G is type II C-lower semicontinuous at x0 Î D, it follows that there

exists a neighborhood U(x0) of x0 such that

G(x′) ⊂ G(x0) + V − C, ∀x′ ∈ U(x0) ∩ D.

Therefore,

G(x0) ∈ G(x′) + V + C ⊂ G(x′) +U + C, ∀x′ ∈ U(x0) ∩ D.

This shows that G is type I (-C)-lower semicontinuous. This completes the proof.

The following example shows that the converse of (i) of Lemma 3.1 is not true.

Example 3.1. Let the set-valued mapping F from R into its subsets be defined by F

(0) = [0, 1] and F(x) = {0} for all x ≠ 0. Let C = R+ = [0, +∞). Then, it is easy to see

that F is not lower semicontinuous at 0. In fact, we can find a point y0 = 1 Î F(0) =

[0, 1] and a neighborhood U(y0) = (12 ,
3
2 ) of y0 such that, for any neighborhood U(0) of

0, there exist some x0 ≠ 0 Î U(0) satisfying

F(x0) ∩ U(y0) = ∅.

This shows that F is not lower semicontinuous at 0. However, we can show that F is

type II C-lower semicontinuous at 0. In fact, for each y Î F(0) = [0, 1] and any neigh-

borhood U of 0 in R, there exists ε0 > 0 such that (-ε0, ε0) ⊂ U. Hence, y + (-ε0, ε0) - C

= (-∞, y + ε0). It is easy to see that, for any neighborhood U(0) of 0,

F(x) ∩ (−∞, y + ε0) �= ∅, ∀x ∈ U(0).

Thus,

F(x) ∩ (y +U − C) �= ∅, ∀x ∈ U(0),

which shows that F is type II C-lower semicontinuous at 0.

Theorem 3.1. For each i Î {1, 2}, let Si : K × K ® 2K be continuous set-valued map-

pings with nonempty compact convex values and Ti : K × K ® 2D be upper semicon-

tinuous set-valued mappings with nonempty compact convex values. Let Fi : K × D ×

K ® 2Z be set-valued mappings which satisfy the following conditions:

(i) for all (x, y) Î K × D, Fi(x, y, x) ⊂ C;

(ii) for all (y, z) Î D × K, Fi(·, y, z) are C-concave;

(iii) for all (x, y) Î K × D, Fi(x, y, ·) are C-properly quasiconvex;

(iv) Fi(·, ·, ·) are type II C-lower semicontinuous.
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Then, the SSVQEP has a solution. Moreover, the solution set of the SSVQEP is

closed.

Proof. For any (x, y, u, v) Î K × D × K × D, define mappings A, B : K × D × K ® 2K

by

A(x, y, u) = {a ∈ S1(x, u) : F1(a, y, z) ⊂ C, ∀z ∈ S1(x, u)},

B(x, v, u) = {b ∈ S2(x, u) : F2(b, v, z) ⊂ C, ∀z ∈ S2(x, u)}.

(I) For any (x, y, u) Î K × D × K, A(x, y, u) is nonempty.

Indeed, by the assumption, S1(x, u) is nonempty compact convex set for each (x, u)

Î K × K. Set

E = {(a, z) ∈ S1(x, u) × S1(x, u) : F1(a, y, z) �⊂ C}.

If E is empty, then it is clear that A(x, y, u) is nonempty. Thus, we consider that E is

not empty. For any z Î S1(x, u), if (a, z) Î E, then there exists d Î F1(a, y, z) such that

d ∉ C. Hence, there exists an open neighborhood U of 0 in Z such that (d + U) ∩ C =

∅ and so

(d +U − C) ∩ C = ∅. (3:1)

By the type II C-lower semicontinuity of F1, there exists an open neighborhood U1 of

a in S1(x, u) such that

F1(a′, y, z) ∩ (d +U − C) �= ∅, ∀a′ ∈ U1 ∩ S1(x, u). (3:2)

