Some new identities on the twisted carlitz's \boldsymbol{q}-bernoulli numbers and \boldsymbol{q}-bernstein polynomials

Lee-Chae Jang ${ }^{1}$, Taekyun Kim²* ${ }^{2 *}$, Young-Hee Kim² and Byungje Lee ${ }^{3}$

* Correspondence: tkkim@kw.ac.kr
${ }^{2}$ Division of General EducationMathematics, Kwangwoon University, Seoul 139-701, Republic of Korea
Full list of author information is available at the end of the article

Abstract

In this paper, we consider the twisted Carlitz's q-Bernoulli numbers using p-adic q integral on \mathbb{Z}_{p}. From the construction of the twisted Carlitz's q-Bernoulli numbers, we investigate some properties for the twisted Carlitz's q-Bernoulli numbers. Finally, we give some relations between the twisted Carlitz's q-Bernoulli numbers and q Bernstein polynomials.

Keywords: q-Bernoulli numbers, p-adic q-integral, twisted

1. Introduction and preliminaries

Let p be a fixed prime number. Throughout this paper, $\mathbb{Z}_{p}, \mathbb{Q}_{p}$ and \mathbb{C}_{p} will denote the ring of p-adic integers, the field of p-adic rational numbers and the completion of algebraic closure of \mathbb{Q}_{p}, respectively. Let \mathbb{N} be the set of natural numbers, and let $\mathbb{Z}_{+}=\mathbb{N} \cup$ $\{0\}$. Let v_{p} be the normalized exponential valuation of \mathbb{C}_{p} with $|p|_{p}=p^{-v_{p}(p)}=\frac{1}{p}$. In this paper, we assume that $q \in \mathbb{C}_{p}$ with $|1-q|_{p}<1$. The q-number is defined by $[x]_{q}=\frac{1-q^{x}}{1-q}$. Note that $\lim _{q \rightarrow 1}[x]_{q}=x$.

We say that f is a uniformly differentiable function at a point $a \in \mathbb{Z}_{p}$, and denote this property by $f \in U D\left(\mathbb{Z}_{p}\right)$, if the difference quotient $F_{f}(x, y)=\frac{f(x)-f(y)}{x-y}$ has a limit $f(a)$ as $(x, y) \rightarrow(a, a)$. For $f \in U D\left(\mathbb{Z}_{p}\right)$, the p-adic q-integral on \mathbb{Z}_{p}, which is called the q-Volkenborn integral, is defined by Kim as follows:

$$
\begin{equation*}
I_{q}(f)=\int_{\mathbb{Z}_{p}} f(x) d \mu_{q}(x)=\lim _{N \rightarrow \infty} \frac{1}{\left[p^{N}\right]_{q}} \sum_{x=0}^{p^{N}-1} f(x) q^{x}, \quad(\text { see }[1]) . \tag{1}
\end{equation*}
$$

In [2], Carlitz defined q-Bernoulli numbers, which are called the Carlitz's q-Bernoulli numbers, by

$$
\beta_{0, q}=1, \quad \text { and } \quad q(q \beta+1)^{n}-\beta_{n, q}= \begin{cases}1 \text { if } & n=1, \tag{2}\\ 0 \text { if } & n>1,\end{cases}
$$

with the usual convention about replacing β^{n} by $\beta_{n, q}$.
In $[2,3]$, Carlitz also considered the expansion of q-Bernoulli numbers as follows:

$$
\beta_{0, q}^{(h)}=\frac{h}{[h]_{q}}, \quad \text { and } \quad q^{h}\left(q \beta^{(h)}+1\right)^{n}-\beta_{n, q}^{(h)}=\left\{\begin{array}{ll}
1 \text { if } & n=1, \tag{3}\\
0 & \text { if }
\end{array} n>1,\right.
$$

with the usual convention about replacing $\left(\beta^{(h)}\right)^{n}$ by $\beta_{n, q^{*}}^{(h)}$.
Let $C_{p^{n}}=\left\{\xi \mid \xi^{p^{n}}=1\right\}$ be the cyclic group of order p^{n}, and let $T_{p}=\lim _{n \rightarrow \infty} C_{p^{n}}=C_{p^{\infty}}=\bigcup_{n \geq 0} C_{p^{n}}$ (see [1-16]). Note that T_{p} is a locally constant space.
For $\xi \in T_{p}$, the twisted q-Bernoulli numbers are defined by

$$
\begin{equation*}
\frac{t}{\xi e^{t}-1}=e^{B_{\xi} t}=\sum_{n=0}^{\infty} B_{n, \xi} \frac{t^{n}}{n!}, \tag{4}
\end{equation*}
$$

