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Abstract

Some results relating to the block matrix partial orderings and the submatrix partial
orderings are given. Special attention is paid to the star ordering of a sum of two
matrices and the minus ordering of matrix product. Several equivalent conditions for
the minus ordering are established.
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1 Introduction
Let Cm×n denote the set of all m × n matrices over the complex field C. The symbols

A*, R(A), R⊥(A), N(A) and r(A) denote the conjugate transpose, the range, orthogonal

complement space, the null space and the rank of a given matrix A Î Cm×n.

Furthermore, A† will stand for the Moore-Penrose inverse of A, i.e., the unique

matrix satisfying the equations [1]:

AXA = A XAX = X (AX)∗ = AX (XA)∗ = XA. (1:1)

Matrix partial orderings defined in Cm×n are considered in this paper. First of them is

the star ordering introduced by Drazin [2], which is determined by

A
∗≤B ⇔ A∗A = A∗B and AA∗ = BA∗, (1:2)

and can alternatively be specified as

A
∗≤B ⇔ A†A = A†B and AA† = BA†. (1:3)

Modifying (1.2), Baksalary and Mitra [3] proposed the left-star and right-star order-

ings characterized as

A∗ ≤ B ⇔ A∗A = A∗B (or A†A = A†B) and R(A) ⊆ R(B), (1:4)

A ≤ ∗B ⇔ AA∗ = BA∗(or AA† = BA†) and R(A∗) ⊆ R(B∗). (1:5)

The second partial ordering of interest is minus (rank subtractivity) ordering devised

by Hartwig [4] and independently by Nambooripad [5]. It can be characterized as

A ≤ B ⇔ r(B − A) = r(B) − r(A), (1:6)
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or

A ≤ B ⇔ AB†B = A, BB†A = A, and AB†A = A. (1:7)

From (1.2), (1.4) and (1.5), it is seen that

A
∗≤B ⇔ A∗ ∗≤B∗, (1:8)

A∗ ≤ B ⇔ A∗ ≤ ∗B∗. (1:9)

Hartwig and Styan [6] considered the rank subtractivity and Schur complement, and

shown that

A =
(
C 0
0 0

)
≤

(
E F
G H

)
= B ⇔ C ≤ E − FH−G,

when the conditions r
(
F
H

)
= r(H) = r

(
G H

)
are required, and H- is a inner general-

ized inverse of H (satisfying HH-H = H).

Recently, the relationships between orderings defined in (1.2)-(1.7) and their powers

with the emphasis laid on indicating classes of matrices were considered by several

authors [7-9]. The results on matrix partial orderings and reverse order law were con-

sidered by Benitez et al. [10]. In this paper, we focus our attention on the partial order-

ings of block matrices. Special attention is paid to the star ordering of a sum of two

matrices and the minus ordering of matrix product. To our knowledge, there is no

article yet discussing these partial orderings in the literature.

If A ≺ C, B ≺ D, an interesting question is that whether the partitioned matrices(
A B

) (
or

(
A
B

))
and

(
C D

) (
or

(
C
D

))
have the same orderings, and the solutions

will be given in the following sections. Also, the relations between A
∗≤C, B

∗≤D and

A + B
∗≤C +D, A ≤ B and CA ≤ CB are considered.

2 Star partial ordering
In this section, we give some results on the star partial orderings of block matrices.

Theorem 1 Let A, C Î Cm×n and B, D Î Cm×k be star-ordered as A
∗≤C, B

∗≤D. If R

(A) = R(B), then
(
A B

) ∗≤ (
C D

)
.