From (3.2), we know that there exists d’ Î F1(a’, y, z) such that d’ Î d + U - C. By

(3.1), d’ ∉ C. Hence,

F1(a′, y, z) �⊂ C, ∀a′ ∈ U1 ∩ S1(x, u). (3:3)

Thus, for any z Î S1(x, z), {a Î S1(x, u): (a, z) Î E} is open in S1(x, u). For any a Î
S1(x, u), (a, z1) Î E, (a, z2) Î E, t Î [0, 1], it follows that

F1(a, y, z1) �⊂ C and F1(a, y, z2) �⊂ C. (3:4)

By condition (iii), we have

either F1(a, y, z1) ⊂ F1(a, y, tz1+(1−t)z2)+C or F1(a, y, z2) ⊂ F1(a, y, tz1+(1−t)z2)+C. (3:5)

We claim that F1(a, y, tz1 + (1 - t)z2) ⊄ C. If not, then by (3.5), we have

either F1(a, y, z1) ⊂ C or F1(a, y, z2) ⊂ C,

which contradicts (3.4). Hence, F1(a, y, tz1 + (1 - t)z2) ⊄ C. Thus, for any a Î S1(x,

u), {z Î S1(x, u): (a, z) Î E} is convex in S1(x, u). The condition (i) implies that for any

a Î S1(x, u), (a, a) ∉ E. By Lemma 2.4, there exists a Î S1(x, u) such that (a, z) ∉ E for

all z Î S1(x, u) i.e., F1(a, y, z) ⊂ C for all z Î S1(x, u). Hence, A(x, y, u) ≠ ∅.

(II) For any (x, y, u) Î K × D × K, A(x, y, u) is convex.
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In fact, let a1, a2 Î A(x, y, u), t Î [0, 1]. Then, a1, a2 Î S1(x, u),

F1(a1, y, z) ⊂ C, ∀z ∈ S1(x, u) (3:6)

and

F1(a2, y, z) ⊂ C, ∀z ∈ S1(x, u). (3:7)

By the convexity of S1(x, u), we have ta1 + (1 - t)a2 Î S1(x, y). It follows from (3.6)

and (3.7) that

F1(ta1+(1−t)a2, y, z) ⊂ tF1(a1, y, z)+(1−t)F1(a2, y, z)+C ⊂ C+C+C ⊂ C, ∀z ∈ S1(x, u).

Thus, ta1 + (1 - t)a2 Î A(x, y, u). Therefore, A(x, y, u) is convex.

(III) A is upper semicontinuous on K × D × K.

Since K is compact, we only need to show that A is a closed mapping. Let {(xa, ya,

ua): a Î I} ⊂ K × D × K be a set with (xa, ya, ua) ® (x, y, u) Î K × D × K. Let va Î
A(xa, ya, ua) with va ® v. We will show that v Î A(x, y, u). Since S1 is upper semicon-

tinuous mapping with nonempty closed values, it follows that S1 is a closed mapping.

It follows from va Î S1(xa, ua) and (xa, ua, va) ® (x, u, v) that we have v Î S1(x, u).

Now we claim that v Î A(x, y, u). If not, then there exists z1 Î S1(x, u) such that

F1(v, y, z1) �⊂ C. (3:8)

Hence, there exists d Î F1(v, y, z1) such that d ≠ C, and so there exists an open

neighborhood U of 0 in Z such that (d + U) ∩ C + ∅. Therefore,

(d +U − C) ∩ C = ∅. (3:9)

Since F1 is type II C-lower semicontinuous, for d Î F1(v, y, z1) and U, there exists a

neighborhood U(v, y, z1) of (v, y, z1) such that, for all

F1(v′, y′, z′1) ∩ (d +U − C) �= ∅.,
F1(v′, y′, z′1) ∩ (d +U − C) �= ∅. (3:10)

Since (xa, ua) ® (x, u) and S is lower semicontinuous, for z1 Î S1(x, u), there exists

za Î S1(xa, ua) such that za ® z1. Thus, (va, ya, za) ® (v, y, z1). It follows from (3.10)

that there exists a0 Î I such that, for a ≥ a0,

F1(vα , yα , zα) ∩ (d +U − C) �= ∅. (3:11)

From va Î A(va, ya, za), we have

F1(vα , yα , z) ⊂ C, ∀z ∈ S1(xα, uα).