(see [1-19]). From (4), we note that

$$
B_{0, q}=0, \quad \text { and } \quad \xi\left(B_{\xi}+1\right)^{n}-B_{n, \xi}= \begin{cases}1 & \text { if } \tag{5}\\ 0 \text { if } & n>1 \\ 0\end{cases}
$$

with the usual convention about replacing B_{ξ}^{n} by $B_{n, \xi}$ (see [17-19]). Recently, several authors have studied the twisted Bernoulli numbers and q-Bernoulli numbers in the area of number theory(see [17-19]).

In the viewpoint of (5), it seems to be interesting to investigate the twisted properties of (3). Using p-adic q-integral equation on \mathbb{Z}_{p}, we investigate the properties of the twisted q-Bernoulli numbers and polynomials related to q-Bernstein polynomials. From these properties, we derive some new identities for the twisted q-Bernoulli numbers and polynomials. Final purpose of this paper is to give some relations between the twisted Carlitz's q-Bernoulli numbers and q-Bernstein polynomials.

2. On the twisted Carlitz 's \boldsymbol{q}-Bernoulli numbers

In this section, we assume that $n \in \mathbb{Z}_{+}, \xi \in T_{p}$ and $q \in \mathbb{C}_{p}$ with $|1-q|_{p}<1$.
Let us consider the nth twisted Carlitz's q-Bernoulli polynomials using p-adic q integral on \mathbb{Z}_{p} as follows:

$$
\begin{align*}
\beta_{n, \xi, q}(x) & =\int_{\mathbb{Z}_{p}}[y+x]_{q}^{n} \xi^{y} d \mu_{q}(y) \\
& =\frac{1}{(1-q)^{n}} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} q^{l x} \int_{\mathbb{Z}_{p}} \xi^{y} q^{l y} d \mu_{q}(y) \tag{6}\\
& =\frac{1}{(1-q)^{n-1}} \sum_{l=0}^{n}\binom{n}{l}\left(\frac{l+1}{1-\xi q^{l+1}}\right)(-1)^{l} q^{l x} .
\end{align*}
$$

In the special case, $x=0, \beta_{n, \xi, q}(0)=\beta_{n, \xi, q}$ are called the nth twisted Carlitz's q-Bernoulli numbers.

From (6), we note that

$$
\begin{align*}
\beta_{n, \xi, q}(x)= & \frac{1}{(1-q)^{n-1}} \sum_{l=0}^{n-1}\binom{n}{l}(-1)^{l} q^{l x}\left(\frac{1}{1-\xi q^{l+1}}\right) \\
& +\frac{1}{(1-q)^{n-1}} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} q^{l x}\left(\frac{1}{1-\xi q^{l+1}}\right) \tag{7}\\
= & -n \sum_{m=0}^{\infty} \xi^{m} q^{2 m+x}[x+m]_{q}^{n-1}+\sum_{m=0}^{\infty} \xi^{m} q^{m}(1-q)[x+m]_{q}^{n}
\end{align*}
$$

Therefore, by (7), we obtain the following theorem.

Theorem 1. For $n \in \mathbb{Z}_{+}$, we have

$$
\beta_{n, \xi, q}(x)=-n \sum_{m=0}^{\infty} \xi^{m} q^{m}[x+m]_{q}^{n-1}+(1-q)(n+1) \sum_{m=0}^{\infty} \xi^{m} q^{m}[x+m]_{q}^{n}
$$