Proof. On account of (1.2) and (1.3), since A
∗≤C, B

∗≤D and R(A) = R(B), so

(
A B

)∗ (
A B

)
=

(
A∗A A∗B
B∗A B∗B

)

=
(

A∗C A∗BB†D
B∗AA†C B∗D

)

=
(

A∗C (BB†A)∗D
(AA†B)∗C B∗D

)

=
(
A∗C A∗D
B∗C B∗D

)
=

(
A B

)∗ (
C D

)
,

Liu and Yang Journal of Inequalities and Applications 2011, 2011:54
http://www.journalofinequalitiesandapplications.com/content/2011/1/54

Page 2 of 7



and

(
A B

) (
A B

)∗
= AA∗ + BB∗ = CA∗ +DB∗ =

(
C D

) (
A B

)∗
,

which according to (1.2) show that
(
A B

) ∗≤ (
C D

)
. □

For the left-star orderings, we have a similar result.

Theorem 2 Let A, C Î Cm×n and B, D Î Cm×k be star-ordered as A* ≤ C, B* ≤ D.

If R(A) = R(B), then
(
A B

) ∗ ≤ (
C D

)
.

Proof. In view of (1.4), according to the assumptions, we have

(
A B

)∗ (
A B

)
=

(
A B

)∗ (
C D

)
.

On the other hand, on account of (1.4), from the conditions A* ≤ C and B* ≤ D, we

have R(A) ⊆ R(C) and R(B) ⊆ R(D), which imply that R
(
A B

) ⊆ R
(
C D

)
. According

to (1.4), we have
(
A B

) ∗ ≤ (
C D

)
. □

Theorem 3 Let A, C Î Cm×n and B, D Î Cm×k be star-ordered as
(
A B

) ∗≤ (
C D

)
. If

A
∗≤C (or B

∗≤D), then B
∗≤D (or A

∗≤C). Moreover, the condition A
∗≤C (or B

∗≤D)can

be replaced by A ≤ *C (or B ≤ *D).

Proof. The proof is trivial and therefore omitted.

Since A
∗≤B and A ≤ *B are equivalent to A∗ ∗≤B∗ and A∗∗ ≤ B∗, respectively, there-

fore, for the rowwise partitioned matrix we have the similar results.

Corollary 1 Let A, C Î Cm×n and B, D Î Ck×n be star-ordered as A
∗≤C, B

∗≤D. If R

(A*) = R(B*), then

(
A
B

) ∗≤
(
C
D

)
.

Corollary 2 Let A, C Î Cm×n and B, D Î Ck×n be star-ordered as A ≤ *C, B ≤ *D. If R

(A*) = R(B*), then

(
A
B

)
≤ ∗

(
C
D

)
.

Corollary 3 Let A, C Î Cm×n and B, D Î Ck×n be star-ordered as

(
A
B

) ∗≤
(
C
D

)
. If

A* ≤ C (or B* ≤ D), then B
∗≤D (or A

∗≤C).

Specially, we present the following results without proofs.

Theorem 4 Let A, B Î Cm×n, C Î Cm×k and D Î Ck×n. Then

(1) If A
∗≤Band R(C) ⊆ R(A), then

(
A C

) ∗≤ (
B C

)
and

(
C A

) ∗≤ (
C B

)
. Moreover,

both
(
A C

) ∗≤ (
B C

)
and

(
C A

) ∗≤ (
C B

)
imply A

∗≤B, even though R(C) ⊄ R(A).

(2) If A* ≤ B and R(C) ⊆ R(A), then
(
A C

) ∗ ≤ (
B C

)
and

(
C A

) ∗ ≤ (
C B

)
.

(3) If A
∗≤Band R(D*) ⊆ R(A*), then

(
A
D

) ∗≤
(
B
D

)
and

(
D
A

) ∗≤
(
D
B

)
. Moreover,

both

(
A
D

) ∗≤
(
B
D

)
and

(
D
A

) ∗≤
(
D
B

)
imply A

∗≤B, even though R(D*) ⊄ R(A*).

(4) If A ≤ *B and R(D*) ⊆ R(A*), then

(
A
D

)
≤ ∗

(
B
D

)
and

(
D
A

)
≤ ∗

(
D
B

)
.