Because za Î S1(xa, ua), we get F1(va, ya, za) ⊂ C. It follows from (3.9) that

F1(vα , yα , zα) ∩ (d +U − C) ⊂ C ∩ (d +U − C) = ∅,

which contradicts (3.11). Hence, A is a closed mapping.

Similarly, we know for any (x, v, u) Î K × D × K, B is upper semicontinuous on K ×

D × K with nonempty closed convex values.
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(IV) Define the set-valued mappings H, G : K × D × K ® 2K×D by

H(x, y, u) = (A(x, y, u),T1(x, u)), ∀(x, y, u) ∈ K × D × K

and

G(x, v, u) = (B(x, v, u),T2(x, u)), ∀(x, v, u) ∈ K × D × K.

Then, it is easy to see that H and G are upper semicontinuous mappings with none-

mpty closed convex values.

Define the set-valued mapping M : (K × D) × (K × D) ® 2(K×D)×(K×D) by

M((x, y), (u, v)) = (H(x, y, u),G(x, v, u)), ∀((x, y), (u, v)) ∈ (K × D) × (K × D).

Then, we know that M is upper semicontinuous mapping with nonempty closed

convex values. By Lemma 2.2, there exists a point ((x̄, ȳ), (ū, v̄)) ∈ (K × D) × (K × D)

such that ((x̄, ȳ), (ū, v̄)) ∈ M((x̄, ȳ), (ū, v̄)), that is

(x̄, ȳ) ∈ H(x̄, ȳ, ū), (ū, v̄) ∈ G(x̄, v̄, ū).

This implies that x̄ ∈ A(x̄, ȳ, ū), ȳ ∈ T1(x̄, ū), ū ∈ B(x̄, v̄, ū), v̄ ∈ T2(x̄, ū). Hence,

ȳ ∈ T1(x̄, ū), ȳ ∈ T1(x̄, ū), ū ∈ S2(x̄, ū), v̄ ∈ T2(x̄, ū),

F1(x̄, ȳ, z) ⊂ C, ∀z ∈ S1(x̄, ū)

and

F2(ū, v̄, z) ⊂ C, ∀z ∈ S2(x̄, ū).

Next, we show that the solution set of the SSVQEP is closed. Let {(xa, ua): a Î I} be

a set in the set of solutions of SSVQEP with (xα , uα) → (x̄, ū), and so there exist ya Î
T1(xa, ua), va Î T2(xa, ua), xa Î S1(xa, ua), ua Î S2(xa, ua), such that

F1(xα , yα , z) ⊂ C, ∀z ∈ S1(xα , uα)

and

F2(uα , vα , z) ⊂ C, ∀z ∈ S2 (xα , uα) .

Since S1 and S2 are upper semicontinuous set-valued mappings with nonempty

closed values, it follows from Lemma 2.1 that S1 and S2 are closed mappings. Thus,

x̄ ∈ S1(x̄, ū) and ū ∈ S2(x̄, ū). Since T1 is upper semicontinuous set-valued mapping

with nonempty compact values, by Lemma 2.3, there exist ȳ ∈ T1(x̄, ū) and a subset

{yb} of {ya} such that yβ → ȳ. Similarly, there exist v̄ ∈ T2(x̄, ū) and a subset {vg} of {va}

such that vγ → v̄. By the condition (iv), similar to the proof of the part (III), we have

F1(x̄, ȳ, z) ⊂ C, ∀z ∈ S1(x̄, ū)

and

F2(ū, v̄, z) ⊂ C, ∀z ∈ S2(x̄, ū).

Hence, (x̄, ū) belongs to the set of solutions of SSVQEP. Thus, the set of solutions of

SSVQEP is closed set. This completes the proof.