Let $F_{q, \xi}(t, x)$ be the generating function of the twisted Carlitz's q-Bernoulli polynomials, which are given by

$$
\begin{equation*}
F_{q, \xi}(t, x)=e^{\beta_{\xi, q}(x) t}=\sum_{n=0}^{\infty} \beta_{n, \xi, q}(x) \frac{t^{n}}{n!}, \tag{8}
\end{equation*}
$$

with the usual convention about replacing $\left(\beta_{\xi, q}(x)\right)^{n}$ by $\beta_{n, \xi, q}(x)$.
By (8) and Theorem 1, we get

$$
\begin{align*}
F_{q, \xi}(t, x) & =\sum_{n=0}^{\infty} \beta_{n, \xi, q}(x) \frac{t^{n}}{n!} \\
& =-t \sum_{m=0}^{\infty} \xi^{m} q^{2 m+x} e^{[x+m]_{q} t}+(1-q) \sum_{m=0}^{\infty} \xi^{m} q^{m} e^{[x+m]_{q} t} \tag{9}
\end{align*}
$$

Let $F_{q, \xi}(t, 0)=F_{q, \xi}(t)$. Then, we have

$$
\begin{equation*}
q \xi F_{q, \xi}(t, 1)-F_{q, \xi}(t)=t+(q-1) \tag{10}
\end{equation*}
$$

Therefore, by (9) and (10), we obtain the following theorem.
Theorem 2. For $n \in \mathbb{Z}_{+}$, we have

$$
\beta_{0, \xi, q}(x)=\frac{q-1}{q \xi-1}, \quad \text { and } \quad q \xi \beta_{n, \xi, q}(1)-\beta_{n, \xi, q}= \begin{cases}1 & \text { if } \\ 0 \text { if } & n=1 \\ 0\end{cases}
$$

From (6), we note that

$$
\begin{align*}
\beta_{n, \xi, q}(x) & =\sum_{l=0}^{n}\binom{n}{l}[x]_{q}^{n-l} q^{l x} \int_{\mathbb{Z}_{p}} \xi^{y}[y]_{q}^{l} d \mu_{q}(y) \\
& =\sum_{l=0}^{n}\binom{n}{l}[x]_{q}^{n-l} q^{l x} \beta_{l, \xi, q} \tag{11}\\
& =\left([x]_{q}+q^{x} \beta_{\xi, q}\right)^{n}
\end{align*}
$$

with the usual convention about replacing $\left(\beta_{\zeta, q}\right)^{n}$ by $\beta_{n, \xi, q}$. By (11) and Theorem 2, we get

$$
q \xi\left(q \beta_{\xi, q}+1\right)^{n}-\beta_{n, \xi, q}=\left\{\begin{array}{rr}
q-1 & \text { if } \tag{12}\\
1 & \text { if } \\
n=0 \\
0 & \text { if } \\
n>1
\end{array}\right.
$$

It is easy to show that

$$
\begin{align*}
\beta_{n, \xi^{-1}, q^{-1}}(1-x) & =\int_{\mathbb{Z}_{p}} \xi^{-\gamma}[1-x+y]_{q^{-1}}^{n} d \mu_{q^{-1}}(y) \\
& =\frac{(-1)^{n} q^{n}}{(1-q)^{n}} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} q^{-l+l x} \int_{\mathbb{Z}_{p}} \xi^{-\gamma} q^{-l y} d \mu_{q^{-1}}(\gamma) \tag{13}\\
& =\xi q^{n}(-1)^{n}\left(\frac{1}{(1-q)^{n-1}} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} q^{l x}\left(\frac{l+1}{1-\xi q^{l+1}}\right)\right) \\
& =\xi q^{n}(-1)^{n} \beta_{n, \xi, q}(x) .
\end{align*}
$$

Therefore, by (13), we obtain the following theorem.
Theorem 3. For $n \in \mathbb{Z}_{+}$, we have

$$
\beta_{n, \xi^{-1}, q^{-1}}(1-x)=\xi q^{n}(-1)^{n} \beta_{n, \xi, q}(x)
$$

From Theorem 3, we can derive the following functional equation:

$$
\begin{equation*}
F_{q^{-1}, \xi^{-1}}(t, 1-x)=\xi F_{q, \xi}(-q t, x) . \tag{14}
\end{equation*}
$$