Next, we use some examples to illustrate the above results. The case (1) shows that

the condition R(C) ⊆ R(A) is sufficient but not necessary. For example, we take the

matrices
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A =
(
0 1
0 0

)
and B =

(
0 1
1 0

)
.

It is easy to verify that A
∗≤B. For C =

(
0
1

)
, R(C) ⊄ R(A), and a simple computation

shows that
(
A C

)∗ (
A C

) �= (
A C

)∗ (
B C

)
. For C =

(
1
0

)
, R(C) ⊂ R(A), and we have

(
A C

) ∗≤ (
B C

)
as well as

(
C A

) ∗≤ (
C B

)
. On the other hand, we take the matrices

A =

⎛
⎝1 0
1 0
0 0

⎞
⎠ , B =

⎛
⎝1 0
1 0
0 1

⎞
⎠ and C =

⎛
⎝1
0
0

⎞
⎠ .

We can verify that
(
A C

) ∗≤ (
B C

)
. Although R(C) ⊄ R(A), we have A

∗≤B.

Mitra [11] pointed out that the star ordering has the property that if C
∗≤A and

C
∗≤B, then 2C

∗≤A + B. Moreover, it is well known that the Löwner ordering has the

property that for Hermitian nonnegative definite matrices A, B, C and D, if A ≤L C and

B ≤L D, then A + B≤L C + D. A direct consideration is to see whether the star ordering

has the same property. And the solution is given in the following.

Theorem 5 Let A, B, C, D Î Cm×n, and A
∗≤C, B

∗≤D. If R(A) = R(B) and R(A*) = R

(B*), then A + B
∗≤C +D.

Proof. The proof is trivial and therefore omitted. □

3 Minus partial ordering
In this section, we present some results on the minus orderings of the matrix product

and block matrices. In our development, we will use the following preliminary results

for our further discussion.

Lemma 1 [12]Let A Î Cm×n, B Î Cn×k. Then

r(AB) = r(B) − dim (R(B) ∩ N(A)).

Baksalary et al. [13] established a formula for the Moore-Penrose inverse of a

columnwise partitioned matrix. Here, we state it as given below.

Lemma 2 Let A Î Cm×n and be partioned as A =
(
A1 A2

)
. Then the following state-

ments are equivalent:

(1) A† =

(
A†
1 − A†

1A2(Q1A2)†

A†
2 − A†

2A1(Q2A1)†

)
,

(2) R(A1) ∩ R(A2) = {0},

where Qi = Im − AiA
†
i , i = 1, 2.

Lemma 3 [14]Let A Î Cm×n, B Î Cm×k, such that R(B) ⊆ R(A). Then

(
A B

)†
=

(
A† − A†BM−1B∗(A†)∗A†

M−1B∗(A†)∗A†

)
,

where M = I + B*(A†)*A†B.

It is easy to verify that, for a full column rank matrix C with proper size, the minus

orders A≤̄B and CA≤̄CB are equivalent, but if C is not a full column rank matrix, this
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implication may be not true. The following theorem shows that when the implication

is true.

Theorem 6 Let A, B Î Cm×n, C Î Ck×m. Then any two of the following statements

imply the third:

(1) A≤̄B,

(2) CA≤̄CB,

(3) dim (R(B - A) ∩ N(C)) = dim (R(B) ∩ N(C)) - dim (R(A) ∩ N(C)).

Proof. Applying Lemma 1, we have

r(CB − CA) = r(C(B − A)) = r(B − A) − dim (R(B − A) ∩ N(C)),

r(CB) = r(B) − dim (R(B) ∩ N(C)),

r(CA) = r(A) − dim (R(A) ∩ N(C)).

Hence,

(r(B − A) − r(B) + r(A)) − (r(CB − CA) − r(CB) + r(CA))

= dim (R(B − A) ∩ N(C)) + dim (R(A) ∩ N(C)) − dim (R(B) ∩ N(C)).

On account of (1.6) this theorem can be easily obtained. □
Similarly, we can prove the following results.