Now we give an example to show Theorem 3.1 is applicable.

Example 3.2. Let X = Y = Z = R, C = [0, +∞) and K = D = [0, 1]. For each x Î K, u

Î K, let S1(x, u) = [ x2 , 1], S2(x, u) = [0, u+12 ], T1(x, u) = [0, 1−x
3 + 1−u

2 ] and
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F1(x, y, z) = [x + y − z, +∞), ∀(x, y, z) ∈ K × D × K. Define the set-valued mappings

F1 and F2 as follows:

F1(x, y, z) = [x + y − z, +∞), ∀(x, y, z) ∈ K × D × K

and

F2(x, y, z) = [2x + 3y − z, +∞), ∀(x, y, z) ∈ K × D × K.

It is easy to verify that all the conditions in Theorem 3.1 are satisfied. By Theorem

3.1, we know that SSVQEP has a solution. Let M be the solution set of SSVQEP. Then,

M = {(x̄, ū) ∈ K × K : 4x̄ − 3ū ≥ 1, 3ū − 3x̄ + 2 ≥ 0}.

It is easy to see that M is a closed subset of K × K.

For each i = {1, 2}, if we suppose that Si is a set-valued mapping from K to K and Ti

is a set-valued mapping from K to D, then similar to the proof of Theorem 3.1, we

have the following corollary.

Corollary 3.1. Let S1, S2 : K ® 2K be continuous set-valued mappings with none-

mpty compact convex values and T1, T2 : K ® 2D be upper semicontinuous set-valued

mappings with nonempty compact convex values. Let F1, F2 : K × D × K ® 2Z be set-

valued mappings satisfy the conditions (i)-(iv) of Theorem 3.1. Then, the SGSVQEP

has a solution, i.e., there exist (x̄, ū) ∈ K × K and ȳ ∈ T1(ū), v̄ ∈ T2(x̄) such that

ū ∈ S2(ū), ū ∈ S2(ū),

F1(x̄, ȳ, z) ⊂ C, ∀z ∈ S1(x̄)

and

F2(ū, v̄, z) ⊂ C, ∀z ∈ S2(ū).

Moreover, the solution set of the SGSVQEP is closed.

Remark 3.1. In [20], Somyot and Kanokwan also obtained an existence result for

SGSVQEP. However, the assumptions of Theorem 3.1 in [20] are quite different from

the ones in Corollary 3.1. The following example shows the case, where Corollary 3.1

is applicable, but the hypotheses of the corresponding theorem in [20] cannot be

satisfied.

Example 3.3. Let X = Y = Z = R, C = [0, +∞) and K = D = [0, 1]. For each x Î K,

u Î K, let S1(x) = [x, 1], S2(x) = [1−x
2 , 12 ], T1(x) = [1 - x, 1] and T2(x) = [0, 1+x2 ]. Define

the set-valued mappings F1 and F2 as follows:

F1(x, y, z) =
[
2x +

y
2

− z, +∞
)
, ∀(x, y, z) ∈ K × D × K

and

F2(x, y, z) = [3x + y − 3z, +∞), ∀(x, y, z) ∈ K × D × K.

It is easy to verify that all the conditions in Corollary 3.1 are satisfied. Hence, by

Corollary 3.1, SGSVQEP has a solution. Let N be the solution set of SGSVQEP. Then,
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N =
{
x̄, ū ∈ K × K : x̄ ≥ 1

4
, 3ū +

x̄
2

− 1 ≥ 0
}
.

It is easy to see that N is a closed subset of K × K. However, the hypothesis (i) of

Theorem 3.1 in [20] is not satisfied. Thus, Theorem 3.1 in [20] is not applicable.

If we take S = S1 = S2, F = F1 = F2, and T = T1 = T2; then, from Corollary 3.1, we

have the following corollary.