Therefore, by (14), we obtain the following corollary.
Corollary 4. Let $F_{q, \xi}(t, x)=\sum_{n=0}^{\infty} \beta_{n, \xi, q}(x) \frac{t^{n}}{n!}$. Then we have

$$
F_{q^{-1}, \xi^{-1}}(t, 1-x)=\xi F_{q, \xi}(-q t, x) .
$$

By (11), we get that

$$
\begin{align*}
q^{2} \xi^{2} \beta_{n, \xi, q}(2) & =q^{2} \xi^{2} \sum_{l=0}^{n}\binom{n}{l} q^{l}\left(1+q \beta_{\xi, q}\right)^{l} \\
& =q^{2} \xi^{2}\left(\frac{1-q}{1-q \xi}\right)+\binom{n}{1} q^{2} \xi\left(1+\beta_{1, \xi, q}\right)+q^{2} \xi^{2} \sum_{l=0}^{n}\binom{n}{l} q^{l} \beta_{l, \xi, q}(1) \tag{15}\\
& =(1-q) \frac{q^{2} \xi^{2}}{1-q \xi}+\binom{n}{1} q^{2} \xi+q \xi \sum_{l=0}^{n}\binom{n}{l} q^{l} \beta_{l, \xi, q} \\
& =\frac{1-q}{1-q \xi} q^{2} \xi^{2}+n q^{2} \xi-q \xi \frac{1-q}{1-q \xi}+\beta_{n, \xi, q,} \quad \text { if } \quad n>1
\end{align*}
$$

Therefore, by (15), we obtain the following theorem.
Theorem 5. For $n \in \mathbb{N}$ with $n>1$, we have

$$
\beta_{n, \xi, q}(2)=\frac{1-q}{1-q \xi}+\frac{n}{\xi}-\frac{1}{q \xi}\left(\frac{1-q}{1-q \xi}\right)+\left(\frac{1}{q \xi}\right)^{2} \beta_{n, \xi, q} .
$$

By a simple calculation, we easily set

$$
\begin{align*}
\xi \int_{\mathbb{Z}_{p}}[1-x]_{q^{-1}}^{n} \xi^{x} d \mu_{q}(x) & =\xi(-1)^{n} q^{n} \int_{\mathbb{Z}_{p}}[x-1]_{q}^{n} \xi^{x} d \mu_{q}(x) \tag{16}\\
& =\xi(-1)^{n} q^{n} \beta_{n, \xi, q}(-1)=\beta_{n, \xi^{-1}, q^{-1}}(2) .
\end{align*}
$$

For $n \in \mathbb{Z}_{+}$with $n>1$, we have

$$
\begin{align*}
\xi \int_{\mathbb{Z}_{p}}[1-x]_{q^{-1}}^{n} \xi^{x} d \mu_{q}(x) & =\beta_{n, \xi^{-1}, q^{-1}}(2) \\
& =\xi\left(\frac{1-q}{1-q \xi}\right)+n \xi-q \xi^{2}\left(\frac{1-q}{1-q \xi}\right)+(q \xi)^{2} \beta_{n, \xi^{-1}, q^{-1}} \tag{17}\\
& =\xi(1-q)+n \xi+(q \xi)^{2} \beta_{n, \xi^{-1}, q^{-1}}
\end{align*}
$$

Therefore, by (16) and (17), we obtain the following theorem.
Theorem 6. For $n \in \mathbb{Z}_{+}$with $\mathrm{n}>1$, we have

$$
\int_{\mathbb{Z}_{p}}[1-x]_{q^{-1}}^{n} \xi^{x} d \mu_{q}(x)=(1-q)+n+q^{2} \xi \beta_{n, \xi^{-1}, q^{-1}}
$$

For $x \in \mathbb{Z}_{p}$ and $n, k \in \mathbb{Z}_{+}$, the p-adic q-Bernstein polynomials are given by

$$
\begin{equation*}
B_{k, n}(x, q)=\binom{n}{k}[x]_{q}^{k}[1-x]_{q^{-1}}^{n-k}, \tag{18}
\end{equation*}
$$

(see $[8,20]$).
In [8], the q-Bernstein operator of order n is given by

$$
\mathbb{B}_{n, q}(f \mid x)=\sum_{k=0}^{n} f\left(\frac{n}{k}\right) B_{k, n}(x, q)=\sum_{k=0}^{n} f\left(\frac{n}{k}\right)\binom{n}{k}[x]_{q}^{k}[1-x]_{q^{-1}}^{n-k} .
$$

Let f be continuous function on \mathbb{Z}_{p}. Then, the sequence $\mathbb{B}_{n, q}(f \mid x)$ converges uniformly to f on \mathbb{Z}_{p} (see [8]). If q is same version in (18), we cannot say that the sequence $\mathbb{B}_{n, q}(f \mid x)$ converges uniformly to f on \mathbb{Z}_{p}.