Corollary 4 Let A, B Î Cm×n, C Î Cn×k. Then any two of the following statements

imply the third:

(1) A≤̄B,

(2) AC≤̄BC,

(3) dim (R(B* - A*) ∩ N(C*)) = dim (R(B*) ∩ N(C*)) - dim (R(A*) ∩ N(C*)).

Summarizing Theorem 6, Corollary 4 and N(C) = R⊥(C*), the following results are

obtained immediately.

Corollary 5 Let A, B Î Cm×n. Then the following statements are equivalent:

(1) A≤̄B,

(2) B†A≤̄B†Band R(A) ⊆ R(B),

(3) AB†≤̄BB† and R(A*) ⊆ R(B*).

Furthermore,

AB†≤̄BB† and R(A) ⊆ R(B) ⇔ B†AB†≤̄B† and R(A) ⊆ R(B),

B†A≤̄B†B and R(A∗) ⊆ R(B∗) ⇔ B†AB†≤̄B† and R(A∗) ⊆ R(B∗),

and

A≤̄B ⇔ B†AB†≤̄B†, R(A) ⊆ R(B) and R(A∗) ⊆ R(B∗).

In the previous section, we study the star ordering of block matrix. A similar conse-

quence on the minus ordering is established as below.

Theorem 7 Let A, C Î Cm×n, and B, D Î Cm×k be minus ordered as A≤̄C, B≤̄D. If R

(C) ∩ R(D) = {0}, then
(
A B

) ≤̄ (
C D

)
.

Proof. From A≤̄C and B≤̄D, in view of (1.7), it follows that

AC†C = A, CC†A = A (or R(A) ⊆ R(C)), AC†A = A; (3:1)
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and

BD†D = B, DD†B = B (or R(B) ⊆ R(D)), BD†B = B; (3:2)

The conditions of the middle part of (3.1) and (3.2) show that

R
(
A B

) ⊆ R
(
C D

)
or

(
C D

) (
C D

)† (
A B

)
=

(
A B

)
. (3:3)

According to Lemma 2 and the assumption R(C) ∩ R(D) = {0}, we have

(
C D

)†
=

(
C† − C†D(QCD)†

D† − D†C(QDC)
†

)
,

where QC = Im - CC† and QD = Im - DD†.

From (3.1) and (3.2), we can verify the following equalities

(
A B

) (
C D

)† (
C D

)
=

(
A B

)
, (3:4)

(
A B

) (
C D

)† (
A B

)
=

(
A B

)
. (3:5)

On account of (1.7), combining (3.3), (3.4) and (3.5) shows that
(
A B

) ≤̄ (
C D

)
□

Note that, A≤̄C and B≤̄D lead to R(A) ⊆ R(C) and R(B) ⊆ R(D), hence, the condition

R(C) ∩ R(D) = {0} implies that R(A) ∩ R(B) = {0}. Therefore, this theorem can also be

proved by Definition (1.6).

Since

r
[(
C D

) − (
A B

)]
= r

(
C − A D − B

)
= r(C − A) + r(D − B)

= r(C) + r(D) − r(A) − r(B)

= r
(
C D

) − r
(
A B

)
,

hence,
(
A B

) ≤̄ (
C D

)
.

The following statement can be deduced from Lemma 3.

Theorem 8 Let A, C Î Cm×n be minus ordered as A≤̄C, and B, D Î Cm×k. If R(D) ⊆
R(C), then

(
A B

) ≤̄ (
C D

)
if and only if B = AC†D.

Corollary 6 Let A, C Î Cm×n be minus ordered as, A≤̄C, and B, D Î Ck×n.

(1) If B≤̄Dand R(C*) ∩ R(D*) = {0}, then

(
A
B

)
≤̄

(
C
D

)
.

(2) If R(D*) ⊆ R(C*), then

(
A
B

)
≤̄

(
C
D

)
if and only if B = DC†A.
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