Corollary 3.2. Let S : K ® 2K be continuous set-valued mappings with nonempty

compact convex values and T : K ® 2D be upper semicontinuous set-valued mappings

with nonempty compact convex values. Let F : K × D × K ® 2Z be set-valued mapping

which satisfies the conditions (i)-(iv) of Theorem 3.1. Then, the GSVQEP has a solu-

tion, i.e., there exist x̄ ∈ K and ȳ ∈ T(x̄) such that x̄ ∈ S(x̄) and

F(x̄, ȳ, z) ⊂ C, ∀z ∈ S(x̄).

Moreover, the solution set of the GSVQEP is closed.

Remark 3.2. In [19], Long et al. also obtained an existence result for GSVQEP. How-

ever, the assumptions in Corollary 3.2 are quite different from the ones in Theorem 3.1

in [19]. The following example shows the case, where Corollary 3.2 is applicable, but

the hypotheses of the corresponding theorem in [19] cannot be satisfied.

Example 3.4. Let X = Y = Z = R, C = [0, +∞) and K = D = [0, 1]. For each x Î K, let

T(x) = [0, x
2 ], T(x) = [0, x

2 ]. Define the set-valued mapping F as follows:

F(x, y, z) = [3x + 2y − z, +∞), ∀(x, y, z) ∈ K × D × K.

It is easy to verify that all the conditions in Corollary 3.2 are satisfied. Hence, by

Corollary 3.2, GSVQEP has a solution. Let O be the solution set of GSVQEP. Then,

O =
{
x̄ ∈ K : x̄ ≥ 1

4

}
.

It is easy to see that O is a closed subset of K. However, the hypothesis (i) of Theo-

rem 3.1 in [19] is not satisfied. Thus, Theorem 3.1 in [19] is not applicable.

If for any x Î K, S(x) = T(x) ≡ K and F(x, y, z) := F(x, y), then GSVQEP collapses to

SVEP. Next we give an existence theorem of SVEP on a noncompact set.

Theorem 3.2. Let X and Z be two real Hausdorff topological vector spaces, K ⊂ X a

nonempty closed convex subset and C ⊂ Z a closed convex cone. Let F : K × K ® 2Z

be a set-valued mapping. Suppose that

(i) for any x Î K, F(x, x) ⊂ C;

(ii) for any x Î K, the set {y Î K : F(x, y) ⊄ C} is empty or convex;

(iii) for any y Î K, the set {x Î K : F(x, y) ⊂ C} is closed;

(iv) there exist a nonempty compact subset E of K and a nonempty convex com-

pact subset D of K such that, for each x Î K\E, there exists y Î D such that F(x, y)

⊄ C.

Then, the SVEP has a solution. Moreover, the solution set of the SVEP is compact.

Proof. We define G : K ® 2K as follows:

G(y) = {x ∈ K : F(x, y) ⊂ C}.
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It follows from condition (i) that for any y Î K, we have y Î G(y) and so G(y) ≠ ∅.

We claim that G is a KKM mapping. Suppose to the contrary that there exists a finite

subset {y1, ..., yn} of K, and there exists ȳ ∈ co{y1, . . . , yn} such that ȳ /∈ ⋃n
i=1 G(yi).

Hence, ȳ =
∑n

i=1 tiyi for some ti ≥ 0, 1 ≤ i ≤ n, with
∑n

i=1 ti = 1, and ȳ /∈ G(yi) for all i =

1, ..., n. Therefore,

F(ȳ, yi) �⊂ C, ∀i = 1, . . . ,n. (3:12)

Equation 3.12 implies that yi ∈ {z ∈ K, F(ȳ, z) �⊂ C}, for all i = 1, ..., n. By condition

(ii), we have

F(ȳ, ȳ) �⊂ C,

which contradicts condition (i). Hence, G is a KKM mapping. Applying conditions

(iii) and (iv), we deduce that
⋂

y∈D G(y) is a closed subset of E. Now, G satisfies all the

assumptions of Lemma 2.5 and hence
⋂

y∈K G(y) �= ∅. This means that SVEP has a

solution. By condition (iii), the solution set of SVEP is closed and by condition (iv), it

is subset of the compact set E. Thus, the solution set of SVEP is compact. This com-

pletes the proof.