Let $s \in \mathbb{N}$ with $s \geq 2$. For $n_{1}, \ldots, n_{s}, k \in \mathbb{Z}_{+}$with $n_{1}+\cdots+n_{s}>s k+1$, we take the p-adic q-integral on \mathbb{Z}_{p} for the multiple product of q-Bernstein polynomials as follows:

$$
\begin{align*}
& \int_{\mathbb{Z}_{p}} \xi^{x} B_{k, n_{1}}(x, q) \cdots B_{k, n_{s}}(x, q) d \mu_{q}(x) \\
& =\binom{n_{1}}{k} \cdots\binom{n_{s}}{k} \int_{\mathbb{Z}_{p}}[x]_{q}^{k}[1-x]_{q^{-1}}^{n_{1}+\cdots+n_{s}-s k} \xi^{x} d \mu_{q}(x) \\
& =\binom{n_{1}}{k} \cdots\binom{n_{s}}{k} \sum_{l=0}^{s k}\binom{s k}{l}(-1)^{l+s k} \int_{\mathbb{Z}_{p}}[1-x]_{q^{-1}}^{n_{1}+\cdots+n_{s}-l} \xi^{x} d \mu_{q}(x) \tag{19}\\
& =\binom{n_{1}}{k} \cdots\binom{n_{s}}{k} \sum_{l=0}^{s k}\binom{s k}{l}(-1)^{l+s k} \\
& \quad \times\left(q^{2} \xi \beta_{\left.n_{1}+\cdots+n_{s}-l, \xi^{-1}, q^{-1}+n_{1}+\cdots+n_{s}-l+1-q\right) d \mu_{q}(x)}=\left\{\begin{array}{l}
q^{2} \xi \beta_{n_{1}+\cdots+n_{s}, \xi^{-1}, q^{-1}+n_{1}+\cdots+n_{s}+(1-q) \quad \text { if } k=0,}^{q^{2} \xi\binom{n_{1}}{k} \cdots\binom{n_{s}}{k} \sum_{l=0}^{s k}\binom{s k}{l}(-1)^{l+s k} \beta_{n_{1}+\cdots+n_{s}-l, \xi^{-1} \cdot q^{-1}} \text { if } k>0,}
\end{array}\right.\right.
\end{align*}
$$

and we also have

$$
\begin{align*}
& \int_{\mathbb{Z}_{p}} \xi^{x} B_{k, n_{1}}(x, q) \cdots B_{k, n_{s}}(x, q) d \mu_{q}(x) \tag{20}\\
& \quad=\binom{n_{1}}{k} \cdots\binom{n_{s}}{k} \sum_{l=0}^{n_{1}+\cdots+n_{s}-s k}\binom{n_{1}+\cdots+n_{s}-s k}{l}(-1)^{l} \beta_{l+s k, \xi, q}
\end{align*}
$$

By comparing the coefficients on the both sides of (19) and (20), we obtain the following theorem.

Theorem 7. Let $s \in \mathbb{N}$ with $s \geq 2$. For $n_{1}, \ldots, n_{s}, k \in \mathbb{Z}_{+}$with $n_{1}+\ldots+n_{s}>s k+1$, we have

$$
\begin{aligned}
& \sum_{l=0}^{n_{1}+\cdots+n_{s}-s k}\binom{n_{1}+\cdots+n_{s}-s k}{l}(-1)^{l} \beta_{l+s k, \xi, q} \\
& \quad= \begin{cases}q^{2} \xi \beta_{n_{1}+\cdots+n_{s}, \xi^{-1}, q^{-1}+n_{1}+\cdots+n_{s}+(1-q)} \text { if } k=0, \\
q^{2} \xi \sum_{l=0}^{s k}(s k)(-1)^{l+s k} \beta_{n_{1}+\cdots+n_{s}-l, \xi^{-1} \cdot q^{-1}} & \text { if } k>0 .\end{cases}
\end{aligned}
$$

Acknowledgements

The authors express their sincere gratitude to referees for their valuable suggestions and comments. This paper was supported by the research grant Kwangwoon University in 2011.