Remark 3.3. Theorem 3.2 is different from Theorem 3.1 of Wang et al. [21] in the

following two aspects.

(a) The condition (iv) in Theorem 3.2 is weaker than the condition (iv) in Theorem

3.1 of Wang et al. [21]; hence, Theorem 3.2 generalizes Theorem 3.1 of Wang et al.

[21];

(b) Theorem 3.2 is proved using Fan-KKM lemma, while Theorem 3.1 of Wang et al.

[21] was proved using Brouwer fixed point theorem.

Example 3.5. Let X = Z = R, K = C = [0, +∞). Define the set-valued mapping F as

follows:

F(x, y) = [y − x + 1, +∞), ∀x, y ∈ K.

If we take E = [0, 1] ∪{2}, D = [0, 2], it is easy to verify that all the conditions in

Theorem 3.2 are satisfied. Hence, by Theorem 3.2, SVEP has a solution. Let P be the

solution set of SVEP. Then, P = [0, 1]. It is obvious that P is a compact subset of K.

Corollary 3.3. Let X, Z, K, C and F be as in Theorem 3.2. Assume that the condi-

tions (i), (ii), and (iv) of Theorem 3.2 and the following condition holds:

(iii’) for any y Î K, F(·, y) is type II C-lower semicontinuous.

Then, the SVEP has a solution. Moreover, the solution set of the SVEP is compact.

Proof. By Theorem 3.2, we only need to show that for any y Î K, the set

G(y) = {x ∈ K : F(x, y) ⊂ C}

is closed.

Indeed, let {xa} ⊂ G(y) be an arbitrary set such that xa ® x0. We need to show that

x0 Î G(y). Since xa Î K and K is closed, we have x0 Î K. In addition, for each a,

F(xα , y) ⊂ C.

We claim that F(x0, y) ⊂ C. If not, there exists z Î F(x0, y) such that z ∉ C. Hence,

there exists a neighborhood U of 0 in Z such that (z + U) ∩ C = ∅, which implies
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(z +U − C) ∩ C = ∅.

By condition (iii’), we know that there exists a0 such that, for a ≥ a0,

F(xα , y) ∩ (z +U − C) �= ∅. (3:13)

Hence,

F(xα, y) ∩ (z +U − C) ⊂ C ∩ (z +U − C) = ∅,

which contradicts (3.13). Hence, x0 Î G(y) and so G(y) is closed. This completes the

proof.

Remark 3.4. It follows from Lemma 3.1 that Corollary 3.3 generalizes Theorem 3.2

of Wang et al. [21].

Corollary 3.4. Let X, Z, K, C, and F be the same as in Theorem 3.2. Assume that the

conditions (i), (iii), and (iv) of Theorem 3.2 and the following condition holds:

(ii’) for any x Î K, F(x, ·) is C-properly quasiconvex.

Then, the SVEP has a solution. Moreover, the solution set of the SVEP is closed.

Proof. By Theorem 3.2, we only need to show that, for any x Î K, the set

G(x) = {y ∈ K : F(x, y) �⊂ C}

is convex. Indeed, let y1, y2 Î G(x), t Î [0, 1],

F(x, y1) �⊂ C and F(x, y2) �⊂ C. (3:14)

By condition (iii), we have

either F(x, y1) ⊂ F(x, ty1 + (1 − t)y2) + C or F(x, y2) ⊂ F(x, ty1 + (1 − t)y2) + C. (3:15)

We claim that F(x, ty1 + (1 - t)y2) ⊄ C. If not, then by (3.15), we have

either F(x, y1) ⊂ C or F(x, y2) ⊂ C,

which contradicts (3.14). Hence, F(x, ty1 + (1 - t)y2) ⊄ C. Thus, ty1 + (1 - t)y2 Î G(x),

and so G(x) is convex. This completes the proof.
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