Author details

${ }^{1}$ Department of Mathematics and Computer Science, Konkuk University, Chungju 380-701, Republic of Korea ${ }^{2}$ Division of General Education-Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea ${ }^{3}$ Department of Wireless Communications Engineering, Kwangwoon University, Seoul 139-701, Republic of Korea

Competing interests

The authors declare that they have no competing interests.

Received: 21 February 2011 Accepted: 13 September 2011 Published: 13 September 2011

References

1. Kim, T: On a q-analogue of the p-adic log gamma functions and related integrals. J Number Theory. 76, 320-329 (1999). doi:10.1006/jnth.1999.2373
2. Carlitz, L: q-Bernoulli numbers and polynomials. Duke Math J. 15, 987-1000 (1948). doi:10.1215/S0012-7094-48-01588-9
3. Kim, T: q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients. Russ J Math Phys. 15, 51-57 (2008)
4. Bernstein, S: Démonstration du théorème de Weierstrass, fondée sur le calcul des probabilities. Commun Soc Math Kharkow. 13, 1-2 (1912)
5. Cangul, IN, Kurt, V, Ozden, H, Simsek, Y: On the higher-order w-q-Genocchi numbers. Adv Stud Contemp Math. 19, 39-57 (2009)
6. Govil, NK, Gupta, V: Convergence of q-Meyer-König-Zeller-Durrmeyer operators. Adv Stud Contemp Math. 19, 97-108 (2009)
7. Jang, L-C: A study on the distribution of twisted q-Genocchi polynomials. Adv Stud Contemp Math. 19, 181-189 (2009)
8. Kim, T: A note on q-Bernstein polynomials. Russ J Math Phys. 18, 41-50 (2011)
9. Kim, T: q-Volkenborn integration. Russ J Math Phys. 9, 288-299 (2002)
10. Kim, T, Choi, J, Kim, Y-H: Some identities on the q-Bernstein polynomials, q-Stirling numbers and q-Bernoulli numbers. Adv Stud Contemp Math. 20, 335-341 (2010)
11. Kim, T: Barnes type multiple q-zeta functions and q-Euler polynomials. J Physics A: Math Theor 43, 11 (2010). 255201
12. Kurt, V: further symmetric relation on the analogue of the Apostol-Bernoulli and the analogue of the Apostol-Genocchi polynomials. Appl Math Sci (Ruse). 3, 2757-2764 (2008)
13. Rim, S-H, Moon, E-J, Lee, S-J, Jin, J-H: Multivariate twisted p-adic q-integral on \boxtimes_{p} associated with twisted q-Bernoulli polynomials and numbers. J Inequal Appl 2010, Art ID 579509 (2010). 6 pp
14. Ryoo, CS, Kim, YH: A numericla investigation on the structure of the roots of the twisted q-Euler polynomials. Adv Stud Contemp Math. 19, 131-141 (2009)
15. Ryoo, CS: On the generalized Barnes' type multiple q-Euler polynomials twisted by ramified roots of unity. Proc Jangjeon Math Soc. 13, 255-263 (2010)
16. Ryoo, CS: A note on the weighted q-Euler numbers and polynomials. Adv Stud Contemp Math. 21, 47-54 (2011)
17. Simsek, Y: Generating functions of the twisted Bernoulli numbers and polynomials associated with their interpolation functions. Adv Stud Contemp Math. 16, 251-278 (2008)
18. Kim, T: Non-Archimedean q-integrals associated with multiple Changhee q-Bernoulli polynomials. Russ J Math Phys. 10, 91-98 (2003)
19. Simsek, Y: Theorems on twisted L-function and twisted Bernoulli numbers. Adv Stud Contemp Math. 11, 205-218 (2005)
20. Bayad, A, Kim, T: Identities involving values of Bernstein, q-Bernoulli, and q-Euler polynomials. Russ J Math Phys. 18, 133-143 (2011). doi:10.1134/S1061920811020014

doi:10.1186/1029-242X-2011-52

Cite this article as: Jang et al.: Some new identities on the twisted carlitz's \boldsymbol{q}-bernoulli numbers and \boldsymbol{q}-bernstein polynomials. Journal of Inequalities and Applications 2011 2011:52.

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

```
Submit your next manuscript at $ springeropen.com
```

